

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT FOR COMPRESSED AIR GENERATION AND DISTRIBUTION SYSTEM	PROTOCOL No.:
	EFFECTIVE DATE:
	PAGE No.: 1 of 19

DESIGN QUALIFICATION

PROTOCOL CUM REPORT

FOR

COMPRESSED AIR GENERATION AND

DISTRIBUTION SYSTEM

DATE OF QUALIFICATION	
SUPERSEDES PROTOCOL No.	NIL

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT	PROTOCOL No.:
FOR COMPRESSED AIR GENERATION AND DISTRIBUTION SYSTEM	EFFECTIVE DATE:
COMINESSED AIR GENERATION AND DISTRIBUTION STSTEM	PAGE No.: 2 of 19

PROTOCOL CONTENTS

S.No.	TITLE	PAGE No.
1.0	Pre-Approval	3
2.0	Objective	4
3.0	Scope	4
4.0	Responsibility	5
5.0	Brief Equipment Description	6
6.0	Equipment Specification	8
7.0	Critical Variables to be Met	9
7.1	Process / Product Parameters	9
7.2	Utility Requirement / Location Suitability	9
7.3	Technical Specification /Key Design Features	10
7.4	Safety	13
7.5	Vendor Selection	14
8.0	Document to be Attached	14
9.0	Review (Inclusive of Follow Up Action, If Any)	14
10.0	Any Change Made Against the Formally Agreed Parameter	15
11.0	Recommendation	15
12.0	Abbreviations	16
13.0	Reviewed by	17

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT	PROTOCOL No.:
FOR COMPRESSED AIR CENERATION AND DISTRIBUTION SYSTEM	EFFECTIVE DATE:
COMINESSED AIR GENERATION AND DISTRIBUTION STSTEM	PAGE No.: 3 of 19

1.0 PRE – APPROVAL:

INITIATED BY:

DESIGNATION	NAME	SIGNATURE	DATE
OFFICER/EXECUTIVE (QUALITY ASSURANCE)			

REVIEWED BY:

DESIGNATION	NAME	SIGNATURE	DATE
HEAD (PRODUCTION)			
HEAD (ENGINEERING)			

APPROVED BY:

DESIGNATION	NAME	SIGNATURE	DATE
HEAD (QUALITY ASSURANCE)			

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT FOR COMPRESSED AIR GENERATION AND DISTRIBUTION SYSTEM

PROTOCOL No.: EFFECTIVE DATE:

PAGE No.: 4 of 19

2.0 **OBJECTIVE:**

- To prepare the Design Qualification document for **Compressed Air Generation and Distribution System** on basis of URS and information given by Supplier.
- To ensure that all Critical Aspects of Process/Product Requirement, cGMP and Safety have been considered in designing the equipment and are properly documented.

3.0 SCOPE:

- The Scope of this Qualification Document is limited to the Design Qualification of **Compressed Air Generation and Distribution System (Make: Chicago Pneumatics)** for
- The drawings and P & IDs provided by Vendor shall be verified during Design Qualification.

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT FOR COMPRESSED AIR GENERATION AND DISTRIBUTION SYSTEM

PROTOCOL No.: EFFECTIVE DATE: PAGE No.: 5 of 19

4.0 **RESPONSIBILITY:**

The Validation Group, comprising of a representative from each of the following departments, shall be responsible for the overall compliance of this Protocol cum Report:

DEPARTMENTS	RESPONSIBILITIES
	Preparation, Authorization and Approval of the Protocol cum Report.
	• Assist in the verification of Critical Parameters, Drawings as per the
	Specification.
Quality Assurance	Review of Qualification Protocol cum Report after Execution.
	• Co-ordination with Production and Engineering to carryout Design
	Qualification.
	Monitoring of Design Qualification Activity.
	Review of the Protocol cum Report.
Production	• Assist in the verification of Critical Process Parameters, Drawings as per the
Troduction	Specification.
	• Post Approval of Qualification Protocol cum Report after Execution
	• Review of the Protocol cum Report.
	• Assist in the Preparation of the Protocol cum Report.
	• To co-ordinate and support the Activity.
	• To assist in Verification of Critical Parameter, Drawings as per the
	Specification i.e.
	➢ GA Drawing
Engineering	 Specification of the sub-components/ bought out items, their Make,
Engineering	Model, Quantity and backup records / brochures.
	Details of utilities Required.
	 Identification of components for calibration
	Material of construction of Product Contact Parts
	Brief Process Description
	Safety Features and Alarms
	Review of Qualification Protocol after Execution.

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT FOR COMPRESSED AIR GENERATION AND DISTRIBUTION SYSTEM

PROTOCOL No.: EFFECTIVE DATE: PAGE No.: 6 of 19

5.0 BRIEF EQUIPMENT DESCRIPTION:

Make	Chicago Pneumatic, Chicago
Capacity	644 CFM
Model No. (Compressor)	HX-2T-100NP
Model No. (Air Dryer)	D-200
Capacity (Air Receiver -01)	3000 liters
Capacity (Air Receiver -02)	4000 liters

Air compressor unit has an air unit system which is responsible for delivering quality compressed air at the outlet. It starts from the suction filter of the compressor and ends at the final service value of the unit. Air compressor provides a filter of superior grade at the suction of the compressor to avoid any ingress of solid particles. The compressor cylinder, during suction stroke, aspires atmospheric air through the filer and compresses it to the delivery pressure.

The delivery pressure is achieved by compressing the air in stages. Between successive stages a highly efficient heat exchanger is provided to remove the heat of compression. Air, before passing to the next stage is cooled to near about atmospheric temperature in the heat exchanger. This helps in reducing the final air discharge temperature as well as the power consumption of the compressor. Sterilizing grade 0.2 micron hydrophobic filter shall be fixed at critical user points to deliver sterilized compressed air supply, wherever required and filters with sufficient particulate and microbial retention efficiency may also be installed at the user points to improve the purity of supplied air.

The oil-free compressed air system consists of an oil-free compressor, storage tank and refrigerant dryer and distribution system.

Air compressor is double acting horizontal cross head type, it consists two cylinders each cylinder is fitted with suction and delivery valves. The suction air filter is connected at the middle of cylinders, so that air can enter, at both ends of the piston during the forward and backward strokes. Quantity of air sucked at the front side is compressed up to approx 2 Kg/cm² pressure.

After compression, the air from the first stage cylinder, passes through the delivery valves to the inter cooler provided between the first and second stage. There it is cooled approx 30 ± 5^{0} C temperature and is sucked by the 2nd stage through the suction valves. In the next stage the compressed air up to the 8.0 ±

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT FOR COMPRESSED AIR GENERATION AND DISTRIBUTION SYSTEM PAGE No.: 7 of 19

0.5 Kg/cm² pressure enters to the delivery header connected to the cooler and finally to the receiver.

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT FOR COMPRESSED AIR GENERATION AND DISTRIBUTION SYSTEM

PROTOCOL No.: EFFECTIVE DATE: PAGE No.: 9 of 19

6.0 EQUIPMENT SPECIFICATION:

Equipment Specifications are based on Technical Specification as mentioned in the purchase order prepared by and functional specifications of system as provided by manufacturer of equipment.

7.0 CRITICAL VARIABLES TO BE MET:

7.1 PROCESS/PRODUCT PARAMETERS:

Critical Variables	Acceptance Criteria	Reference
Application:	Compressed Air Generation and Distribution	Process Requirement
Compressed Air Generation and	System should be capable of providing the	
Distribution System	compressed air of desired quality to all the	
	processes, equipments and system as per the	
	requirement.	
Working:	The system should be capable of providing	Process Requirement
Working of Compressed Air	compressed air to meet the specifications of air	
Generation and Distribution System	for oil content, water content, non-viable	
	particulate, viable particulate and other	
	contaminants.	
Electrical Control Panel	The system should have Electrical Control	Design Requirement
	Panel.	

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT FOR COMPRESSED AIR GENERATION AND DISTRIBUTION SYSTEM

PROTOCOL No.: EFFECTIVE DATE: PAGE No.: 10 of 19

7.2 UTILITY REQUIREMENTS / LOCATION SUITABILITY:

Critical Variables	Acceptance Criteria	Reference
Utility connections should be availabl	e as per the manufacturer's specification.	
Electrical Supply	The electrical system of the equipment shall	cGMP Requirement
	be housed as per the cGMP and cGEP	
	standards, with adequate safety. Electrical	
	panel and electro pneumatic panel is to be	
	installed is service area.	
Room Condition	The system should be capable of working	Design Requirement
	efficiency in the ambient conditions.	

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT FOR COMPRESSED AIR GENERATION AND DISTRIBUTION SYSTEM

PROTOCOL No.: EFFECTIVE DATE: PAGE No.: 11 of 19

7.3 TECHNICAL SPECIFICATIONS / KEY DESIGN FEATURES:

S.No.	Component / Parameters	Parameters	Technical Specification
		Equipment	Air Compressor
	Air	Make	Chicago Pneumatic
		Model No.	HN2T-120 NPS
1.		Quantity	1 No.
	Compressor	No. of stages	2 Nos.
		Туре	Non-Lubricated, Reciprocating, Horizontal, Balanced opposed
		Capacity	644 CFM each @ 8 Kg / cm^2
		Control Panel Serial No.	SMT-1432-120/211
		PLC	Make: CP-Tronic III
2.	Control Panel	Serial No. of PLC Screen	81931330005
		Supply Voltage	24 V AC, 50 Hz
	3 Phase Induction Motor	Make	Crompton Greaves
		Motor No.	NADV490SF_Nasik
		Frame	ND280M
		Voltage	415±10%
3.		Rating	90 KW (120 HP)
		Speed	1480 RPM
		Ampere	181 Amps
		Hertz	50±5%
		IP	55
		Туре	MBD12
	Coolant Pump Motor	KW	0.75
4.		HP	1.0
		Volt	220±6%
		Current	7.6 Amps

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT FOR COMPRESSED AIR GENERATION AND DISTRIBUTION SYSTEM

PROTOCOL No.: EFFECTIVE DATE: PAGE No.: 12 of 19

S. No.	Component / Parameters	Parameters	Technical Specification
		S. No.	1903041311
		Make	Chicago Pneumatic
		Design Code	G.E.P. B-6062
5.	Inter Cooler	Specified Pressure	Shell: 4.0
			Tube: 4.0
		Specified Hydro Test	Shell: 6.0
		Pressure	Tube: 6.0
		Make	Chicago Pneumatic
		Design Pressure	1.4 mPa
		Medium	Air
	After Cooler		Make: Crompton Greaves Ltd.
6.	Heat Exchanger (Radiator)	Radiator Fan Motor	Quantity: 02 Nos.
			HP: 3.0 HP
			KW: 2.2 KW
		Flow Switch for Coolant	Make: Mukund Electricals
			Normal Flow Rate: 120 LPM
			Pipe Size: 40NB
		Make	Chicago Pneumatics
		Serial No.	19032283-01 KE
7.	Pressure Vessel - 01	Design Pressure	6 Bar
		Hydro Test Pressure	9 Bar
		Design Temperature	100°C
		Make	Chicago Pneumatics
		Serial No.	19032284-01 KE
8.	Pressure Vessel - 02	Design Pressure	16 Bar
		Hydro Test Pressure	24 Bar
		Design Temperature	100°C
·	•	· · ·	

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT FOR COMPRESSED AIR GENERATION AND DISTRIBUTION SYSTEM

PROTOCOL No.: EFFECTIVE DATE: PAGE No.: 13 of 19

S. No.	Component / Parameters	Parameters	Technical Specification
		Make	Chicago Pneumatics
9.	Pressure Vessel - 03	Serial No.	19032285-01 KE
		Design Pressure	6 Bar
		Hydro Test Pressure	9 Bar
		Design Temperature	250°C
		Make	Chicago Pneumatics
		Serial No.	19032286-01 KE
10.	Pressure Vessel - 04	Design Pressure	14 Bar
	V CSSCI - 04	Hydro Test Pressure	21 Bar
		Design Temperature	250°C
		Make	United Engineering Works
	Compressed Air Storage Tank-01	Capacity Volume	3.0 m^3
		Design Pressure	11.0 kg/cm^2
11.		Max. Operating Pressure	10.0 kg/cm ²
		Hydro Test Pressure	16.5 kg/cm^2
		Working Temperature	60°C
		Design Temperature	100°C
		Make	B-Tech Engineers
	Compressed	Capacity Volume	4.0 m^3
12.	Air Storage Tank-02	Max. Operating Pressure	10.0 kg/cm^2
		Hydro Test Pressure	16.5 kg/cm ²
		Make	GEM Equipment Ltd.
		Quantity	02 Nos.
	Refrigerated	Capacity	600 CFM
13.	Air Dryer	Model	2KDF060B
		Electrical Supply	415 V AC
		Working Pressure	16.0 kg/cm^2

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT FOR COMPRESSED AIR GENERATION AND DISTRIBUTION SYSTEM

PROTOCOL No.: EFFECTIVE DATE: PAGE No.: 14 of 19

S. No.	Component / Parameters	Parameters	Technical Specification
		Power	3.6 KW
		Compressor	Make: Danfoss
		Switch	Low Pressure Switch: 01 No.
			High Pressure Switch: 01 No.
			Fan Control Switch: 01 No.
		Pressure Gauge	Low Pressure Gauge: 01 No.
			High Pressure Gauge: 01 No.

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT FOR COMPRESSED AIR GENERATION AND DISTRIBUTION SYSTEM

PROTOCOL No.: EFFECTIVE DATE: PAGE No.: 15 of 19

7.4 SAFETY:

Critical Variables	ritical Variables Acceptance Criteria	
МСВ	MCB is provided so that when there is an overload in	Safety Requirement
	current or any short circuit then the MCB trips	
Mechanical Guard	Mechanical guard for all rotating parts.	Safety Requirement
Joints	Welding of joints without any welding burrs	Safety Requirement
Metal Parts	All the metal parts should be	Safety Requirement
	Properly grind without any sharp edges.	
Leveling And	Equipment should be properly balanced & leveled	Safety Requirement
Balancing		
Electrical Wiring And	Electrical wiring should be as per approved drawings.	Safety Requirement
Earthing	Single external Earthing to control machine (panel and	
motors) and operator should be provided		
Noise Level	Below 80 db	GMP & Safety
		Requirement
Emergency Switch	Provided easy access position	GMP & Safety
		Requirement
Vacuum Indicator	Should be provided at air suction site to indicate the	GMP & Safety
	service level	Requirement
Safety Valve	Should be provided at pressure vessel.	GMP & Safety
		Requirement
Overload Tripping	Overload relay drive motor should be provided with	GMP & Safety
	control panel	Requirement

7.5 VENDOR SELECTION:

Acceptance Criteria	Reference
Selection of Vendor is done on the basis of	Process Requirement
review of vendor. Criteria for review includes	
vendor background (general/financial), technical	
knowhow, quality standards, inspection of site,	
costing, feedback from market (customers	
already using the equipment)	
	Acceptance Criteria Selection of Vendor is done on the basis of review of vendor. Criteria for review includes vendor background (general/financial), technical knowhow, quality standards, inspection of site, costing, feedback from market (customers already using the equipment)

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT	PROTOCOL No.: EFFECTIVE DATE:	
FOR COMPRESSED A ID CENEDATION AND DISTRIBUTION SYSTEM		
COMI RESSED AIR GENERATION AND DISTRIBUTION STSTEM	PAGE No.: 16 of 19	
Reference: (1) User Requirement Specifications (URS).		
(2) Design & Functional Specifications provided by Vendor.		
8.0 DOCUMENTS TO BE ATTACHED:		
• Technical details for Equipment Requirement with Engineering Dr	awings.	
• Approved Design and Specifications.		
• Purchase Order Copy.		
• Any other relevant documents		
9.0 REVIEW (INCLUSIVE OF FOLLOW UP ACTION, IF ANY):		
10.0 ANY CHANGES MADE AGAINST FORMALLY AGREED PAR	AMETERS:	

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT FOR COMPRESSED AID CENERATION AND DISTRIBUTION SYSTEM		PROTOCOL No.: EFFECTIVE DATE:	
11.0	RECOMMENDATION:		

	DESIGN QU	ALIFIC	ATOIN PROTOCOL CUM REPORT	PROTOCOL No.:
			EFFECTIVE DATE:	
СОМ	PRESSED AI	R GEN	PAGE No.: 18 of 19	
12.0	ABBREVIATIONS:			
	URS	:	User Requirement Specification.	
	cGMP	:	Current Good Manufacturing Practice	
	cGEP	:	Current Good Engineering Practice	
	Pvt.	:	Private	
	IPR	:	Intellectual Property Right	
	Ltd.	:	Limited	
	QA	:	Quality Assurance	
	PO	:	Purchase Order	
	Kg	:	Kilogram	
	Hr	:	Hour	
	cm	:	Centimeter	
	V	:	Volt	
	Hz	:	Hertz	
	AC	:	Alternate Current	
	Amps	:	Amperes	
	mm	:	Millimeter	
	SS	:	Stainless Steel	
	MOC	:	Material of Construction	
	GA	:	General Arrangement	
	P & ID	:	Piping and Instrumentation Diagram	
	STD	:	Standard	
	mPa	:	Millipascal	
	CFM	:	Cubic Feet per Meter	
	KW	:	Kilowatt	
	HP	:	Horse Power	
	RPM	:	Revolution Per Minute	
	MCB	:	Miniature Circuit Breaker	
	NB	:	Nominal Bore	
	LPM	:	Litre Per Minute	

DESIGN QUALIFICATOIN PROTOCOL CUM REPORT	PROTOCOL No.:
FOR COMPRESSED AIR CENERATION AND DISTRIBUTION SYSTEM	EFFECTIVE DATE:
COMINESSED AIR GENERATION AND DISTRIBUTION STOTEM	PAGE No.: 19 of 19

13.0 REVIEWED BY:

INITIATED BY:

DESIGNATION	NAME	SIGNATURE	DATE
OFFICER/EXECUTIVE (QUALITY ASSURANCE)			

REVIEWED BY:

DESIGNATION	NAME	SIGNATURE	DATE
HEAD (PRODUCTION)			
HEAD (ENGINEERING)			

APPROVED BY:

DESIGNATION	NAME	SIGNATURE	DATE
HEAD (QUALITY ASSURANCE)			