

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

REPORT

FOR

RISK ASSESSMENT & MITIGATION

PROCESS VALIDATION

PRODUCT: 5-AMINO LEVULINIC ACID HCL

STAGE: STUDY OF METHYL-5-PHTHALIMIDOLEVULINATE (STAGE-II)

Facility:	••	••	• •	•	• •	•	• •	•	•	•	• •
LOCATION:											

Document No.	
Protocol No.	
Supersede Document No.	NA
Effective Date	
No. of Pages	16

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

REPORT Contents

S.No.	Section Title					
1.0	Report Approval	3				
2.0	Overview	4				
	Objective					
	Purpose & Scope					
	Risk Assessment Team					
	Responsibility					
3.0	Process Flow Diagram	5				
4.0	Introduction	6				
	Quality Risk Management Process	6				
	Risk Identification	6				
	Risk Analysis	6				
	Risk Evaluation	6				
	Risk Control	7				
	Risk Reduction	7				
	Risk Assessment Legend	8				
	Risk Assessment Tool – Failure Mode Effect Analysis (FMEA)	10				
5.0	Acceptance Criteria	28				
6.0	Risk Control Strategy	28				
7.0	Summary and Conclusion	28				
8.0	Report Approval	28				
9.0	References	28				

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

1. Report Approval

This is a specific Report for Risk assessment and Mitigation of Process Validation Study of Methyl-5-Phthalimidolevulinate Intermediate (Stage-II) *of* 5-Amino Levulinic Acid which has been carried out in Plant. This report has been prepared, reviewed and approved by following

Prepared By:

Name	Designation	Department	Signature	Date

Reviewed By:

Name	Designation	Department	Signature	Date

Approved By:

Name	Designation	Department	Signature	Date

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

2.0 Overview

2.1 Objective:

The Objective of this Report is to adopt a systematic process for the assessment, control, communication and review of risk associated with the Process Validation Study of Methyl-5-Phthalimidolevulinate Intermediate (Stage-II) of 5-Amino Levulinic Acid which is carried out in the Plant.

2.2 Purpose and Scope

The purpose of this Report is to outline a scientific and practical approach for decision making process by applying a suitable tool of risk assessment covering all aspects of risk associated with Process Validation Study of Methyl-5-Phthalimidolevulinate Intermediate (Stage-II).

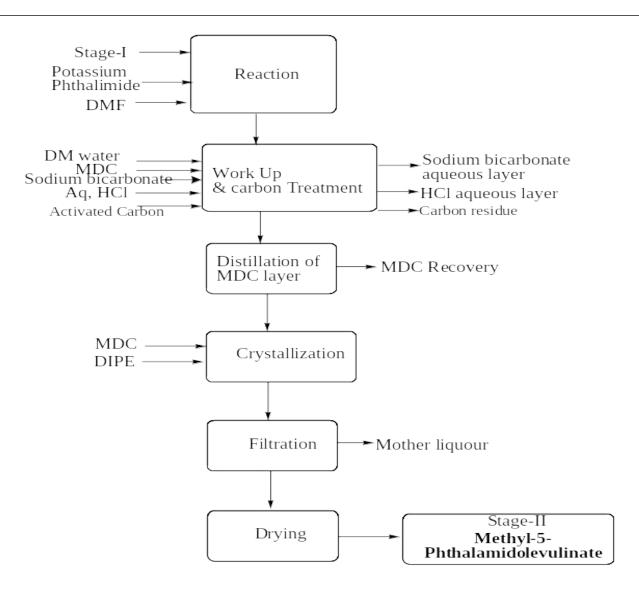
2.3 Risk Assessment Team

Production Executive/Officer/Manager
 Quality control Executive/Officer/Manager
 Projects Engineer/Sr. Engineer/Manager
 Maintenance Executive/Officer/Manager
 Quality Assurance Executive/Officer/Manager

2.4 Responsibility

S.No.	Department	Designation	Responsibility
1.	Production	Executive /	Review of Protocol & report
		Officer/	To Provide the all relevant information that are required while
		Manager	undergoing Risk assessment process i.e. Quantity, Packaging etc.
2.	Quality	Executive /	Review of Protocol & report
	control	Officer/	To Provide information about the availability of Analytical
		Manager	methods
			Pharmacopeia reference and finally reviewing the testing
			procedures
3.	Maintenance	Executive /	Review of Protocol & report
		Officer/	To assist the risk assessment team about the technical queries of
		Manager	facility & equipments

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)


4.	Quality Assurance	Executive / Officer/ Manager	Preparation of Protocol & report To review all the Procedural controls both in-house and vendor To conduct audits to assess the quality management system and manufacturing facility
			Final approval of Protocol & report By head quality Assurance

3.0 Process Flow Diagram:

Methyl-5-phthalimidolevulinate prepared by stage -1 and potassium Phthalimide as shown in flow diagram

Stage-II: Preparation of Methyl-5-phthalimidolevulinate

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

4.0 Introduction

Risk analysis for Process Validation Study of Methyl -5-Bromolevulinate Intermediate (Stage-1) of 5-Amino Levulunic Acid has been performed by taking into the probability, occurance and Severity. The risk is indentified analyzed and evaluated. The risk indentified analyzed and evaluated for Equipments, Process, Raw Materials, and Process Parameters and in process Checks, Intermediate, Impurities & Extraneous Matter.

4.1 Quality Risk Management Process

Risk assessment is a systematic process of organizing information to support a risk decision to be made within a risk management process. Its consists Identification of hazards and the analysis and evaluation of risks associated with exposure to those hazards

Quality risk assessment begins with a well defined problem description or risk question.

For risk assessment process three fundamental questions are considered

- What might go wrong?
- What is likely hood (Occurrence) it will go wrong?
- What are the consequences (severity)?

• Risk Identification

Risk Identification is systematic use of information to identify hazards referring to risk questions or problem description. Information may include historical data theoretical analysis, informed opinions and concerns of stakeholders. risk Identification will be conducted by reviewing the types of events that might occur in both normal and unusual situations. This may be done by challenging the normal presumptions, and considering the possibilities of unanticipated situations. For each risk event, the underlying (root) cause should be determined that will create the potential risk occurrence. Risk Identification addresses the "what might go wrong" question including identifying the possible consequences. This provides the basis for the further steps in quality risk management process.

• Risk Analysis

Risk analysis is the estimation of risk associated with the identified hazards.

It is the quantitative or qualitative process of linking the likelihood of occurrence and severity of harm and sometime the detectability of harm is also consider during estimation of risk.

Risk Evaluation

Risk Evaluation compares the identified and analyzed risk against the given risk criteria. Risk evaluation considers the strength of evidence for all three of fundamental questions.

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

Risks are ranked by scoring various criteria with appropriate numerical ratings, adding to scores to determine the overall score of each risk, and sorting the risks into descending order based on each score. A risk scoring threshold is established, over which risks must be mitigated using adequate design and/ or process controls that will protect the system. Those risks that fall below the threshold are either unmitigated or scheduled for later mitigation. An additional threshold or characteristic of risk can be used to determine the differentiation of non- mitigation versus postponed mitigation.

• Risk Control

Risk control includes decision making to reduce or mitigate risk. The purpose of risk control is to reduce the risk to the acceptance level

The risk control is done by considering the following question

- Is the risk above an acceptable level?
- What can be done to reduce or eliminate risk?
- What is appropriate balance among benefits, risks and resources?
- Are new risk is introduced as a result identified risk being controlled?

• Risk Reduction

Risk reduction focuses on processes the mitigation or avoidance of quality risk when it exceeds the acceptable level. Risk reduction includes action taken to mitigate the severity, occurrence or probability of harm and the processes that improve the detectability of harm. It is the part of risk control strategy and involves

- Engineering Control
- Procedural Control
- Manual control etc.

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

4.2 Risk Assessment Legend

A. Severity

Ranking	Effect	Criteria
10	Hazardous	Hazardous effect without warning. Safety related.
		Regulatory non-compliant.
9	Serious	Potential hazardous effect. Able to stop without mishap.
		Regulatory compliance in jeopardy.
8	Extreme	Item inoperable but safe. Customer very dissatisfied.
7	Major	Performance severely affected but functional and safe.
		Customer dissatisfied.
6	Significant	Performance degraded but operable and safe. Non-vital part
		inoperable. Customer experiences discomfort.
5	Moderate	Performance moderately affected. Fault on non-vital part
		requires repair. Customer experiences some dissatisfaction.
4	Minor	Minor effect on performance. Fault does not require repair.
		Non-vital fault always noticed. Customer experiences minor
		nuisance.
3	Slight	Slight effect on performance. Non-vital fault notice most of
		the time. Customer is slightly annoyed.
2	Very Slight	Very slight effect on performance. Non-vital fault may be
		noticed. Customer is not annoyed.
1	None	No effect.

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

B. Probability or Occurrence

Ranking	Possible Failure	Probability of Failure	
10	≥1 in 2	Almost certain.	
9	1 in 3	Very high.	
8	1 in 8	High.	
7	1 in 20	Moderately high.	
6	1 in 80	Medium	
5	1 in 400	Low	
4	1 in 2,000	Slight	
3	1 in 15,000	Very slight.	
2	1 in 150,000	Remote.	
1	1 in 1,500,000	Almost impossible.	

C. Detection

Ranking	Detection	Likelihood of Detection by design control
		No design control or design control will not detect potential
		cause
9	9 Very Remote Very remote chance design control will detect potential c	
8	8 Remote Remote chance design control will detect potential cause.	
7	Very Low	Very low chance design control will detect potential cause.
6	Low	Low chance design control will detect potential cause.
5	Moderate	Moderate chance design control will detect potential cause.
4	Moderately High	Moderately high chance design control will detect potential
		cause.
3	High	High chance design control will detect potential cause.
2	Very High	Very high chance design control will detect potential cause.
1	Almost Certain	Almost certain that the design control will detect potential cause.

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

4.3 Risk Assessment Tool – Failure Mode effect Analysis (FMEA)

4.3.1 Risk Identification

Risk assessment team shall identify all possible failure modes of Process Validation of Methyl -5-Bromolevulinate (Stage-1) by reviewing the various aspects of facility design & operational features, Provisions and Adopted procedures. The risk identification involves three aspects

1. Identification of Failure Mode of Process Validation Study of Stage-1I Methyl-5phthalimidolevulinate

- a. Equipment
- b. Raw Materials
- c. Process (including In process & Intermediate)
- d. Equipment Cleaning
- e. Sampling, Handling & Testing
- f. Holding of Intermediate
- g. Mix-up
- h. Packing & Storage of the Product
- i. Environment of the Plant.

2. Identification of Potential cause

- a. Operator Error
- b. Equipment Malfunctioning
- c. Instrument malfunctioning
- d. Non availability or Non rational Procedures
- e. Inefficient Provisions for operations etc.

3. The consequences i.e. End results of failure mode

The failure Mode may leads to

- a. GMP Violation
- b. Product Quality
- c. Patient
- d. Contaminated Product
- e. Regulatory non compliance
- f. Product Recall
- g. Unsafe operating conditions

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

The identification done for the risk shall have scientific rational and must be justified for its validity. The below mentioned table shall be used for Risk Identification process.

S. No	Failure Mode {What can	Potential cause of Failure	What are the Consequences (Severity)	Justification
	go wrong} Risk Identifica	ation		

01	Equipments	Equipment Selection	Product Failure	Qualified equipments are used in production of stage II nd of 5-
	(Reactors and Centrifuge)	Equipment Qualification	GMP Violation	ALA.Awarness provide through training and preventive maintenance records verified. Equipments history checked no malfunctioning was
		Man hole Opening &	Contamination	found.
		Closing Awareness	Deviation	The equipments used in 5-ALA stage II nd are SS reactors, Sparkler filter, centrifuge, and Vacuum tray dryer.
		Awareness	Impact on	
		Equipment Malfunctioning	Conversion of reaction	The SS reactor was used for condensation of Stage-I with potassium phthalimide in N, N-dimethyl .The reactor is suitable for reaction as
		Power failure	Yield Loss	justified according the process Requirement The Stainless Steel reactor was used in work up, cooling and according the process
				Requirement .Carbon Treatment and Clarity. Centrifuge was used for
				separation of cake from mother liquid. The centrifuge usage justified according the process Requirement Documents. Crystallization. The
				reactor is suitable for work up and crystallization justified The Stainless Steel reactor was used in Carbon Treatment Which is suitable for the
				requirement. was used for Extract the wet material was use for drying operation and achieves the LOD.
				It is concluded that all equipments which are used in the processing of 5-ALA Stage II are full fill the process Requirement.

S. No.	Failure Mode {What can go wrong}	Potential cause of Failure	What are the Consequences (Severity)	Justification
	Risk Identifica	ation		
02	Process	Technology transfer	Product validation	5-ALA stage II nd was develop in R&D. The R&D batches are kept on
		Product stability	Stability	Holding Time Study. Based on ROS and process package development batches are taken batches were comply with the Specification
		Product knowledge	Filling	After development batches evolution of quality and yield performed.
		Analytical method validation	Customer commitment	Based on success of development batches the validation batches had been taken. All the batches comply with the specification.
			Business impact	Based on R&D lab batches, Development batches and validation
			Campaign failure	batches it is concluded that process is robust.

S. No.	Failure Mode {What can go wrong}	Potential cause of Failure	What are the Consequences (Severity)	Justification
	Risk Identification			

03	Raw Materials	Vendor Sampling Testing and specification Awareness Material handling and storage	Quality Product Failure GMP Violation Conversion of reaction Yield	Awareness regarding sampling, testing and handling of raw material provided. Material procured from approved vendors. Vendors were qualified as per SOP on vendor management. Raw materials are tested as per approved specification. Only approved raw materials are used in manufacturing of 5 ALA stage II nd .MSDS was followed for handling, sampling and storage of raw materials. Batches are taken as per Approved BPRs. All the in process parameter comply with specification. All the batches of stage II nd comply with the specification. Yield of all the batches was within range. Based on the yield, quality, in process check good laboratory practices and cGMP. it is concluded that the raw materials are of good quality and handled concluded that the raw materials are of good quality and handled sampled and tested appropriately
S. No.	Failure Mode {What can go wrong}	Potential cause of Failure	What are the Consequences (Severity)	Justification

	Risk Identification							
04	Process Parameters and In	Awareness	Deviation	All the batches are taken as per approved BPR's. in-				
	process Checks	Written Procedure	Product Failure	process checks are defined in BPR's. Sampling and testing performed as per specification. Critical				
		Selection of Equipments	Yield	parameters were performed as per BPR's and				
		Raw Materials		Checked by Shift Incharge.				
		Sampling & Handling	Contamination	All the critical process parameters are identified as per process package of Product. Indentified in BPR marked as Bell. Based on In process check. Critical parameters controlling on all the batches. Quality and quality are within limit. parameters controlling on all the batches. Quality and quality are within limit.				
05	Intermediate	Sampling, Testing	Contamination	Stage -II nd Intermediate of 5-ALA sampled and tested				
		Material handling and storage	Yield and Quality	as per specification. All the batches were stored below 25°C. Stage II nd Intermediate packs in double bag further keep in HDP container having metallic ring and tag. Material was handled by trained staff using PPE.				

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

ľ	S. No.	Failure Mode {What can go wrong}	Potential cause of Failure	What are the Consequences (Severity)	Justification
		Dist Identification			

Risk Identification

06	Impurities	Raw Material	Product Failure	Structure elucidation had been performed at R&D.
		Awareness Equipments Selection Batch size Analytical Procedure	Product Contamination Deviation Yield and Quality	Analytical procedure are developed and apply. On all R&D Batches. Based on R&D Batches technology and Method Transferred of 5-ALA for Commercial Scale. All the batches comply with impurity profile by HPLC. Awareness provided before starting the campaign. Equipments are selected keeping in observation of Impurities generation and heating cooling impact. Based on Evaluation of quality and yield data all the batches of 5-ALA Stage -II nd . That batches are taken in suitable equipments under the supervision of trained man power
07	Extraneous Matter	Inappropriate door Opening &Closing Non Availability of Standard Procedure for cleanliness verification of entering person	Raw Material Packing Material Equipment Surface Floor & Walls of the facility	Stage II nd of 5-ALA Manufactured in LA Block. All the raw material charged using PPE. Before charging of batch equipment surfaced is cleaned. The Floor and Walls of the facility are good condition.

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

4.3.2 Risk Analysis

Risk Analysis is the second step of risk identification Process. It involves the assessment of the

- 1. Severity of the Consequence of failure Mode
- 2. The Probability or Occurrence of Failure mode by reviewing effectiveness of the existing Design control
- 3. its detectability under the existing design control

Base upon the analysis Risk priority number will be assigned to the particular failure Mode as per the formula

RPN = *Severity X Occurrence X Detection*

Each index ranges from 1 (lowest risk) to 10 (highest risk). The overall risk of each failure is called Risk Priority Number (RPN) and the product of Severity (S), Occurrence (O), and Detection (D) rankings: RPN = $S \times O \times D$. The RPN (ranging from 1 to 1000) is used to prioritize all potential failures to decide upon actions leading to reduce the risk, usually by reducing likelihood of occurrence and improving controls for detecting the failure

The below mentioned table shall be used for Risk Analysis process

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

4.3.2 Risk Analysis

S.No.	Failure Mode {What can go wrong}	Potential cause of Failure	What are the Consequences	Existing Design Control	Severity	Probabilit 	Detection	Risk Priority Number
					(S)	(P)	(D)	RPN=S x P x D
	Risk Analysis							Risk valuation
01.	Equipments	Equipment Selection	Product Failure	Qualified equipments	4	6	2	RPN = 4X6X2 =
	(Reactors and Centrifuge)	Equipment Qualification Man hole Opening & Closing Awareness Equipment Malfunctioning Power failure	GMP Violation Contamination Deviation Impact on Conversion of reaction Yield Loss	(DQ,IQ,OQ,PQ) Preventive Maintenance of Equipments Training to concerned persons Work order system to rectify any breakdown of equipments				48

S.No.	Failure Mode {What can go wrong}	Potential cause of Failure	What are the Consequences	Existing Design Control	Severity	Probability	Detection	Risk Priority Number
	5.1.4.1.1				(S)	(P)		RPN=S x P x D
	Risk Analysis							Risk valuation
02	Process	Technology transfer	Product validation	Technology transfer documents are	2	6	2	RPN = 2X6X2 =
		Product stability Product knowledge Analytical method validation	Stability Filling Customer commitment Business impact Campaign failure	provided from R & D to plant Trained Operators w.r.t process Method Validated				24

S.No.	Failure Mode {What can go wrong}	Potential cause of Failure	What are the Consequences	Existing Design Control	Severity	Probability	Detection	Risk Priority Number
					(S)	(P)	(D)	$RPN=S \times P \times D$
	Risk Analysis							Risk valuation

03	Raw Materials	Vendor	Quality	SOP for dispensing of material	2	6	2	RPN = 2X6X2 =
		Sampling	Product Failure	Provision of PPEs				24
		Testing and specification	GMP Violation Conversion of reaction	SOP for cleaning of scoop and scrapers				
		Awareness	Yield	Trained Operators				
		Material handling and		Procedure for the destruction floor				
		storage		sweep material Separate De-dusting facility are provided for both raw materials & packing materials				
				MSDS are available w.r.t materials				

	Failure Mode {What can go wrong}	Potential cause of Failure	What are the Consequences	Existing Design Control	Severity	Probability	Detection	Risk Priority Number
--	--	----------------------------	------------------------------	-------------------------	----------	-------------	-----------	-------------------------

					(S)	(P)	(D	RPN=S x P x D
	Risk Analysis							Risk valuation
04	Process	Awareness	Deviation	Process design for filtration to	2	6	2	RPN = 2X6X2 =
	Parameters and		D 1 . D 1	prevent Extraneous matter				24
	In process	Written Procedure	Product Failure	incursion in the API like particle,				
	Checks	Selection of	Yield	rust etc (Ref Manufacturing BPRs)				
		Equipments	Contamination	Procedural control to check the				
		Raw Materials		Layer separation by visual				
				inspection by sight glass &				
		Sampling & Handling		verification through BPR				
				Instruction				

S.No.	Failure Mode {What can go wrong}	Potential cause of Failure	What are the Consequences	Existing Design Control	(S) Sovority	(P)	Detection	Risk Priority Number RPN=S x P x D
	Risk Analysis							Risk valuation
05	Intermediate	Sampling, Testing	Contamination	Specification & STP are provided to	2	6	2	RPN = 2X6X2 =
		Material handling and	Yield and Quality	analyst				24
		storage	Tiera and Quality	Trained analyst				

06	Impurities	Raw Material	Product Failure	Specification & STP are provided to	4	6	2	RPN = 4X6X2 =
		Awareness Equipment's Selection Batch size Analytical Procedure	Product Contamination Deviation Yield and Quality	analyst Qualified Instrument are Method Validation are provided to analyst Provision of PPEs Trained analyst				48

S.No.	Failure Mode {What can go wrong}	Potential cause of Failure	What are the Consequences	Existing Design Control			Dataction	Risk Priority Number
					(S)	(P)	(D)	RPN=S x P x D
	Risk Analysis							Risk valuation

07	Extraneous Matter	Inappropriate door Opening &Closing Non Availability of Standard Procedure for cleanliness verification of entering person	Raw Material Packing Material Equipment Surface Floor & Walls of the facility	Work order system to rectify the failure of door functioning Air curtains are installed on the entry doors for the plants The SOP to verify personnel hygienic which allows verification through checklist for cleanliness for the	5	6	2	RPN = 5X6X2 =	60
				checklist for cleanliness for the operating persons					

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

4.3.3 Risk Reduction or Mitigation

The Risk Reduction or Mitigation is the Third step of Risk assessment process. if the Existing design control cannot lead the risk priority number to the acceptable level then additional design control shall be worked by providing

- 1. New or Improved Provisions or Procedures
- 2. Modification in the existing facility design
- 3. Additional resources
- 4. Improved control strategy etc.

The additional design control shall be appropriately worked out to reduce the risk to its acceptable level. The below mentioned table shall be used for the Risk Reduction or Mitigation process

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

4.3.3 Risk Reduction or Mitigation

S.No.	Failure Mode {What can go wrong}	Potential cause of Failure	Existing Design Control	Severity	Probability	Detection	Risk Priority Number	Additional Design Control	Severity	Probability	Detection	Risk Priority Number
				(S)	(P)	(D)	(RPN)		(S)	(P)	(D)	(RPN)
	Risk Mitigation	on										
1.	Equipments (Reactors and Centrifuge)	Equipment Selection Equipment Qualification Man hole Opening & Closing Awareness Equipment Malfunctioning Power failure	Qualified equipments (DQ,IQ,OQ,PQ) Preventive Maintenance of Equipments Training to concerned persons Work order system to rectify any breakdown of equipments	4	6	2	48	Existing design control keep the risk at acceptable level.	4	6	2	48

S.No.	Failure Mode {What can go wrong}	Potential cause of Failure	Existing Design Control	Severity	Probability	Detection	Risk Priority Number	Additional Design Control	Severity	Probability	Detection	Risk Priority Number
				(S)	(P)	(D)	(RPN)		(S)	(P)	(D)	(RPN)
	Risk Mitigati	on										
02	Process	Technology transfer Product stability Product knowledge Analytical method validation	Technology transfer documents are provided from R& D to plant Trained Operators w.r.t process Method Validated	2	6	2	24	Existing design control keep the risk at acceptable level.	2	6	2	24

	Failure Mode {What can go wrong}	Potential cause of Failure	Existing Design Control	Severity	Probability	Detection	Risk Priority Number	Additional Design Control	Severity	Probability	Detection	Risk Priority
				(S)	(P)	(D)	(RPN)		(S)	(P)	(D)	(RPN)
	Risk Mitigation											
03	Raw Materials	Vendor Sampling Testing and specification Awareness Material handling and storage	SOP for dispensing of material (Ref.) Provision of PPEs SOP for cleaning of scoop and scrapers Trained Operators Procedure for the destruction floor sweep material (Ref.) Separate De-dusting facility are provided for both raw materials & packing materials MSDS are available w.r.t	2	6	2	24	Existing design control keep the risk at acceptable level.	2	6	2	24

	materials			$\overline{}$		$\neg \neg$	
	materials						

S.No.	Failure Mode {What can go wrong}	Potential cause of Failure	Existing Design Control	Severity	Probability	Detection	Risk Priority Number	Additional Design Control	Severity	Probability	Detection	Risk Priority Number
				(S)	(P)	(D)	(RPN)		(S)	(P)	(D)	(RPN)
	Risk Mitigation	<u>l</u>										
4.	Process Parameters and In process Checks	Awareness Written Procedure Selection of Equipments Raw Materials Sampling & Handling	Process design for filtration to prevent Extraneous matter incursion in the API like particle, rust etc (Ref Manufacturing BPRs) Procedural control to check the Layer separation by visual inspection by sight glass & verification through BPR	2	6	2	24	Existing design control keep the risk at acceptable level.	2	6	2	24

S.No.	Failure Mode {What can go wrong}	Potential cause of Failure	Existing Design Control	Severity	Probability	Detection	Risk Z Priority Number	Additional Design Control	Severity	Probability	(C) Detection	Risk Priority
	Risk Mitigation	<u> </u>		(5)	(+)	(D)	(11111)		(5)	(1)	(D)	(14114)
5.	Intermediate	Sampling, Testing Material handling and storage	Specification & STP are provided to analyst Trained analyst	2	6	2	24	Existing design control keep the risk at acceptable level.	2	6	2	24

S.No.	Failure Mode {What can go wrong}	Potential cause of Failure	Existing Design Control	Severity	Probability	Detection	Risk Priority Number	Additional Design Control	Severity	Probability	Detection	Risk Priority Number
				(S)	(P)	(D)	(RPN)		(S)	(P)	(D)	(RPN)
	Risk Mitigation						ı					
6.	Impurities	Raw Material Awareness Equipment's Selection Batch size Analytical Procedure	Specification & STP are provided to analyst Qualified Instrument are Method Validation are provided to analyst Provision of PPEs Trained analyst	4	6	2	48	Existing design control keep the risk at acceptable level.	4	6	2	48

S.No.	Failure Mode {What can go wrong}	Potential cause of Failure	Existing Design Control	Severity	Probability	Detection	Risk Priority Number	Additional Design Control	Severity	Probability	Detection	Risk Priority
				(S)	(P)	(D)	(RPN)		(S)	(P)	(D)	(RPN)
	Risk Mitigation	1										
7.	Extraneous Matter	Inappropriate door Opening &Closing Non Availability of Standard Procedure for cleanliness verification of entering person	Work order system to rectify the failure of door functioning Air curtains are installed on the entry doors for the plants The SOP to verify personnel hygienic which allows verification through checklist for cleanliness for the operating persons	5	6	2	60	Existing design control keep the risk at acceptable level.	5	6	2	60

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

5.0 Acceptance Criteria

The Risk Priority Number shall be within the range 0<RPN<100

6.0 Risk Control Strategy

S.No.	Risk Priority Number	Risk Decision	Risk control strategy	
1.	0 <rpn<100< th=""><th>Risk Acceptable</th><th>No control is required</th></rpn<100<>	Risk Acceptable	No control is required	
2.	100 <rpn<500< td=""><td>Risk Reduction</td><td>Additional Procedural Control</td></rpn<500<>	Risk Reduction	Additional Procedural Control	
			Manual Control	
			Documentary Evidence	
3.	500 <rpn<1000< td=""><td>Risk Reduction</td><td>Rugged Procedural control</td></rpn<1000<>	Risk Reduction	Rugged Procedural control	
			Additional Manual Control	
			Auditing	
			Engineering controls (if Possible)	

7.0 Summary and Conclusion

The Risk assessment of 5-ALA Product stage 2nd had been performed taking in to consideration Manual operations, operator involvements, cross contamination and handling of hazardous materials.

Risk has been evaluated and found risk priority number below 100. As per protocol if RPN is less than 100 risk is acceptable. As per risk analysis the RPN no is maximum 60.

Hence it is concluded that based on risk analysis that risk is acceptable. As all the personnel are qualified & trained, equipments are qualified. Batches are taken as approved BPR. All the critical Process Parameter has been identified. There is no product failure, no deviation found during manufacturing of 5-ALA stage 2nd..Hence Risk is LOW & is below 100.

The report has been prepared by evaluating all possible risks and finally approved by Quality Assurance head.

8.0 Report Approval.

The report has been prepared by evaluating all possible risks and finally approved by Quality Assurance head.

9.0 References and attachments:

- 1. Risk Management Master Plan (RMMP)
- 2. ICH Q9
- 3. PICS Annexure 20.

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

4. Annexure :01

Annexure – 01 List of Reference Documents

Facility:	
Location:	
No. of Pages:	

REPORT FOR RISK ASSESSMENT & MITIGATION FOR PROCESS VALIDATION OF 8-AMINO LEVULINIC ACID HCL (STAGE II)

List of reference documents

S. No.	Document Title	Document No	
1.	SOP on Vendor Assessment, Evaluation and Approval		
2.	SOP on Preparation, Control, Issuance and Revision of Batch Production Records		
	and Batch Records for cleaning		
3.	SOP on Document and Data Control		
4.	SOP on Change Control Procedure		
5.	Approval and Release of Finished goods / intermediate.		
6.			
	API		
7.	SOP on Procedure on Handling of Deviation		
8.	SOP on Batch Numbering System		
9.	SOP on Technology Transfer		
10.	SOP on Handling of Customer Complaints		
11.	SOP on Equipment Qualification and Validation of System and Process		
12.	Rectification of Errors		
13.	SOP on Procedure for Training of Employees		
14.	SOP for Personal Hygiene of Employees		
15.	Recruitment of employee		
16.	SOP for Calibration of Reactor, Receiver and Tank		
17.	SOP on Operation of Scrubber		
18.	SOP on Issuance, Usage and Disposal of Centrifuge Bags		
19.	SOP on movement of Dispensed Raw Material		
20.	SOP on Disposal of Floor Swiping		
21.	SOP on Receipt, Sampling, Testing, Approval & Rejection of Packaging Material		
22.	SOP on Calibration & Preventive Maintenance of Laboratory Instruments		
23.	SOP on Testing and Release of In-Process Samples		
24.	SOP on qualification of Analysts		

25.	SOP on Retention Samples of Critical raw Materials & Intermediates	
26.	SOP on Passwords Protection and Audit Trail for critical QC Instruments	
27.	SOP on Good Laboratory Practice	