

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

DATE OF QUALIFICATION	
SUPERSEDE PROTOCOL No.	NIL

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

PROTOCOL CONTENTS

S.No.	TITLE	PAGE No.
1.0	Protocol Pre-Approval	3
2.0	Objective	4
3.0	Scope	4
4.0	Responsibility	5
5.0	Project Requirements	5
6.0	Brief Equipment Description	6
7.0	Equipment Specification	8
8.0	Critical Variables to be Met	9
8.1	Process / Product Parameters	9
8.2	Design Specification	10-28
8.3	Safety Feature & alarm	29
8.4	Process Detail	31
8.5	Utility Detail	32-34
8.6	Material of Concentration	35-37
8.7	Vendor Selection	38
9.0	Documents to be Attached	38
10.0	Review (Inclusive of Follow Up Action, If Any)	38
11.0	Any Changes Made Against the Formally Agreed Parameters	39
12.0	Recommendation	39
13.0	Abbreviations	40-41
14.0	Reviewed By	42

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

1.0 PROTOCOL PRE – APPROVAL:

PREPARED BY:

DESIGNATION	NAME	SIGNATURE	DATE
OFFICER/EXECUTIVE (QUALITY ASSURANCE)			

REVIEWED BY:

DESIGNATION	NAME	SIGNATURE	DATE
OPERATING MANAGER			
(QUALITY ASSURANCE)			
HEAD			
(ENGINEERING			
HEAD (PRODUCTION)			

APPROVED BY:

DESIGNATION	NAME	SIGNATURE	DATE
HEAD (QUALITY ASSURANCE)			

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

2.0 OBJECTIVE:

- To prepare the Design Qualification on the basis of URS, Purchase Order and information given by Supplier.
- The purpose of Design qualification is to ensure that all Critical Aspects of Process/Product requirement, cGMP and Safety have been considered in designing the equipment and is properly documented.

3.0 SCOPE:

- The equipment shall be operated under the dust free environment and conditions as per the cGMP requirements.
- The drawings and P & ID's provided by Vendor shall be verified during Design Qualification.

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

4.0 **RESPONSQBILITY:**

The Validation Group, comprising of a representative from each of the following departments, shall be responsible for the overall compliance of this Protocol cum Report:

DEPARTMENTS	RESPONSQBILITIES
	Preparation, Review and Approval of the Protocol cum Report.
	Assist in the verification of Critical Process Parameters, Drawings as per
	the Specification.
Quality Assurance	Post Approval of Qualification Protocol cum Report after Execution.
	Co-ordination with Production and Engineering to carryout Design
	Qualification.
	Monitoring of Design Qualification Activity.
	Review of the Protocol cum Report.
Production	Assist in the verification of Critical Process Parameters, Drawings as per
Froduction	the Specification.
	Post Approval of Qualification Protocol cum Report after Execution.
	Review of the Protocol cum Report.
	Assist in the Preparation of the Protocol cum Report.
	To co-ordinate and support the Activity.
	To assist in Verification of Critical Process Parameter, Drawings as per
	the Specification i.e.
	GA Drawing.
Engineering	> Specification of the sub-components/bought out items, their Make,
Engineering	Model, Quantity and backup records/ brochures.
	Details of utilities.
	Identification of components for calibration.
	Material of construction of all components.
	Brief Process Description.
	Safety Features and Alarms.
	Post Approval of Qualification Protocol after Execution.

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

5.0 PROJECT REQUIREMENTS:

To confirm the safe delivery of the Equipment from the supplier Site. To ensure that no unauthorized and/or Unrecorded design modification shall take place. If at any point in time, any change is desired in the mutually agreed design, Change Control procedure shall be followed and documented. The Compounding Vessel, its associated components and stirrer are designed to process pharmaceutical products in accordance with cGMP principles

6.0 BRIEF EQUIPMENT DESCRIPTION:

The Sterilizer manufactured by **M/s. Machin fabrik Industries Pvt. Ltd.,** is designed for the best possible adaptation to the needs of the customer.

The High Pressure High Vacuum Sterilizer has been an unique Sterilization System offered by M/s. Machin fabrik Industries Pvt. Ltd., as it can be efficiently used to perform two types of sterilization processes; viz : Standard Program HPHV.

The identification for any leakage & penetration of steam can be tested by the following methods:

- A) Chamber Leak Test (Cold)
- B) Chamber Leak Test (Hot)
- C) Warm up Cycle
- D) Bowie Dick Test
- As the name suggests the above two processes achieve sterilization with the help of Steam.

STANDARD STEAM STERILIZER:

Standard Program is a jacketed pressure vessel. The Standard Program cycle is initiated by introducing steam into the jacket. This essentially aids in preheating the chamber and effective utilization of heat energy.

The Standard Displacement Program process is made up of three phases viz:-

- a. Heat Up
- b. Sterilization Hold
- c. Exhaust (Cooling)

When the pressure inside the jacket is reached up to a particular set pressure. Steam is introduced into the chamber & chamber Air pockets are removed through the chamber condensate line. This will ensure uniform steam distribution and penetration in the chamber. The equipment is provided with steam traps

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

& air vent system in chamber condensate line to ensure maximum removal of air pockets and steam condensate along with some wet steam vapors.

As the chamber temperature reaches to set sterilization temperature, the control system then control's the chamber temperature till the end of sterilization time.

After the sterilization hold time is completed, steam from the chamber is exhausted to bring down the chamber pressure up to the set Process End Pressure (close to atmospheric pressure).

The sterile load is then unloaded in the sterile area.

HIGH PRESSURE HIGH VACUUM STEAM STERILIZATION:

The High Pressure High Vacuum Steam Sterilization cycle process is used to sterilize & dry the load. The High Pressure High Vacuum Steam Sterilization cycle consists of following phases viz:-

- a. Vacuum Steam Pulsing
- b. Heat up
- c. Sterilization Hold
- d. Vacuum drying
- e. Sterile Air in (Vacuum break)

This process is initiated by introducing steam into the jacket. This essentially aids in preheating the chamber and effective utilization of heat energy. In this process initially vacuum is created & then steam is introduced in the chamber up to the set value. These pulses are created 3 to 4 times to remove the air pockets. Almost 95% removal of air is ensured from chamber. The steam & vacuum pulsing not only ensures removal of air pockets and cold spots but also ensures uniform temperature distribution & penetration.

The vacuum is created with the help of water ring type vacuum pump.

After completion of fixed no. of pulses, the chamber temperature reaches to set sterilization temperature. The control system then control's the chamber temperature till the end of sterilization time.

After the completion of sterilization time, vacuum up to a pre – determined level is created in the chamber. When this vacuum level is reached, the control system ensures that the vacuum is

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

maintained for the specified time. The vacuum created at this stage ensures drying of the load inside the chamber.

After the completion of vacuum drying time, the –ve pressure in chamber is brought to atmospheric pressure by injecting sterile air through air filter.

The sterilized load is then unloaded from the chamber.

A. VACUUM LEAK TEST (COLD):

In this process initially vacuum is created up to the set level. Then it will hold as per the given delay hold time to settle down the vacuum in chamber, after that actual vacuum hold time will start (as per mention in HTM 2010 guideline) to know the chamber leakage. After the completion of vacuum hold time, the negative pressure in chamber is brought to atmospheric pressure by injecting sterile air through air filter.

B. VACUUM LEAK TEST (HOT):

- 1) In this process steam is introduced into the jacket, this preheats the chamber. After that vacuum is created & then steam is introduced in the chamber upto set value, these pulses are repeated 3 to 4 times to remove air pockets. In heat up, exhaust & steam pulses is repeated to for uniform temperature distribution & protection.
- 2) After completion of fixed no. of pulses the chamber temperature reaches to set sterilization temperature. The control system then control the chamber temperature tills the end of sterilization time.
- 3) After the sterilization chamber vacuum valve open to create vacuum & help in drying.
- 4) Then it will hold as per the given delay hold time to settle down the vacuum in chamber, after that actual vacuum hold time will start (as per mention in HTM 2010 guideline) to know the chamber leakage. After the completion of vacuum hold time, the negative pressure in chamber is brought to atmospheric pressure by injecting sterile air through air filter.

C. WARM UP CYCLE:

- 1) In this process steam is introduced into the jacket, this preheats the chamber. After that vacuum is created & then steam is introduced in the chamber upto set value.
- 2) After completion of vacuum pulses the chamber temperature reaches to set Warm temperature. The control system then control the chamber temperature tills the end of Warm hold time.

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

3) After the Warm hold chamber vacuum valve open to create vacuum & vacuum hold start. After the completion of vacuum hold time, the negative pressure in chamber is brought to atmospheric pressure by injecting sterile air through air filter.

D. BOWIE DICK TEST:

- 1) In this process steam is introduced into the jacket, this preheats the chamber after that vacuum is created & then steam is introduced in the chamber upto set value, these pulses are repeated 3 to 4 times to remove air pockets. In heat up exhaust & steam pulses is repeated to for uniform temperature distribution & protection.
- 2) After completion of fixed no. of pulses the chamber temperature reaches to set sterilization temperature. The control system then control the chamber temperature tills the end of sterilization time.
- 3) After the sterilization, Positive pressure in chamber is brought to atmospheric pressure by opening chamber exhaust valve.

7.0 EQUIPMENT SPECIFICATION:

Equipment Specifications are based on User Requirement Specification prepared The manufacturer of equipment ensures complies with User Requirement Specification.

Equipment	HPHV Steam Sterilizer
Make	Machine Fabric
Sr. No.	
Chamber size	600 (w) x 600 (h) x 900 (d) mm
Chamber volume	324 liters
Working pressure	Upto 2.2 kg/cm ² (g)
Working temperature	Upto 134 ⁰ c

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

8.0 CRITICAL VARIABLES TO BE MET:

8.1 PROCESS/PRODUCT PARAMETERS:

Critical Variables	Acceptance Criteria	Reference
Application:	All the loaded articles and supporting	Process Requirement
Double Door Autoclave is designed	accessories should be sterile after	
for the sterilization of clean room	performing the validated cycles.	
garments, articles and supporting		
machine parts & accessories which		
has to be used in production in		
three piece line.		
Working:	During Steam Sterilization, Steam	Process Requirement
In this process, Steam introduces in	distribution should be uniform in the	
the chamber and it acts or works on	chamber.	
the placed articles or container		
which is being kept in the chamber		
for sterilization.		
Electrical Control Panel	The system should have Electrical Control	Design Requirement
	Panel.	

8.2 DESIGN SPECIFICATION:

WORKING CONDITIONS & TEST PRESSURES

	Chamber	Jacket	Condenser		Air
	Chamber	Jacket	Shell	Tube	Pocket
Working	2.2	2.2	1.5	2.2	3.0
Pressure	kg/cm ² (g)	$kg/cm^2(g)$	$kg/cm^2(g)$	kg/cm ² (g)	kg/cm ² (g)
Hydro test	3.3	4.4	3.0	4.4	NA
pressure	kg/cm ² (g)	$kg/cm^2(g)$	$kg/cm^2(g)$	kg/cm ² (g)	
Working	134 ⁰ C	134 ⁰ C	NA	134°C	60°C
Temperature					
Vacuum	Full	NA	NA	Full	Partial
Pneumatic	NA	NA	NA	NA	4.5
Test pressure					kg/cm ² (g)

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

8.2.2 SHELL DESIGN

8.2.2.1 CONSTRUCTIONAL DETAILS

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
CHAMBER		
Internal Size	600 (W) X 600 (H) X 900 (D) mm	Design Requirements
Plate Thickness	6 mm	Design Requirements
Material	SS316L	Design Requirements
Finish	Ra ≤ 0.8 μm	Design Requirements
Design Code	ASME SEC VIII DIV – 1	Design Requirements
Welding Joint Radiography	10% of Weld Length	Design Requirements
JACKET		1
Type	Full	Design Requirements
Plate Thickness	5 mm	Design Requirements
Material	SS304	Design Requirements
AIR POCKET		I
Plate Thickness	5 mm	Design Requirements
Material	SS304	Design Requirements

8.2.2.2 SHELL INSULATION

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
Insulation Material	Resin Bonded Glasswool	Design Requirements
Insulation Thickness	50 mm	Design Requirements
Insulation Skin Temperature (Average)	55°C (Subjected to room temperature 23±2°C)	Design Requirements
Insulation Cover Material	SS304	Design Requirements
Insulation Cover Thickness	0.558 mm (24G)	Design Requirements

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

8.2.2.3 RAILS & BAFFLES

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
Gauges	•	
Compound Gauge (1L)	Make : Forbes Marshall	Design Requirements
Refer P & I Diagram:	Type: Bourdon	
22-3-1453	Mounting : Panel	
22-3-1455	Range: -1 To 6 kg/cm ² (g)	
	MOC: SS316L for Contact Part	
	SS304 for Non Contact Part	
	Accuracy: ± 1% FS	
	Connection: 3/8" BSP (M)	
	Location : Loading Side	
	Qty: 1 No	
	Function: Indication of jacket pressure.	
Compound Gauges	Make : Forbes Marshall	Design Requirements
(2C, 2C1)	Type: Bourdon	
	Mounting : Panel	
Refer P & I Diagram:	Range: -1 To 6 kg/cm ² (g)	
22-3-1453	MOC: SS316L for Contact Part	
	SS304 for Non Contact Part	
	Accuracy: ± 1% FS	
	Connection: 3/8" BSP (M)	
	Location: Unloading and Loading Side	
	Qty: 2 Nos	
	Function: Indication of chamber pressure.	
Validation Port with	MOC : SS316	Design Requirements
Dummy Adaptor	No of sensor arrangement in each port: 8	
zaminy marpion	Nos	
	Qty: 2 Nos	
Port for Chamber Flexible	MOC : SS316	
RTD Sensor	No of sensor arrangement in port : 8 Nos	Design Requirements
NID DUISUI	Qty: 1 No	

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

8.2.2.4 DOOR & DOOR COMPONENTS

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
DOOR		
Туре	Vertical Sliding	Design Requirements
Quantity	Two	Design Requirements
Material	SS316L (Only for Contact Part)	Design Requirements
Finish	Ra ≤ 0.8 μm	Design Requirements
· Insulation System		
Insulation Material	Resin Bonded Glasswool	Design Requirements
Insulation Thickness	50 mm	Design Requirements
Insulation Outer Cover Material	SS304	Design Requirements
Insulation Outer Cover Material	1.21 mm (18G)	Design Requirements
Thickness		
DOOR COMPONENTS		
Door Compoent Material	SS304	Design Requirements
Door Extension Material	SS304	Design Requirements
Door Gasket	Material : Food Grade Silicon	Design Requirements
	Size: 20 (OD) X 9 (ID) X 2335 (L)	
	mm	
	Specification: In accordance with	
	USFDA 21CFR	
	Section 177.2600	
	Working Temperature : 134 ⁰ C	
	Working Pressure : 3 kg/cm ² (g)	
	Qty: 2 Nos	
	Function: To seal gap between	
	chamber & door.	

QUALITY ASSURANCE DEPARTMENT

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
Door Operating Cylinder	Make : Janatics	Design Requirements
(5A, 5B)	Type : Telescopic	
Refer Pneumatic Diagram:	Mounting: Vertical	
25-3-1227	Type: Double Acting	
	Size: 63 bore x 710 Stroke	
	Qty: 2 Nos	
	Function: Door Operation.	
Solenoid Valves for Door	Make : Festo	Design Requirements
Operating Cylinder	Type: JMFH - 5 1/4, Double Coil	
(501, 502 & 503, 504)	Operating Pressure Range: 1.5 To 8.0	
Refer Pneumatic Diagram:	bar	
25-3-1227	Coil Supply: 1PH – 230V – 50Hz	
	Qty: 2 Nos	
	Function: To operate the door	
	operating cylinder	
Door Locking Cylinder	Make : Janatics	Design Requirements
(5C, 5D)	Mounting : Horizontal	
Refer Pneumatic Diagram:	Type: Double Acting	
25-3-1227	Size: 40 Bore X 25 Stroke	
	Qty: 2 Nos	
	Function: To prevent accidental fall	
	of door when it is in closed position.	
Solenoid Valves for Door Locking	Make : Festo	Design Requirements
Cylinder	Type: JMFH - 5 1/4, Double Coil	
(509, 515 & 510, 514)	Operating Pressure Range: 1.5 To 8.0	
Refer Pneumatic Diagram:	bar	
25-3-1219	Coil Supply: 1PH – 230V – 50Hz	
	Qty: 2 Nos	
	Function: To operate the door	
	locking cylinder.	
Solenoid Valves for Gasket	Make : Patcon	Design Requirements

QUALITY ASSURANCE DEPARTMENT

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
Pressurization/Retraction	Model: 2 Way On/Off	
(505, 506, 507, 508, 511)	Coil Supply: 1PH – 230V – 50Hz	
Refer Pneumatic Diagram:	Qty: 5 Nos	
25-3-1227	Function: To pressurize and retract	
	the gasket to facilitate the door	
	opening and closing.	
Regulator	Make : Janatics	Design Requirements
(5J, 5K)	Model: R 13614	
Refer Pneumatic Diagram:	Size : ¼" BSP	
25-3-1227	Range: 0.5 To 10 Bar	
	Qty: 2 Nos	
	Function: One is used for door	
	operation & the other one is used for	
	gasket pressurization.	
Filter Regulator Lubricator	Make : Janatics	Design Requirements
(5I)	Model: FRC136134	
Refer Pneumatic Diagram:	Size: 1/4" BSP	
25-3-1227	Range : 0.5 To 10 Bar	
	Qty: 1 No	
	Function: To filter, regulate &	
	lubricate the incoming compressed	
	air.	
Pressure Switch	Make : Orion	Design Requirements
(56, 57)	Model: MG H04 KS 10	
Refer Pneumatic Diagram:	Range: 0.2 – 3.6 bar	
25-3-1227	Qty: 2 Nos	
	Function: To set the pressure level	
	for the gasket on Unloading and	
	Loading Side.	
Vacuum Switch	Make : Orion	Design Requirements
(58, 59)	Model: MG V00 KA 10	
	1	

QUALITY ASSURANCE DEPARTMENT

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
Refer Pneumatic Diagram:	Range: 760 mm to 100 mm of Hg	
25-3-1219	(Vacuum)	
	Qty: 2 Nos	
	Function: To set the vacuum level for	
	the gasket on the Unloading and	
	Loading Side.	
Compound Gauges	Make : Forbes Marshall	Design Requirements
(53A, 53B, 54)	Type: Bourdon	
Refer Pneumatic Diagram:	Mounting : Panel	
25-3-1227	Range: -1 To 6 kg/cm ² (g)	
	MOC: SS316L for Contact Part	
	SS304 for Non Contact Part	
	Accuracy: ± 1% FS	
	Qty: 3 Nos	
	Connection: 3/8" BSP (M)	
	Locations :	
	Compound Gauge at Loading side:	
	Loading side gasket pressure &	
	Unloading side gasket pressure.	
	Compound Gauge at Unloading side:	
	Unloading side gasket pressure.	
	Function: Indication of Loading &	
	Unloading gasket pressure.	
Ejector	Make : Festo	Design Requirements
(55)	Model : Vad ¼	
Refer Pneumatic Diagram:	Size : 1/4" BSP	
25-3-1227	Function: To retract door gasket	
	before opening door.	
Limit Switch	Make : Bohmen	Design Requirements
(5E, 5F, 5G, 5H)	Model: 1 NO + 1 NC	_
Refer Pneumatic Diagram:	Type: MLRLS	
	1	

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
25-3-1227	Qty: 4 Nos	
	Function: Sensing the door position.	
Photocell Sensor	Make : P & F	Design Requirements
	Type : Single Path	
	Model: M100/MV100-	
	RT/76a/103/115 / Z2T-2000(P)	
	Qty: 2 Sets	
	Function: Door obstruction safety.	

8.2.2.5 PANELLING

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
Location of Panelling	On all four sides (As per layout)	Design Requirements
Material of Panelling	SS304	Design Requirements
Panelling Finish	Ra ≤ 1.0 μm	Design Requirements
. Mounting	On Skid	Design Requirements
Contamination Seal	Material : SS304	Design Requirements
	Location: Unloading Side	

8.2.3 PROCESS CONTROL SYSTEM

CRITICAL VARIABLE	ACC	EPTANCE C	REFFERENCE	
Piping	Piping Material	: SS316L for	Contact Part	Process Requirements
	End Connection	n : Triclover		
	Piping Material	: SS316L for	Non Contact Part	
	End Connection	n: Threaded		
	Welding : Argo	n Welding		
Pneumatic Piston Type	Make : Machini	fabrik		Process Requirements
Valve	MOC : SS316L	,		
with Solenoid	Type : Single A	cting		
(101, 201, 209, 210, 210A)	End Connection	n: Threaded/ F		
Refer P & I diagram:	Qty:3 Nos			
	Part No	Size	Function	

QUALITY ASSURANCE DEPARTMENT

CRITICAL VARIABLE	AC	CCEPTAN	REFFERENCE		
22-3-1453	101	½" B	SP	Jacket Steam in	
	201	³/₄" C	DD	Chamber Exhaust	
	209	³/₄'' C	DD	Chamber	
Proportionate Pneumatic	Make : Gem	u			Process Requirements
Piston Type Valve	MOC: SS31	.6 L			
	Type: Single	e Acting			
	End Connec	tion : Threa	ded /]	Plain end	
	Qty: 3 Nos				
	Part No.	Size	e	Function	
	210	³/₄'' C	DD	Chamber Steam In	
Manual Needle Valve	Make : Presi	dent			Process Requirements
(2201)	MOC: SS30)4			
Refer P & I diagram:	End Connec	tion: Threa	ded		
22-3-1453	Qty: 1 No				
	Part No	Process Requireme	nte	Function	
	2201	Process		Chamber Exhaust	
Cofety Volve	Molro - Foin	Requireme	nts		Dra coss Do svinoments
Safety Valve	Make : Faing				Process Requirements
(10, 20)	Type : Sprin				
Refer P & I diagram:	MOC : SS31				
22-3-1453	Range: 0 to				
	End Connec	tion: Threa	ded		
	Qty: 2 Nos				
	Part No	Size		Function	
	10	³⁄₄" BSP	To	Protect the Jacket	
	From over Pressure				
	Condition				
	20	³⁄₄" BSP	То	Protect the Chamber	
		From over Pressure			
			Cor	dition	

QUALITY ASSURANCE DEPARTMENT

CRITICAL VARIABLE	A	CCEPTANCE	REFFERENCE	
Steam Trap	Make : For	bes Marshall	Process Requirements	
(12, 24)	Model : SO	FT31-O		
Refer P & I diagram:	Type : Floa	t Type		
22-3-1453	Material : C	Cast Iron		
	End Conne	ction: Threaded	1	
	Qty: 2 Nos	1		
	Part No.	Size	Function	
	12	½" BSP	Jacket Condensate	
	24	½" BSP	Chamber	
	MIO		Condensate	D D :
	Make : Orio	on ousing MOC : S	\$316	Process Requirements
Pressure Switch	Range: 0.2	-	3310	
(17)		ction: Threaded	I	
Refer P & I diagram:	Qty: 1 No			
22-3-1453	Part No.	Model	Function	
	17	MG H04 KS	1	
		10	level of jacket	
Pressure Switch	Make : Orio	on		
(20M)	Pressure Ho	ousing MOC: S	SS316	
Refer P & I diagram:	Range: 0.0	67 – 0.213bar		Process Requirements
22-3-1453	End Conne	ction: Threaded	1	
	Qty: 1 No			
	Part No.	Model	Function	
	20M	MG LP KS 1	1	
			level of chamber	
Pressure Switch	Make : Orio	on	•	Process Requirements
(30S)	Pressure Ho	ousing MOC : S		
Refer P & I diagram:	Range: 0.5	– 7.0 bar		
22-3-1453	End Conne	ction : Triclove		
	Qty: 3 No			
	Part S	ize		
	No.			
		<u>.</u>		

QUALITY ASSURANCE DEPARTMENT

CRITICAL VARIABLE		ACCEPTANC	REFFERENCE	
	3G	MG H07 KS	To Set Pressure level	
		10	of Plant Water	
	3H	MG- H07-	To Set Pressure level	
		KT-B-0	of Pure Water	
	30S	MG H)& KS	To Set Pressure Level	
		10	of Softened Water	
Pressure Switch	Make : 0	Orion		Process Requirements
(3I)	Pressure	Housing MOC:	SS316	
Refer P & I diagram:	Range:	0.5 - 10.0 bar		
22-3-1453	End Con	nnection: Threade	ed	
	Qty: 1 N	No		
	Part	Model	Function	
	No			
	3I	MG H10 KS	To Set Pressure Level	
		10	of Compressed Air	
Non Return Valve	Make : I	Leader		Process Requirements
(29)	MOC : I	Brass		
Refer P & I diagram:	End Con	nection: Thread		
22-3-1453	Qty: 1 N	No		
	Part	Size	Funtion	
	No			
	29	½" BSP	Chamber Condensate	

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

8.2.3.1 VACUUM SYSTEM

CRITICAL VARIABLE		ACCEPTAN	REFFERENCE	
Vacuum Pump & Motor	Make : N	lew Genre	Process Requirements	
(VP)	Model : I	LX2		
Refer P & I diagram:	Type: W	atering Type		
22-3-1453	Capacity	: 50 m ³ /hr		
	Location	: On Skid		
	HP / RPN	M: 3 HP/ 2850	RPM	
	Function	: To create vac	cuum in the chamber.	
Steam Condenser	Type : Sh	nell & Tube		Process Requirements
(CI)	Transfer	area: 0.24 m^2		
Refer P & I diagram:	Material	: SS304		
22-3-1453	Function	: To condense	the exhaust steam	
	(from Ch	amber) before	entering the vacuum	
	pump.			
Pneumatic Piston Type	Make : M	Iachinfabrik	Process Requirements	
valve	MOC : S	S316L		
with Solenoid	Type : Si	ngle Acting		
(202, 208,)	End Con	nection: Plain	End/ Threaded	
Refer P & I diagram:	Qty : 3 N	os		
22-3-1453	Part No	Size	Function	
	202	1" OD	Chamber Vacuum	
	208	³ / ₄ " OD	Chamber Filter Air in	
	301	½" BSP	Vacuum Pump Softened water in	Process Requirements
Non Return Valve	Make : L	eader	Process Requirements	
(2D)	MOC : B		Trocess requirements	
Refer P & I diagram:		nection: Threa		
22-3-1453	Qty : 1 N			
5	2.,	· -		
	Part No	Process	Function	

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

CRITICAL VARIABLE	ACCEPTANCE CRITERIA			REFFERENCE
	2D	Process	To prevent	
		Requirements	backflow from	
Air Filter	Make : S	artorius	Process Requirements	
(AF)	End Con	nection: 1 ½" OD To		
Refer P & I diagram:	Filter Ret	tention: 0.2 micron		
22-3-1453	Location	: On Unloading Side		
	Function: To filter the air before entering into the			
	Chamber			

8.2.3.2 ELECTRICAL CONTROL PANEL & POWER PANEL

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
Туре	Inbuilt	Process Requirements
Material	SS304	Process Requirements
Switch Gear	Contactor – Siemens	Process Requirements
	Miniature Circuit Breaker – Siemens	
	Over Load Relay – Siemens	
	Indication Lamp – Mimic	
	Terminal Block – Connectwell	

8.2.3.3 CONTROL INDICATION ON UNLOADING SIDE PANELLING

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
Push Buttons with	Colour coded push buttons with indication lamps are	Process Requirements
indication lamps	provided for the following:	
	1. Unloading door open.	
	2. Unloading door close.	
	3. Unloading door open acknowledge.	
	4. Emergency stop.	
Indication lamps	Colour coded indication lamps are provided for the	Process Requirements
	following:	
	Door precondition indication.	
	2. Process on/end indication.	

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

8.2.3.4 CONTROL PANEL INDICATION ON LOADING SIDE

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
Push Buttons with	Colour coded push buttons with indication lamps are	Process Requirements
indication lamps	provided for the following:	
	1. Loading door open.	
	2. Loading door close.	
	3. Control on/off switch.	
	4. Emergency stop.	
Indication lamps	Colour coded indication lamps are provided for the	Process Requirements
	following:	
	1. Door precondition indication.	
	2. Alarm Indication.	
MMI	The operator interface (E 1061) is fitted onto the	Process Requirements
	Control Panel on the Loading side.	
Printer	The Printer is fitted onto the Control Panel on the	Process Requirements
	Loading side.	
Strip Chart Recorder	The Strip Chart Recorder is fitted onto the Control	Process Requirements
	Panel on the Loading side.	

8.2.3.5 INSTRUMENTATION & SCADA

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
PLC	Make: Mitsubishi	Design Requirements
Refer IBD: 24-4-1021	Model: FX3U 32MRES	
	No of digital inputs: 16 Nos	
	No of digital inputs used: 5 Nos	
	Type of input: 24V DC	
	No of digital outputs: 16 Nos	
	No of digital outputs used: 10 Nos	
	Type of output: Potential Free Relay	
	Function: To control the process automatically.	

QUALITY ASSURANCE DEPARTMENT

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
. Analog I/P Card	Make : Mitsubishi	Design Requirements
Refer IBD:	Model: FX3U 4ADPTW ADP	
24-4-1021	No of analog inputs: 4 Nos	
	No of analog inputs used: 4 Nos	
	Type of analog input: 4 Nos	
	No of analog outputs used: 0 No	
	Qty: 1 No	
	Function: To give analog input & analog output to	
	PLC.	
Analog I/P & O/P Card	Make : Mitsubishi	Design Requirements
Refer IBD:	Model: FX3U 3A ADP	
24-4-1021	No of analog inputs: 2 Nos	
	No of analog inputs used: 2 Nos	
	Type of analog input: 4-20 mA	
	Qty: 1 No	
	Function: To give analog input & anlog Output to	
	PLC.	
Communication Card	Make: Mitsubishi	Design Requirements
Refer IBD:	Model: FX3U 232BD	
24-4-1021		
MMI	Make: Mitsubishi (Beijer Electronics)	Design Requirements
Refer IBD:	Model: E 1061	
24-4-1021	Printer Port: Rs 232	
	Function: To start the process & display online	
	parameters	
Printer	Make : Epson	Design Requirements
Refer IBD:	Model: LX 310	
24-4-1021	Function: To print online parameters.	

QUALITY ASSURANCE DEPARTMENT

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
D.C. Source	Make : Shavison	Design Requirements
Refer IBD:	Model: G31 – 60 – 24	
24-4-1021	Type: SMPS	
	I/P Voltage : 230V AC	
	O/P Voltage : 24 V DC, 2.5 A	
	Function: To provide 24 V DC, 2.5 A supply to PLC	
Temperature Transmitter	Make : Radix	Design Requirements
Refer IBD:	Range: 0 to 200°C	
24-4-1021	Accuracy: ± 0.1% of FS	
	I/P: Pt 100	
	O/P: 4 – 20 mA	
	Qty.: 1 No	
	Function: To convert temperature input to 4-20 mA	
Pressure Transmitter	Make : Jumo	Design Requirements
(2E)	Range: 0 to 4 bar (A) {-1 to 3 bar(g)}	
Refer IBD:	Accuracy: 0.25%	
24-4-1021	O/P: 4-20 mA	
	End Connection: ½" BSP	
	Qty: 1 No	
	Function: To convert pressure input to 4–20 mA.	
Temperature Sensor	Make : Radix	Design Requirements
Refer IBD:	Type: Pt100/ Duplex/ 3 Wire/ Flexible	
24-4-1021	Size: 6 mm Tip Dia X 2" Long	
	Cable Length: 5 Meter Long	
	Accuracy: Class A	
	Qty: 4 Nos	
	Location: Inside the chamber.	
Temperature Sensor	Make : Radix	Design Requirements
Refer IBD:	Type: Pt100/ Duplex/ 3 Wire/ Fixed	
24-4-1021	Size: 6 mm Tip Dia X 4" Long	
	Accuracy: Class A	
	1	<u> </u>

QUALITY ASSURANCE DEPARTMENT

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
	Qty: 1 No	
	Location: Chamber Condensate.	
. Strip Chart Recorder	Make : Yokogawa	Design Requirements
Refer IBD:	No of Channels : Six	g 1
24-4-1021	No & Type of Inputs: 5T + 1P	
	Temperature: 5 Nos	
	Range: 0 to 200°C	
	Pressure : 1 No, 4 - 20 mA	
	Range: -1 to 3 bar	
Shelves	Material : SS316 L	Design Requirements
Refer Shelves Diagram	Pattern: Perforated	
30- 3-587	Type: Half	
	Layer :2 Nos Equispased	
	Qty: 4 Nos	

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

8.3 SAFETY FEATURES & ALARMS

CRITICAL VARIABLE	ACCEPTANCE CRITERIA REFFEREN		
Doors Inter Locks	• The two doors are interlocked electrically, that	Safety Requirements	
	prevents both the doors from opening		
	simultaneously.		
	When the process is on, the door is locked		
	electrically and this prevents the door opening		
	when the process is ON .		
	• To start the process, the door close positions (for		
	both doors) act as preconditions for the process.		
	Unloading side door will open only after		
	satisfactory completion of the sterilization process.		
Door Obstruction Safety	While the door is closing, the door will	Safety Requirements	
	retract to open if obstructed by hand or		
	any other object.		
Door/ Gasket Operation	Electro pneumatic	Safety Requirements	
Door Locking System	Pneumatic through process.	Safety Requirements	
Alarms	Alarms will be on if		
	 Vacuum leak test failed. 		
	 Temperature overshoots. 		
	Sterilization stops temperature.		
	Sterilization resets temperature.		
	Chamber pressure high.		
	Too long time for pre vacuum.		
	 Too long time for pre pressure. 	Safety Requirements	
	To long time heat up.		
	 Too long time for post vacuum. 		
	 Too long time for post pressure. 		
	Too long time for vacuum break.		
	 Vacuum pump trips. 		
	 Door pre condition fails. 		
		1	

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

Process end.
Chamber Temperature sensor 1
probe fail.
Chamber Temperature sensor 2
probe fail.
Chamber Temperature sensor 3
probe fail.
Chamber Temperature sensor 4
probe fail.
Chamber Temperature sensor 5
probe fail.
Chamber Pressure Sensor
(Transmitter) Fail.

8.4 PROCESS DETAILS

CRITICAL VARIABLE	ACCEPTANCE CRITERIA	REFFERENCE
AUTO MODE	The following process can be performed	
	automatically through PLC:	
	1. Vacuum Leak Test – 1	
	2. Vacuum Leak Test (HOT) - 2	
	3. Warm Up Cycle – 3	
	4. Bowie and Dick Test – 4	
	5. Standard Process (Gravity Displacement Program)	
	- 5 & 6	
	6. HPHV Process (Pre Vacuum Program with	Process Requirements
	Vacuum Drying) – 7, 8, 9, 10 & 11	
	Programmed Parameters: Set through Man Machine	
	Interface	
	Parameter Change: Password Protected.	
	(3 Level Password Protection for E 1061)	

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

MANUAL MODE	The above-mentioned processes can be performed	Process Requirements
	manually with rocker switch, temperature indicator	
	cum controller and Compound gauges.	

8.4.1 DIGITAL INPUT DETAILS

S.No.	INPUT NAME	POSITION	REFFERENCE
1.	DOOR PRECONDITION	X0	Process Requirements
2.	JACKET PRESSURE	X1	Process Requirements
3.	NOT USED	X2	Process Requirements
4.	NOT USED	X3	Process Requirements
5.	NOT USED	X4	Process Requirements
6.	NOT USED	X5	Process Requirements
7.	VACUUM PUMP TRIP	X6	Process Requirements
8.	UNOADING DOOR ACKNOWLEDGE	X7	Process Requirements
9.	EMERGENCY STOP	X10	Process Requirements
10.	NOT USED	X11	Process Requirements
11.	SPARE	X12	Process Requirements
12.	SPARE	X13	Process Requirements
13.	SPARE	X14	Process Requirements
14.	SPARE	X15	Process Requirements

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

8.4.2 PROCESS PHASE:

	PRE VACUUM	X.XXX BAR
I -		Λ.ΛΛΛ ΒΛΙΚ
	WARM UP TEMP	XXX.X DEG.C
	WARM UP HOLD	XX MIN
WARM UP CYCLE-3	POST VACUUM START PRESSURE	X.XXX BAR
	POST VACUUM	X.XXX BAR
	POST VACUUM HOLD TIME	XX MIN
	PROCESS END PRESSURE	X.XXX BAR
BOWIE & DICK TEST-4	PRE VACUUM	X.XXX BAR
	PRE PRESSURE	X.XXX BAR
	NO OF PRE PULSES	XX NOS
	PRE PRESSURE UP	X.XXX BAR
	PRE PRESSURE DOWN	X.XXX BAR
	NO OF PULSES	XX NOS
	PRE PRESSURE DOWN FINAL	X.XXX BAR
	SMALL VALVE SET POIINT	XXX.X DEG.C
	STER HOLD TEMP	XXX.X DEG.C
	STER HOLD TIME	XXX SEC
	TEMP CONTROL BAND	X.X DEG.C
	OVERSHOOT TEMP	XXX.X DEG.C
	STER STOP TEMP	XXX.X DEG.C
	STER RESET TEMP	XXX.X DEG.C
	PROCESS END DELAY TIME	XX MIN
	PROCESS END PRESSURE	X.XXX BAR
	PROCESS END PRESSURE	
STANDARD PROCESS	PRE VACUUM	X.XXX BAR
WITH SLOW & FAST	PRE PRESSURE	X.XXX BAR
EXHAUST- 5 & 6	NO OF PRE PULSES	XX NOS
	PRE PRESSURE UP	X.XXX BAR
	PRE PRESSURE DOWN	X.XXX BAR

QUALITY ASSURANCE DEPARTMENT

STEAM STERILIZER				
	NO OF PULSES	XX NOS		
	PRE PRESSURE DOWN FINAL	X.XXX BAR		
	SMALL VALVE SET POIINT	XXX.X DEG.C		
	STER HOLD TEMP	XXX.X DEG.C		
	STER HOLD TIME	XXX MIN		
	TEMP CONTROL BAND	X.X DEG.C		
	OVERSHOOT TEMP	XXX.X DEG.C		
	STER STOP TEMP	XXX.X DEG.C		
	STER RESET TEMP	XXX.X DEG.C		
	PROCESS END DELAY TIME	XX MIN		
	PROCESS END PRESSURE	X.XXX BAR		
HIGH PRESSURE HIGH	PRE VACUUM	X.XXX BAR		
VACUUM (PRE	PRE PRESSURE	X.XXX BAR		
	NO OF PRE PULSES	XX NOS		
	PRE PRESSURE UP	X.XXX BAR		
	PRE PRESSURE DOWN	X.XXX BAR		
	NO OF PULSES	XX NOS		
	PRE PRESSURE DOWN FINAL	X.XXX BAR		
	SMALL VALVE SET POIINT	XXX.X DEG.C		
	STER HOLD TEMP	XXX.X DEG.C		
	STER HOLD TIME	XXX MIN		
	TEMP CONTROL BAND	X.X DEG.C		
VACUUM PROGRAM	OVERSHOOT TEMP	XXX.X DEG.C		
WITH VACUUM	STER STOP TEMP	XXX.X DEG.C		
DRYING) – 7, 8, 9, 10 &	STER RESET TEMP	XXX.X DEG.C		
11	POST VACUUM START PRESSURE	X.XXX BAR		
	POST VACUUM	X.XXX BAR		
	POST VACUUM HOLD TIME	XXX MIN		
	POST PRESSURE	X.XXX BAR		
	NO OF POST PULSES	XXX NOS		
	PROCESS END PRESSURE	X.XXX BAR		
	1	1		

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

8.4.3 CALCULATION FOR F₀ VALUE

The following mathematical Expression allows the calculation of F₀

$$F_0 = \Sigma 10^{(T-121)/z} \Delta t$$

Where

1. $F_0 = F_0 \text{ Value}$

2. T = Average Temperature

3. z = V alue which indicates relationship of lethality to temperature

 $= 10^{0}$ C (assumed)

4. 121° C = Sterilization Temperature

Example : Calculation of F_0 Value at $T = 119^0$ C

$$\mathbf{F}_0 = \Sigma 10^{(119-121)/10} \Delta t$$

= 0.630957

8.5 UTILITY DETAILS:

	Plant Steam for	Pure Steam for	Compressed Air	Softened Water For
	Jacket	Chamber		Vacuum System
Peak Demand	0.40 kg/min	0.58 kg/min	$0.2 \text{ m}^3/\text{hr}$	7 lpm for 35 min cycle
Cycle Demand	4.32 kg/cycle	17.28 kg/cycle	1	
Pressure	1.5 kg/cm ² (g)	$1.2 - 1.4 \text{ kg/cm}^2 \text{ (g)}$	$6-7 \text{ kg/cm}^2 \text{ (g)}$	$1.2 \text{ kg/cm}^2 \text{ (g)}$
Quality	Dry &	Dry &	Lubricated &	Softened Water,
	Saturated	Saturated	Moisture free	less than 25°C
Line Size	½' NB	³⁄₄" OD	½" NB	½" NB
End Connection	Triclover	Triclover	Triclover	Triclover

Equipment Drain (Drain Pipe for Equipment by MF): 2" NB

Floor drain (provided by customer): 4" NB

Electricity Power : 415V – 3PH – 50Hz AC, 4 Wire Supply

Control : 230V – 1PH – 50Hz Stabilized AC Supply

Connected Load Resistive Load : NA

Inductive Load : 3 HP

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

Incoming electric cable size: 4 Core x 2.5 Sq.mm Copper cable or

4 Core x 2.5 Sq.mm Aluminum cable

Weight of Equipment without load: 1650 Kg

8.6 MATERIAL OF CONSTRUCTION:

S.No.	Parts name	Material of Construction
1.	Chamber	SS 316 L
2.	Jacket	SS 304
3.	Air Pocket	SS 304
4.	Insulation Cover Material	SS 304
5.	Stand	SS 304
6.	Skid	SS 304
7.	Rail Pipe	SS 316 L
8.	Steam & Vacuum Baffle	SS 316 L
9.	Validation Port with Dummy Adaptor	SS 316
10.	Door	SS 316 L
11.	Door Insulation System	SS 304
12.	Door Components	SS 304
13.	Pneumatic Piston Type Valve with Solenoid	SS 316 L
14.	Manual Diaphragm Valve	SS 316 L
15.	Chamber Exhaust	SS 304
16.	Chamber Steam In	SS 316 L
17.	Recirculation Sampling	SS 316 L
18.	Side Pocket Sampling	SS 316 L
19.	Chamber Drain	SS 316 L
20.	Manual Needle Valve	SS 304
21.	Non Return Valve (TC End)	SS 316 L
22.	Non Return Valve (Threaded)	Brass
23.	Safety Valve	SS 304
24.	Steam Trap	Cast Iron with Brass Contact Parts

QUALITY ASSURANCE DEPARTMENT

S.No.	Parts name	Material of Construction
25.	Float Switch	SS 316
26.	Pressure Switch	SS 304
27.	Water Filter	SS 316 L
28.	Gear Box	SS 316 L
29.	Steam Condenser	SS304
30.	Pneumatic Piston Type Valve	SS 316 L
31.	Stand Material	SS304
32.	Skid Material	SS304
33.	Rail Pipe Material	SS316L
34.	Steam Baffle Material	SS316L

Checked By	Verified By
(Engineering)	(Quality Assurance)
Sign/Date:	Sign/Date
Inference:	
	Reviewed By
	(Manager QA)
	Sign/Date·

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

8.7 VENDOR SELECTION:

Critical variables	Acceptance criteria	Reference
Selection of Vendor for supplying	Selection of Vendor is done on the basis	Process Requirement
the Double Door Autoclave.	of review of vendor.	
	Criteria for review should include vendor	
	background (general/financial), technical	
	know how, quality standards, inspection	
	of site, costing, feedback from market	
	(customers already using the equipment).	

Reference: (1) Specifications and Requirements as specified in PO and URS.

(2) Operating and service manual for Double Door Autoclave.

9.0 DOCUMENTS TO BE ATTACHED:

- Minutes of meeting held with the supplier, if any.
- Purchase Order Copy.
- Any other relevant documents.

)	REVIEW (INCLUSIVE OF FOLLOW UP ACTION, IF ANY):

QUALITY ASSURANCE DEPARTMENT

11.0	ANY CHANGES MADE AGAINST FORMALLY AGREED PARAMETERS:			
12.0	RECOMMENDATION:			
12.0	RECOMMENDATION.			

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

13.0 ABBREVIATIONS:

AC : Alternate Current

BSP : British Standard for Pipe Threading

CI : Cast Iron

cGMP : Current Good Manufacturing Practice

cm² : centimeter square

D : Depth

db : Decibel

DC : Direct current

DQ : Design Qualification

GA : General Arrangement

H : Height

HPHV : High Pressure High Vacuum

HP : Horse Power

Hr : Hour
Hz : Hertz
I/P : Input

ID : Inner Diameter

Kg : Kilogram Ltd. : limited

MCB : Miniature Circuit Breaker

Min : Minute

mm : Millimeter

MMI : Man Machine Interface

MOC : Material of Construction

NB : Nominal Bore

No. : Number O/P : Output

OD : Outer Diameter

P & ID : Piping and Instrumentation Diagram

PDQ : Protocol design qualification

PLC : Programmable Logic Controller

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

PO : Purchase Order

PVT. : Private

RH : Relative Humidity

RPM : Revolution per Minute

RTD : Resistance Temperature Detector

SMPS : Switched Mode Power Supply

SS : Stainless Steel

TC : Triclover

Temp. : Temperature

URS : User Requirement Specification

V : Volt

W : Width

QUALITY ASSURANCE DEPARTMENT

DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR HIGH PRESSURE HIGH VACUUM STEAM STERILIZER

14.0 REVIEWED BY:

DESIGNATION	NAME	SIGNATURE	DATE
HEAD (ENGINEERING)			

DESIGNATION	NAME	SIGNATURE	DATE
OPERATING MANAGER (QUALITY ASSURANCE)			

DESIGNATION	NAME	SIGNATURE	DATE
HEAD (PRODUCTION)			

DESIGNATION	NAME	SIGNATURE	DATE
HEAD (QUALITY ASSURANCE)			