

RISK ANALYSIS STUDY PROTOCOL FOR MERGING OF BLOCKS

DATE OF RISK ANALYSIS	
SUPERSEDE PROTOCOL No.	NIL

REPORT CONTENTS

PHARMA DEVILS QUALITY ASSURANCE DEPARTMENT

RISK ANALYSIS STUDY PROTOCOL FOR MERGING OF BLOCKS

S.No.	TITLE	PAGE No.
1.0	Protocol Approval	3
2.0	Objective	4
3.0	Scope	4
4.0	Responsibility	5
5.0	Reason for Risk analysis	6
6.0	Site of Study	6
7.0	Risk communication & training	8
8.0	Risk Identification and Evaluation	8
9.0	Risk Mitigation	8
9.0	Risk analysis, Re-Risk analysis Criteria	
10.0	Frequency of Risk analysis12	
11.0	Conclusion 12	
12.0	Recommendation 12	
13.0	Reference	12
14.0	Document To be Attached12	
15.0	Deviation	12
16.0	Change Control (If any)12	
17.0	Abbreviation 12	
18.0	Annexure	13

1.0 PROTOCOL APPROVAL:

INITIATED BY:

QUALITY ASSURANCE DEPARTMENT

RISK ANALYSIS STUDY PROTOCOL FOR MERGING OF BLOCKS

DESIGNATION	NAME	SIGNATURE	DATE
OFFICER/EXECUTIVE			
(QUALITY ASSURANCE)			

REVIEWED BY:

DESIGNATION	NAME	SIGNATURE	DATE
HEAD			
(PRODUCTION)			
HEAD			
(ENGINEERING)			
HEAD			
(QUALITY CONTROL)			
HEAD			
(SAFETY)			

APPROVED BY:

DESIGNATION	NAME	SIGNATURE	DATE
HEAD (QUALITY ASSURANCE)			

2.0 OBJECTIVE:

- To provide documented evidence that there is no risk in merging of Blocks.
- To confirm and establish that the merging of Blocks will not have any impact on adjacent classified areas integrity.

3.0 SCOPE:

This risk analysis study Protocol is applicable for performing risk analysis study for merging of Blocks.

4.0 **RESPONSIBILITY:**

Department	Responsibility	
Quality Assurance	 Shall prepare & Review the Risk analysis Protocol. Execution of the Risk analysis Protocol with Production, Quality Control & Maintenance Department: verification of components 	

PHARMA DEVILS QUALITY ASSURANCE DEPARTMENT

RISK ANALYSIS STUDY PROTOCOL FOR MERGING OF BLOCKS

	Calibration Records of Instrument, Collection of samples with QC	
	person and send to QC for Analysis.	
	• Verification of test & Results.	
	• Deficiency (if any) & Corrective Action.	
	Shall compile the data & Prepare Summary Report	
	• Risk analysis Protocol shall be approved by the QA prior the execution.	
	• Shall review the executed Protocol to check the compliance and	
	corrective action for any discrepancies found. Also shall prepare the	
	summary and conclusion of the Risk analysis Study.	
	Reviewing of Risk analysis Protocol for Correctness, Completeness and	
Ovelitze Control	Technical Excellence.	
Quality Control	• Take the sample as per Protocol in presence of QA person.	
	• Post approval of Risk analysis Protocol after Execution.	
	Reviewing of Risk analysis Protocol for Correctness, Completeness and	
Engineering	Technical Excellence.	
	• Responsible for Trouble shooting (if occurred during execution).	
	• Reviewing of Risk analysis Protocol for Correctness, Completeness and	
Production	Technical Excellence.	
Production	• To provide support for execution of Risk analysis Study as per Protocol.	
	• Post approval of Risk analysis Protocol after execution.	
	Reviewing of Risk analysis Protocol for Correctness, Completeness and	
Safety	Technical Excellence.	
	• Responsible for Trouble shooting (if occurred during execution).	
	1	

5.0 REASON FOR RISK ANALYSIS:

To evaluate the risk in merging of Blocks.

6.0 SITE OF STUDY:

Manufacturing area.

7.0 **RISK COMMUNICATION & TRAINING:**

• The Risk analysis team shall be authorized by Head-QA or his/her designee.

PHARMA DEVILS BUALITY ASSURANCE DEPARTMENT

RISK ANALYSIS STUDY PROTOCOL FOR MERGING OF BLOCKS

- Quality Risk Management Team shall be cross functional team comprise of expert from different areas such as QA, QC, Production, Engineering & Safety.
- Training shall be imparted to the team members before execution of Protocol for proper understanding of the procedure. Training shall be recorded in Training attendance Record.

8.0 **RISK IDENTIFICATION & EVALUATION:**

- ▶ In existing facility Block 1 is separated from Block 2 by a brick wall partition.
- Corridor of Block 1 is qualified under Grade D.
- Block 1 corridor (3400 mm) shares its adjacent area with Hardgel corridor (3000 mm), Three Granulation corridors (2400 mm), Compression Corridor (2100 mm) & Coating corridor (2400 mm).
- Differential pressure of Block corridor is more than the adjacent core areas (Hardgel, Granulation, Compression, Coating & Quarantine) ie; Cascade type differential pressure.

	Pressure Differential (Pascal)	Adjacent areas
	10-15	Material entry of Hardgel
	10-15	Man entry of Hardgel
	25-30	Material entry of Granulation
G-block Corridor (40-45 Pascal)	25-30	Man entry of Granulation
(25-30	Material entry of Compression
	25-30	Man entry of Compression
-	25-30	Material entry of Coating
	25-30	Man entry of Coating

RISK ANALYSIS STUDY PROTOCOL FOR MERGING OF BLOCKS

G-block Corridor	Pressure Differential (Pascal)	Adjacent areas
	25-30	Granules Store
	25-30	Granules Store (Low RH)
	25-30	Solution preparation room
—	25-30	Tablet store
	25-30	Tablet Store (Low RH)
	25-30	Material Entry of Hard gel
		Capsule filling
	25-30	Man Entry of Hard gel Capsule
		filling

 Table 1: Pressure differential of Block 1 corridor with respect to adjacent areas:

Any change in corridor of Block 1 will have an impact on the integrity of adjacent airlocks having pressure lower than adjacent corridors.

9.0 **RISK MITIGATION:**

- Expansion in Block 2 should be done in such a manner that there should be no disturbance in Block 1 core areas, for this before merging of the both corridor one week Differential Pressure between both corridor will be monitored by calibrated Magnehelic gauge.
- > There should not be no pressure variance in both manufacturing corridor.
- An artificial Alupan wall to be made before merging of corridors to avoid any contamination.
- After that, merging of both corridors should be started.
- Block 2 qualification to be done before removing of Alupan partition sheet.

> Following are the qualification parameters:

- (i) Viable Particle count
- (ii) Non-viable count
- (iii) Pressure Differential
- (iv) Air velocity
- (v) Filter integrity
- (vi) Temperature
- (vii) RH
- (viii) Air flow pattern.

PHARMA DEVILS GUALITY ASSURANCE DEPARTMENT

RISK ANALYSIS STUDY PROTOCOL FOR MERGING OF BLOCKS

Grade	Test to be performed	Acceptance Criteria
	Viable Particle Count	NMT 500 cfu/m ³ by Air Sample
		NMT 100 cfu/4 Hours by Settle plate (Diameter 90 mm)
	Non- viable Particle Count	NMT 29300/m ³ Particles of 5.0μ or above at rest condition
		should be observed
		NMT 3520000/m ³ particles of 0.5µ or above
	Pressure Differential	Block 1 & Block 2 should be same, there should be no
D	between Block 1 & Block 2	process variance.
D	corridors	
	Air velocity, Air volume &	The Average measured clean air velocity should be 70-250
	Air distribution	ft/min at 6 inches downstream from their filter face.
	HEPA Filter Integrity test	The PAO penetration / leak through HEPA filters should not
		be greater than 0.03% of the upstream PAO concentration.
	Temperature & RH	Should be as per designed area: (22±2°C; RH: 50±5%)
	Air flow pattern	Should be as per design

Table -2: Block 1 & Block 2 corridor shall be qualified as per D-grade requirement ie; as per ISO14644

- After qualification of F-block, the partition between both corridors (Block 1 & Block 2) to be merged.
- As Pressure differential of both corridor is greater than core areas, hence chance of cross contamination will be reduced.
- After removal of Alupan sheet & merging of both blocks, again the area qualification of both block corridors shall be repeated for confirmation.

10.0 RISK ANALYSIS, RE-RISK ANALYSIS CRITERIA:

10.1 Failure Mode, Effect Analysis:

In the following section a table is produced for the risk analysis using FMEA tool. The significance or instruction for each column is described in the following paragraph.

Column 1:	Serial number of Risk Analysis item
Column 2:	Item/Function: Identify the process step or component associated with the risk.
Column 3:	Potential Failure Mode: Identify the type of risk associated with the process or component.

QUALITY ASSURANCE DEPARTMENT

RISK ANALYSIS STUDY PROTOCOL FOR MERGING OF BLOCKS

Column 4:	Effect of Potential Failure/Cause: Verify that whether risk have GMP impact.
Column 5/6/7/8/9:	Severity/Occurrence/Detection/Risk level/Risk Acceptance: Risk Priority
	Number to be calculated by taking Severity, Occurrence & Detection of
	potential failure into consideration.
Column 10:	Risk Mitigation : Write the risk mitigation strategy as considered in design.
Column 11/12/13/14/15:	Severity/Occurrence/Detection/Risk level/Risk Acceptance: Risk Priority
	Number to be calculated after mitigation by taking Severity, Occurrence &
	Detection of potential failure into consideration.
Column16:	Recommended action: Recommended actions should be given for controlling
	failure occurrence.

 Table 3: Instruction for each column given above

QUALITY ASSURANCE DEPARTMENT

RISK ANALYSIS STUDY PROTOCOL FOR MERGING OF BLOCKS

FACILITY: MERGING OF BLOCK 1 AND BLOCK 2 CORRIDOR QRA No.:

Reference change control.....

S. No.	Item/ Function	Potential Failure Mode	Effect of Potential Failure/ Cause	Severity	Occurrence	Detection	*Risk Priority Number	Risk Acceptance Ves/No	Risk Reduction	Severity	Occurrence	Detection	*Risk Priority Number	Risk Acceptance Yes/No	Recommended Actions (If any
1.	Common	AHU Failure	Air will contaminate, due to	10	4	4	160	Vac	Block 1 core area to be segregated from	4			<i>c</i> 1	N	1. Partition to
	Corridor		dust non-viable particle count	10	4	4	100	Yes	Block 2 by maintaining pressure	4	4	4	64	No	be verified by
	between		will get increase						differential & Alupan sheet partition. Pressure Differential maintained between						QA before
	existing Block 1 & New Block		Pressure differential will get disturbed leading to increase	7	4	4	112	Yes	Block 1 & Block 2	1	4	4	16	No	merging of corridors.
	2 to be merged		in Non viable count	,	-	-	112	103	DIOCK I & DIOCK 2	1	4	4	10	NO	2. Regular
	2 to be merged	HEPA filters	Filters may got chocked due						HEPA Filters adjacent to construction						monitoring of
		integrity	to dust collection	7	4	4	112	Yes	area should be covered properly	4	4	4	64	No	pressure
				,	•	-	112	105		4	4		04	NO	differential to
		Return Risers	Filters may got chocked due to dust collection	4	4	10		Yes	Return riser filters adjacent to construction area should be covered properly	4	4	4	64	No	be done for 0
			to dust conection	-	-	10	160	103	area should be covered property	4	4	7	04	NO	days before
		Environmental	Viable particle count will						Particle count verification to be done						merging of
		monitoring	increase which leads MLT	10	4	7	280	Yes	before & after merging of corridor and	4	4	4	64	Yes	corridors.
			failure.						cleaning & sanitization procedure shall be						3. Proper
									available.						training on
			Environmental parameters						Continuous temperature monitoring to be						gowning to b
			Temperature leads to failure	4	4	4	64	No	done before & after merging of corridor	1	4	4	16	No	given to the
			Environmental parameters						Continuous humidity monitoring to be						personnels
			Humidity leads to failure	4	4	4	64	No	done before & after merging of corridor	1	4	4	16	No	involved in
		Cross-	Material movement will get						As partition of Alupan sheet will be done						merging of
		contamination	disturbed leading to cross-	10	4	10	400	Yes	before merging of wall, hence material	4	4	4	64	No	corridor to
			contamination.						movement will not get disturbed leading to						avoid
									contamination.						contamination
		Personnel	Man movement will			10	1.00	X 7	As partition of Alupan sheet will be done						& cross-
			increase. Personnel involved	4	4	10	160	Yes	before merging of wall, hence man	1	4	4	16	No	contamination
			in merging of corridors may lead to contamination						movement will not get disturbed leading						
									to contamination.						

QUALITY ASSURANCE DEPARTMENT

RISK ANALYSIS STUDY PROTOCOL FOR MERGING OF BLOCKS

S. No.	Item/ Function	Potential Failure Mode	Effect of Potential Failure/ Cause	Severity	Occurrence	Detection	*Risk Priority Number	Risk Acceptance Yes/No	Risk Reduction	Severity	Occurrence	Detection	*Risk Priority Number	Risk Acceptance Yes/No	Recommended Actions (If any)
		Gowning	Improper gowning cause						Proper secondary gowning to be done						
			contamination	10	4	10	400	Yes	before entering the core area	1	4	4	16	No	
		Air flow pattern	Return riser may get chocked						Partition during merging of corridors will						
		change		4	4	10	160	Yes	reduce chances of riser chocking	1	4	4	16	No	
		Power Failure	Environment monitoring get						Power failure backup will be given to that						
		recovery	disturbed	10	4	1	40	No	particular AHU system to avoid any	1	4	1	4	No	
									discrepancy						

Table 4: The above table shows Potential failure mode, effect of potential failure along with Risk Probable Number, Risk Mitigation & Recommended Actions.

* The Risk Priority Number (RPN/Overall Risk) changes based upon the risk. The Risk Assessment team shall decide the acceptance criteria. For example the risk priority number is categorized as below:

Risk Priority Number (RPN)	Risk levels
1-64	Low
65-343	Medium
344-1000	High

RPN = Severity x Occurrence x Detection

11.0 FREQUENCY OF RISK ANALYSIS:

Yearly

12.0 CONCLUSION:

Risk analysis data shall be written on Risk Analysis Study Report for merging of corridors, clearly stating the achievement or non-compliance of the acceptance criteria, effect of the deviations made during the Risk analysis and in case of failure, investigation carried out and their findings.

13.0 RECOMMENDATION:

Recommendation shall be written on the Risk Analysis Study Report for merging of corridors, clearly stating that there is no impact/adverse impact on the person & environment and corridors can be/Can`t be merged under recommended environmental conditions.

14.0 REFERENCES:

SOP "Quality Risk Management", SOP No.: QAA/055

15.0 DOCUMENTS TO BE ATTACHED:

- Area qualification report
- Layout of G-block corridor
- Layout of F-block corridor

16.0 DEVIATION FROM PRE DEFINED SPECIFICATION, IF ANY:

Deviations from pre defined procedures & specification during merging of G-block & F-block corridor shall be investigated in accordance with CQA SOP **"Handling of Deviations"**, **SOP No. CQA/018** and shall be documented in the Risk analysis report.

17.0 CHANGE CONTROL, IF ANY:

Change control during merging of G-block & F-block corridor shall be authorized in accordance with CQA SOP "Change Control", SOP No. CQA/017 and shall be documented in the Risk analysis report.

- CFU : Colony Forming Unit
- ISO : International Organization of Standards
- FMEA : Failure Mode Effect Analysis
- GMP : Good Manufacturing Practices
- AHU : Air Handling Unit
- HEPA : High Efficiency Particulate Air Filter
- MLT : Microbial Limit Test
- RPN : Risk Priority Number

19.0 Annexure:

Annexure-I

CHANGES TO BE DONE IN BLOCK 1 & BLOCK 2

S.No.	Existing Facility	Proposed Changes							
Block 1 existing facility and proposed changes									
Compression									
1.	Compression Cubicle no. 15 exist (51 station)	Convert to Coating Cubicle no. 14							
2.	Compression Cubicle no. 16 exist (45 station)	Convert to Coating Cubicle no. 15							
3.	Compression Cubicle no. 17 exist (45 station)	Convert to Coating Cubicle no. 16							
4.	Compression Cubicle no. 18 exist (20 station)	Convert to Coating Cubicle no. 17							
Block 2 proposed changes									
Granulation									
1.	New Granulation Cubicle no. 12	Facility to be made (Granulation Cubicle no. 12)							
2.	New Granulation Cubicle no. 13	Facility to be made (Granulation Cubicle no. 13)							
3.	New Granulation Cubicle no. 14	Facility to be made (Granulation Cubicle no. 14)							
Compression									
4.	New Compression Cubicle no. 15 (51 station)	Facility to be made (Compression Cubicle no. 15)							
5.	New Compression Cubicle no. 16 (45 station)	Facility to be made (Compression Cubicle no. 16)							
6.	New Compression Cubicle no. 17 (45 station)	Facility to be made (Compression Cubicle no. 17)							
7.	New Compression Cubicle no. 18 (20 station)	Facility to be made (Compression Cubicle no. 18)							