

Sr. No.

1.0

2.0

2.1

2.2

2.3

2.4

INSTALLATION QUALIFICATION PROTOCOL FOR AUTOMATIC CAPSULE FILLING MACHINE

ITEM DESCRIPTION

PROTOCOL No.:

PAGE No.

3

4

4

4

4

5

PROTOCOL APPROVAL	
OVERVIEW:	
Objective	
Purpose	
Scope	
Responsibility	

Purpose
Scope
Responsibility
Execution Team
ACCEPTANCE CRITERIA
REVALIDATION
INSTALLATION QUALIFICATION PROCEDURE
System Description

2.5	Execution Team	6
3.0	ACCEPTANCE CRITERIA	7
4.0	REVALIDATION	7
5.0	INSTALLATION QUALIFICATION PROCEDURE	8
5.1	System Description	8 – 11
5.2	Instruction for Filling the Checklist	12
5.3	Installation Check-List	13
5.4	Identification Of Major Components	14 – 18
5.5	Identification of Supporting Utilities.	19
5.6	Identification Of Safety Feature(s)	20
5.7	Identification Of Standard Operating Procedure	21
5.8	Identification Of Component to be Calibrated	22
5.9	Material Of Construction Verification	23
5.10	Verification of Drawing and Documents	24
5.11	Abbreviations	25
5.12	Deficiency And Corrective Action(s) Report(s)	26
5.13	Annexure(s)	27
6.0	INSTALLATION QUALIFICATION FINAL REPORT	28
6.1	Summary	28
6.2	Conclusion	28
6.3	Final report approval	29

1.0 **PROTOCOL APPROVAL**:

Signing of this approval page of Protocol indicates agreement with the qualification approach described in this document. If modification to the qualification approach becomes necessary, an addendum shall be prepared and approved .The protocol cannot be used for execution unless approved by the following authorities.

This Installation Qualification protocol of Automatic capsule filling machine has been reviewed and approved by the following persons:

FUNCTION	NAME	DESIGNATION	DEPARTMENT	SIGNATURE	DATE
PREPARED BY			QUALITY ASSURANCE		
			QUALITY ASSURANCE		
REVIEWED BY			ENGINEERING		
			PRODUCTION		
APPROVED			HEAD OPERATION		
BY			QUALITY ASSURANCE		

2.0 OVERVIEW:

2.1 OBJECTIVE:

The objective of developing and executing this protocol is to collect sufficient data pertaining to the Automatic capsule filling machine and define the qualification requirements and acceptance criteria for the Automatic capsule filling machine. Successful completion of these qualification requirements will provide assurance that the Automatic capsule filling machine was installed as required in the production area.

The objective of the installation qualification is to prove that each activity proceeds as per design specification and the tolerances prescribed there in the document and is the same at utmost transparency.

2.2 PURPOSE:

The purpose of this protocol is to establish documentary evidence to ensure that the Automatic capsule filling machine system received matches the Design specification and also to ensure that it is properly and safely installed.

Purpose of Automatic capsule filling machine shall be used for capsule filling different capsule size to be used in the formulation. The equipment shall operate under dust free environment and conditions as per the GMP requirements.

2.3 SCOPE:

This Protocol is applicable to installation of Automatic capsule filling machine at the tablet manufacturing facility in & the subsequent documentation.

2.4 RESPONSIBILITY:

In accordance with protocol, following functions shall be responsible for the qualification of system.

Execution Team (Comprising members from Production, Engineering and Quality Assurance) and their responsibilities are following:

- > Prepares the qualification protocol.
- Ensures that the protocol is in compliance with current policies and procedures on system Qualification.
- > Distributes the finalized protocol for review and approval signatures.
- > Execution of Qualification protocol.
- Review of protocol, the completed qualification data package, and the final report.
- The installation checks, operational checks, calibration, SOP identification, identification features, identification of utility supply shall be carried out by engineering persons
- The production operator/supervisor shall carry out the cleaning and operation of machine.

Head – Production/Engineering:

- Review of protocol, the completed qualification data package, and the final report.
- > Assist in the resolution of validation deficiencies.

Head – Operation and Quality Assurance:

Review and approval of protocol, the completed qualification data package, and the final report.

2.5 **EXECUTION TEAM:**

The satisfactory installation of the Automatic capsule filling machine shall be verified by executing the qualification studies described in this protocol. The successfully executed protocol documents that the Automatic capsule filling machine installed and is satisfactorily integrated.

Execution team is responsible for the execution of installation of Automatic capsule filling machine. Execution team comprises of:

NAME	DESIGNATION	DEPARTMENT	SIGNATURE	DATE

3.0 ACCETANCE CRITERIA:

- 3.1 The Automatic Capsule Filling Machine shall meet the system description given in design qualification.
- 3.2 The Automatic Capsule Filling Machine shall meet with the acceptance criteria mentioned under the topic "Identification of major components"
- 3.3 The Automatic Capsule Filling Machine system shall be operated by manual /PLC.

4.0 **REVALIDATION CRITERIA**:

The Automatic Capsule Filling Machine has to be revalidated if

- There are any major changes in system components which affect the performance of the system
- After major breakdown maintenance is carried out.
- As per revalidation date and schedule

5.0 INSTALLATION QUALIFICATION PROCEDURE:

5.1 AUTOMATIC CAPSULE FILLING MACHINE SYSTEM DESCRIPTION

The entire equipment can be classified into two zones production zone and non production zone:

Production Zone

- The production zone encompasses the upper portion of the Capsule
 Filling Machine and is enclosed by the acrylic doors.
- The production zone includes the loader assembly, powder assembly, rejection assembly, locking assembly, ejection assembly, turret assembly and additional 3 Nos. attachments for tablet filling attachment.
- The loader assembly consists of the loader body with magazine & finger block assembly, raceway and pusher block. The capsules descend from magazine onto the slots of the raceway and the pusher block then orients the capsules on the raceway. The finger block then releases the capsule with cap up and body down position.
- The powder assembly consists of the tamping punches, punch guide plate, scrapper plate, dosing disc with drum. The dosing disc is indexed with six station indexer. The tamping pins are used to tamp the powders at the 5 stations and at the 6th station the slug is ejected out into the body of the capsule placed in the bottom segment.
- The rejection assembly consists of the rejection bracket that reciprocates on every stroke of the machine. The rejection bracket aids in raising the un-separated capsule. The capsules are then sucked by means of the vacuum blower.
- Locking assembly consists of locking pins that reciprocate on every stroke of machine. The pins are used to lock the filled capsules against fixed plate on the opposite side.
- The ejection assembly consists of the ejection pins that reciprocates on every stroke of the machine and ejects the filled capsule into the outlet chute.

- The turret assembly consists of turret, top cam, bottom cam, top segment and bottom segment. The turret is driven by the twelve station indexer. The following operations are performed at each station
 - Station for loading and separation of the capsules
 - Upward movement of the top segment and backward movement of the bottom segment
 - First station for filling of Tablet into the capsule
 - Second station for filling of Tablet into the capsule
 - Station for filling powder into the capsule
 - Third station for filling Tablets into the capsule
 - Station for rejecting the un-separated capsules
 - Idle station.
 - Downward movement of the top segment and forward movement of the bottom segment
 - Station for locking the capsule
 - Station for ejecting the capsule
 - Station for cleaning the segments

Non Production Zone

- The non production zone encompasses the lower portion of the machine and is enclosed within the SS panel sheets. It also includes the area above the production zone of the machine
- The non-production zone includes the entire drive assembly. The drive assembly consists of the brake motor & gearbox assembly connected to the main shaft via chain & sprocket assembly.
- The cams for the respective stations are mounted on the main shaft and the drive to the station is through cam follower, lever and tie rod attached to the assembly in the production zone.
- The 12 station indexer for turret and 6 station indexer for powder filling assembly is located in the non production zone at the bottom side of the top plate. The drive to the indexer from the main shaft is through separate chain & sprocket arrangement.

- The electrical control panel is also placed in the non production zone.
 It includes the MCB, contactors, O/L relay, PLC, relay card, VFD,
 SMPS terminals etc
- The drive to the powder hopper assembly to stirrer is from the separate motor & gearbox assembly. The motor & gearbox assembly is placed in the area below the production zone.
- The drive to the tablet filling attachment for respective 3 stations is through separate chain & sprockets arrangement on the main shaft.

Tablet filling attachment

The tablet feeding assembly consists of the vibratory bowl, magazine, sliding plate and lower fixed block. The tablets are oriented and transferred into the magazine from the vibratory bowl. The tablets are then transferred into the lower fixed block through the reciprocating action of the sliding plate. The sliding plate is reciprocated by means of the cam lever mechanism

Control System

The Control system for the equipment is a standard controls based system. Control panel with all related electrical and pneumatic components is provided separately from main machine.

The Operating panel cum control panel provided is of SS 304 in construction.

5.2 INSTRUCTION FOR FILLING THE CHECKLIST

- 5.2.1 Write down the actual observation in the observation column
- Give the detailed information in the summary and conclusion part of the 5.2.2
- Installation Qualification report.
- 5.2.3 Whichever column is blank or not used 'NA' shall be used.

5.3 INSTALLATION CHECKLIST:

Installation checklist is as follows:

S.No.	Statement	Observation	Method of verification	Checked by (Sign/Date)
1.	Verify that the "As Built" drawing is complete and represents the design concept.			
2.	Verify that major components are securely anchored and shock proof.			
3.	Verify that there is no observable physical damage.			
4.	Verify that there is sufficient room provided for servicing.			
5.	Verify that all piping and electrical connections are done according to the drawings.			
6.	All access ports are examined and cleared of any debris.			
7.	Safe electrical connections.			
8.	Wiring diagram affixed to inside section of control panel.			
9.	Equipment identification nameplate visible.			
10.	Units installed on foundation are secure in place as per manufacturer's recommendations.			

Remark: -----

5.4 IDENTIFICATION OF MAJOR COMPONENTS:

Describe each critical component and check them and fill the inspection checklist.

S No	Component	Specification	Observation	Checked
5.NO.	Description	Specification	Observation	By/Date
Mechai	nical			
1.	Main motor	Make- Bonfiglioli,		
		BN90LA4, 1390 RPM2		
		HP, 415 V, 50 Hz		
2.	Main gearbox	Bonfiglioli make, AS25 P		
		P90/B3/11-51		
3.	Powder feeder	Bonfiglioli Make, BN63B4,		
	motor	0.25 HP, 415 V, 50 Hz		
4.	Powder feeder	Bonfiglioli make, VF44 F1		
	gearbox	P63 B5/B2/28		
5.	De-dusting	Minivac make, Model –		
	blower	SVRD 150, Vacuum -135		
		mm Hg, 235 CFM		
6.	De-dusting	Hindustan Motor Make, 3		
	blower motor	HP, 2800 RPM, 415 V, 50		
		Hz		
7.	Vacuum Pump	Indovac Make, Model		
		IVS-1000, 26" Hg		
8	Vacuum pump	Hindustan Motor make		
0.	motor	3 HD 1400 PDM 415		
	motor	3 HF, 1400 KFW, 413		
		V, 50 HZ		
9.	Vacuum & de-	Material – PC Satin		
	dusting tank			
	filter bag			
Electric	<u>cal</u>			
10.	MCB for Main	Make – Schneider, 10A,		
	Motor	2 pole		
11.	MCB for	Make – Schneider,		
	control circuit,			
		4 A, 2 pole		
•		•		

PROTOCOL No.:

	PLC, SMPS		
12.	MCB for	Make – Schneider,	
	Vacuum		
	Blower &	32 A, 3 pole	
	Accessories		
13.	Contactor for	Make – Siemens.	
	vacuum pump		
		3TF30, 9 A	
14.	Contactor for	Make – Siemens,	
	de-dusting	3TE30 9 Δ	
15.	Contactor for	Make – Siemens,	
	powder feeder		
16	Motor Overload relay	31F30, 9 A Make – Siemens	
10.	for vacuum		
	pump	3UA50 3.2-5 A	
17.	Overload relay	Make – Siemens,	
	for de-dusting	311450 3 2-5 4	
	blower	50A30 3.2-3 A	
18.	Overload relay	Make – Siemens,	
	for powder		
	feeder motor	3UA50 0.6-1 A	
19.	Relay Cards	Make – Shavison	
		Electronics, 8 Way,	
		24 V DC	
20.	SMPS	Make – Shavison	
		Electronics, Model:	
		G31-60-24 Output – 24	
		V,2.5 A	
21.	PLC	Make – Mitsubishi.	
		FX1N-40MT	
22.	PLC Add on	Make – Mitsubishi,	
	Input card	FX2N-16 EX	
23.	PLC analog	Make – Mitsubishi.	
	card	FX1N-1DABD	

PROTOCOL No.:

24.	HMI	Make – Mitsubishi,	
		E1061	
25.	VFD	Make – Mitsubishi	
	-	FRD 740-036-EC	
26.	Emergency	Make – Teknic	
07			
27.	Inductive	Make – ACCENT	
	sensor –		
	Machine		
	Speed	Max load 300 mA	
28.	Inductive	Make – ACCENT	
	sensor –		
	Capsule level	10-30 VDC, 8 mm PNP,	
		Max load 300 mA	
29.	Capacitive	Make – ACCENT	
	sensor –		
	Powder I evel	10-30 VDC, 10mm	
		PNP, Max load 300 mA	
30.	Tablet sensor	Make- Wenglor	
		Model ODX402P0088	
		Supply Voltage- 18-30 VDC	
		Response time - 250µs	
Pneum	atic		
31.	Pressure	Make – Indfos,	
	switch for Main		
	air pressure	Model: IPS100	
32.	Digital	Make – SMC,	
	switch for	Model: ZSE 30	
	vacuum.		
33.	Actuating	Make – FESTO,	
	Cylinder		
		Model: DSN-16-25-P	
		16 mm bore x 25 mm	

PROTOCOL No.:

		stroke	
34.	FR Unit	Make – Festo,	
		Model: LFR– D –Mini,	
		1/4" BSP Filter Regulator	
35.	Solenoid	Make – SMC	
	Valves	Pneumatics	
		I-SY-5120-4-LZ	
36.	Manifold	Make – SMC Pneumatics,	
		i-SS5Y5-20-03-RSX 105813	
37.	Silencers	Make – SMC Pneumatics, AN203- 02	
38.	Solenoid Coils	Make – SMC Pneumatics,	
39.	Tubings	Make – SMC Pneumatics, PU6 & PU8	

PROTOCOL N

Reviewed by (Sign/Date)

5.5	IDENTIFICATION OF SUPPORTING UTILITIES:							
UTILITY		PROPERLY IDENTIFIED & CONNECTED	OBSERVATION	CHECKED BY (SIGN/DATE)				
1) Electricity:		3 Phase 440 Volts, 50Hz						
2) Compressed air:		NLT 5kg/cm ²						

Remark: -----

5.6

INSTALLATION QUALIFICATION PROTOCOL FOR AUTOMATIC CAPSULE FILLING MACHINE

IDENTIFICATION OF SAFETY FEATURES: Identify and record the safety features (if any) and their function in following tables:

SAFETY FEATURES	FUNCTION	OBSERVATION	CHECKED BY
DESCRIPTION			(SIGN/DATE)
Hardware Emergency	For Operator Safety.		
switch at Operator Console			
Vacuum pressure drop	For safety of the	•	
interlock	batch		
Door interlock	For Operator safety.		
Password protection at	To assign specific		
operator interface	controls to the		
	operator, supervisor		
	and Manager.		
Air pressure drop interlock	For safety of the		
	batch & the process.		

Remark: -----

IDENTIFICATION OF STANDARD OPERATING PROCEDURE (SOP) 5.7

The following Standard Operating Procedures were identified as important for effective performance of Automatic capsule filling machine.

S. No.	SOP Title	Verified By Sign/ Date

Remark:	

5.8 IDENTIFICATION OF COMPONENT TO BE CALIBRATED

In the Automatic Capsule Filling Machine following are the components, which needs calibration. They shall be calibrated during/ before installation of the equipment at the site:

Name of Components	Range	Make	ID	Location	Identified By Sign/Date

Remark:	 	 	

5.9 MATERIAL OF CONSTRUCTION VERIFICATION

S.No.	Component	MOC	Observation	Method of	Checked by
				verification	(Sign/Date)
1.	Powder hopper	SS316			
2.	Punch	SS316			
3.	Top Segment	SS316			
4.	Bottom Segment	SS316			
5.	Dosing disc	SS316			
6.	Drum	SS316			

Remark: -----

5.10 **VERIFICATION OF DRAWING AND DOCUMENTS:**

Following documents are reviewed and attached as listed below:

S.No.	DRAWING AND DOCUMENT DETAIL	VERIFIED BY (Sign/Date)

Remark:	 	 	 	

TAUTUCUL

5.11 ABBREVIATIONS

Following Abbreviations are used in the installation qualification protocol of Capsule Filling machine

MOC: Material Of Construction

BHP: Break Horse Power

HMI/MMI: Human/Man Machine Interface

FAT: Factory Acceptance Test

CFM: Cubic Feet Per Minute

GEP: Good Engineering Practices

FLP: Flame Proof

MS: Mild Steel

PLC: Programmable Logic Controller

SS: Stainless Steel

MCB: Miniature Circuit Breaker

SMPS: Switch Mode Power Supply

RPM: Revolution Per Minute

LPM: Liter Per Minute

FR: Filter Regulator

HP: Horsepower

DEFICIENCY AND CORRECTIVE ACTION (S) REPORT (S) 5.12

Following deficiency was identified and corrective actions taken in consultation with the validation team.

Description of deficiency:

Corrective action(s) taken:

Deviation accepted by (Sign/Date)

Deviation Approved by: (Sign/Date)

5.13 Annexure(s):

Sr. No.	Annexure No.	Title of Annexure

Remarks (if any):

Done By & Date:

Verified By & Date:

6.0 INSTALLATION QUALIFICATION FINAL REPORT:

All the IQ data sheets and discrepancy report shall be reviewed by validation team to prepare summary report. The summary of IQ shall be used to draw conclusion for approval of installation qualification report.

6.1 SUMMARY :

6.2 CONCLUSION :

Prepared By Sign/Date

Checked By Sign/ Date

6.3 FINAL REPORT APPROVAL

It has been verified that all tests required by this protocol are completed, reconciled and attached to this protocol or included in the qualification summary report. Verified that all amendments and discrepancies are documented, approved and attached to this protocol. Signature in the block below indicate that all items in this qualification report of Automatic capsule filling machine have been reviewed and found to be acceptable and that all variations or discrepancies have been satisfactorily resolved.

FUNCTION	NAME	DESIGNATION	DEPARTMENT	SIGNATURE	DATE
			QUALITY ASSURANCE		
REVIEWED BY			ENGINEERING		
			PRODUCTION		
APPROVED			HEAD OPERATION		
BY			QUALITY ASSURANCE		