



# DESIGN QUALIFICATION PROTOCOL CUM REPORT FOR MANUFACTURING TANK CAPACITY: 2000 Liter

| DATE OF QUALIFICATION   |     |
|-------------------------|-----|
| SUPERSEDES PROTOCOL No. | NIL |



PROTOCOL No.:

# **PROTOCOL CONTENTS**

| S.No. | TITLE                                                   | PAGE No. |
|-------|---------------------------------------------------------|----------|
| 1.0   | Protocol pre-Approval                                   | 03       |
| 2.0   | Objective                                               | 04       |
| 3.0   | Scope                                                   | 04       |
| 4.0   | Responsibility                                          | 05       |
| 5.0   | Project requirements                                    | 06       |
| 6.0   | Brief process description                               | 06       |
| 7.0   | Equipment specification                                 | 06       |
| 8.0   | Critical Variables to be Met                            | 07       |
| 8.1   | Process/product parameters                              | 07       |
| 8.2   | Utility requirements/location suitability               | 07       |
| 8.3   | Technical specifications/Key Design Features            | 08-10    |
| 8.4   | Material of Construction                                | 10-11    |
| 8.5   | Safety                                                  | 11       |
| 8.6   | Vendor selection                                        | 11       |
| 9.0   | Documents to be Attached                                | 12       |
| 10.0  | Review (inclusive of follow up action, if any )         | 12       |
| 11.0  | Any changes made against the formally agreed parameters | 12       |
| 12.0  | Recommendation                                          | 12       |
| 13.0  | Abbreviations                                           | 13       |
| 14.0  | Reviewed by                                             | 14       |



# **1.0 PROTOCOL PRE- APPROVAL:**

#### **PREPARED BY:**

| I REF INCE DI                            |      |           |      |
|------------------------------------------|------|-----------|------|
| DESIGNATION                              | NAME | SIGNATURE | DATE |
| OFFICER/EXECUTIVE<br>(QUALITY ASSURANCE) |      |           |      |

#### **REVIEWED BY:**

| DESIGNATION                             | NAME | SIGNATURE | DATE |
|-----------------------------------------|------|-----------|------|
| OPERATING MANAGER<br>(QUALITY ASSURANCE |      |           |      |
| HEAD<br>(ENGINEERING)                   |      |           |      |
| HEAD<br>(PRODUCTION)                    |      |           |      |

## **APPROVED BY:**

| DESIGNATION                 | NAME | SIGNATURE | DATE |
|-----------------------------|------|-----------|------|
| HEAD<br>(QUALITY ASSURANCE) |      |           |      |



# 2.0 **OBJECTIVE:**

- To prepare the Design Qualification on basis of User Requirement Specification, Purchase Order and information given by Supplier.
- To ensure that all Critical Aspects of Equipment / Product Requirement, cGMP and Safety have been considered in designing the Equipment and is properly documented.
- To specify the performance basis for acceptance of equipment.

## **3.0 SCOPE:**

- The Scope of this Qualification Document is limited to the Design Qualification for Manufacturing tank (MFV-2000 Ltr.) procured from Pharmatech Process Equipment at the site.
- The Equipment shall operate under the Controlled Environmental Conditions as per the cGMP requirements.
- The drawings and P & ID's provided by Vendor shall be verified during Design Qualification.



# 4.0 **RESPONSIBILITY:**

The Validation Group, comprising of a representative from each of the following Departments, shall be responsible for the overall compliance of this Protocol cum Report:

| DEPARTMENTS       | RESPONSIBILITIES                                                             |  |  |
|-------------------|------------------------------------------------------------------------------|--|--|
|                   | Preparation, Review and Authorization of Design Qualification Protocol       |  |  |
|                   | cum Report.                                                                  |  |  |
|                   | • Assist in the verification of Critical Process Parameter, Drawings, as per |  |  |
| Quality Assurance | the Specification.                                                           |  |  |
| Quality Assurance | Co-ordination with Production and Engineering to carryout Design             |  |  |
|                   | Qualification.                                                               |  |  |
|                   | • Monitoring of Design Qualification activity.                               |  |  |
|                   | • Review of Design Qualification Protocol cum Report after Execution.        |  |  |
|                   | Review & Approval of Design Qualification Protocol cum Report.               |  |  |
| Production        | • Assist in the verification of Critical Process Parameter, Drawings, as per |  |  |
| Troduction        | the Specification.                                                           |  |  |
|                   | • Review of Design Qualification Protocol cum Report after Execution.        |  |  |
|                   | Review of Design Qualification Protocol cum Report.                          |  |  |
|                   | • Assist in the Preparation of the Protocol cum Report.                      |  |  |
|                   | • To co-ordinate and support the Activity.                                   |  |  |
|                   | • To assist in Verification of Critical Process Parameter, Drawings, as per  |  |  |
|                   | the Specification i.e.                                                       |  |  |
|                   | GA Drawing                                                                   |  |  |
|                   | • Specification of the sub-components / bought out items, their Make,        |  |  |
| Engineering       | Model, Quantity and Backup Records / Brochures.                              |  |  |
|                   | • Details of Utilities                                                       |  |  |
|                   | Identification of components for Calibration                                 |  |  |
|                   | • Material of Construction of all components                                 |  |  |
|                   | Brief Equipment Description                                                  |  |  |
|                   | • Safety Features and Alarms                                                 |  |  |
|                   | • Review of Design Qualification Protocol cum Report after                   |  |  |
|                   | Execution.                                                                   |  |  |



## 5.0 **PROJECT REQUIREMENTS:**

To ensure that no Unauthorized and/or unrecorded design modification shall take place. If at any point in time, any change is desired in the mutually agreed design, Change Control procedure shall be followed and documented.

The Compounding Vessel, its associated components and stirrer are designed to process pharmaceutical

Products in accordance with cGMP principles. To ensure the safe delivery of the Equipment from the supplier Site.

## 6.0 BRIEF EQUIPMENT DESCRIPTION:

Manufacturing Vessel Comprises of Top & Bottom Torispherical Dish ends (10%) Welded with Central cylindrical shell. This is principally designed for the preparation and manufacturing of liquid preparation.

Bottom Entry Agitator of rating 5 HP, 950 RPM is provided at the bottom dish end of the tank. The bottom entry agitator is provided with mechanical seal to avoid the leakage during operation.

Top dish is provided with nozzles as per the service requirement and on the top dishend manhole with davit arm arrangement is provided for ease in cleaning the vessel. Top dish is provided with two nos. lifting hooks for ease at the time of installation.

Entire vessel is mounted on four legs support. Manufacturing tank is provided with all pipe fittings and valves with TC fittings and silicon gasket. A working platform made with S.S. Dimpled plates and SS 304 railing is also provided. The size of the working platform is 1600 mm L x 1175 mm W x 1250 mm H. it will have a ladder on one side of 850 mm length.

## 7.0 EQUIPMENT SPECIFICATION :

Equipment Specification is a document provided to Manufacturer for Engineering Equipment as per the specifications mentioned in User Requirement Specification.



## 8.0 CRITICAL VARIABLES TO BE MET:

# 8.1 PROCESS / PRODUCT PARAMETERS:

| CRITICAL VARIABLES                                                                                                          | ACCEPTANCE CRITERIA                                                                                                                                       | REFERENCE           |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| <b>Application:</b><br>The purpose of manufacturing vessel<br>is mixing of pharmaceutical product<br>with magnetic stirrer. | <ul> <li>Manufacturing vessel shall be</li> <li>Able to dissolve the Solid content in the Solvent Media to provide solution</li> <li>Leak free</li> </ul> | Process Requirement |
| Working                                                                                                                     | Should work smoothly and should run without producing any unwanted sound.                                                                                 | Process Requirement |
| Electrical Control Panel                                                                                                    | The system should have Electrical Control Panel.                                                                                                          | Design Requirement  |

# 8.2 UTILITIY REQUIREMENTS / LOCATION SUITABILITY :

| CRITICAL VARIABLES | ACCEPTANCE CRITERIA                                                  | REFERENCE          |
|--------------------|----------------------------------------------------------------------|--------------------|
| Electrical Supply  | kW: 3.7 , Voltage: 415 V $\pm$ 5% , Phase: 3 Phase, Frequency: 50 Hz | Design Requirement |
| Room Condition     | Should be able to meet the requirement of Clean Environment.         | cGMP Requirement   |



PROTOCOL No.:

# 8.3 TECHNICAL SPECIFICATIONS / KEY DESIGN FEATURES:

| S. No | CRITICAL<br>VARIABLES    | ACCEPTANCE CRITERIA                                           | REFERENCE                  |  |
|-------|--------------------------|---------------------------------------------------------------|----------------------------|--|
| 1.    | Equipment Name           | Manufacturing Tank                                            | Design Requirement         |  |
| 2.    | Make                     | Pharmatech Equipment Pvt. Ltd.                                | Design Requirement         |  |
| 3.    | Model                    | MFV-2000                                                      | Design Requirement         |  |
| 4.    | Gross Capacity           | 2395 Ltr.                                                     | Design Requirement         |  |
| 5.    | Working Capacity         | 2000 Ltr.                                                     | Design Requirement         |  |
| 6.    | Contact Part             | SS 316 L                                                      | Design Requirement         |  |
| 7.    | Non Contact Part         | SS 304                                                        | Design Requirement         |  |
| 8.    | Main Shell               | Ø 1350 x 4 mm thick                                           | Design Requirement         |  |
| 9.    | Bottom Dish end          | Ø 1350 x 4 mm ( 10 % Torispherical)                           | Design Requirement         |  |
| 10    | Bottom Dish end          | Ø 1350 x 4 mm ( 10 % Torispherical)                           | Design Requirement         |  |
| 11.   | Leg Pipe                 | Ø 140 x 3 mm thick                                            | Design Requirement         |  |
| 12.   | Agitator shaft           | Ø 38 mm                                                       | Design Requirement         |  |
| 13.   | Agitator blade           | Ø 225 sweep x 4 mm thick                                      | Design Requirement         |  |
| 14    | Lifting hooks            | 12 mm thick Design Requi                                      |                            |  |
| 15.   | Baffles                  | 1050 x 150 x 6 mm thick                                       | Design Requirement         |  |
| 16.   | Monkey Ladder            | Ø 19mm x 300 mmx 100 mm                                       | Design Requirement         |  |
| 17.   | Gasket for bottom        | 4 mm thick                                                    | Design Requirement         |  |
| 18.   | Gasket for Manhole       | 10 mm <sup>2</sup>                                            | Design Requirement         |  |
| 19.   | Eye Bolt                 | M 12 x 65 mm long                                             | Design Requirement         |  |
| 20.   | Davit arm assembly       | Pipe and Elbow of $\emptyset$ 50 x 3 mm thick                 | Design Requirement         |  |
| 21.   | Davit arm Bearing        | Ø 69 x 150 mm thick                                           | Design Requirement         |  |
| 22.   | Davit arm swing          | Ø 55 x 150 mm thick                                           | Design Requirement         |  |
| 23.   | Motor                    | 5 HP , 950 RPM, 415 V, 50 Hz                                  | , 50 Hz Design Requirement |  |
| 24.   | VFD                      | Rating : 3.7 kw, 480 V AC 3Ph Design Requir                   |                            |  |
| 25.   | Mechanical Seal          | Type: Single Cartridge dry sealSeal Faces: Car-SicSize: 38 mm | Design Requirement         |  |
| 26.   | Outlet Valve<br>(vessel) | Type: Flush bottom valveOutlet Conn. : 38mm                   | Design Requirement         |  |



PROTOCOL No.:

| S. No               | CRITICAL<br>VARIABLES | ACCEPTANCE CRITERIA                   | REFERENCE          |
|---------------------|-----------------------|---------------------------------------|--------------------|
|                     |                       | Operation : Manual                    |                    |
|                     |                       | MOC : SS 316 L                        |                    |
|                     |                       | Operation : Manual                    |                    |
|                     |                       | MOC : SS 316 L                        |                    |
| 27.                 | (For Process)         | Conn. Type : TC / TC                  | Design Requirement |
|                     | (101 1100055)         | Conn. size : 38 mm/50 mm              |                    |
|                     |                       | Make : Cipriani Harrison              |                    |
|                     |                       | Type: Dynamic self-rotating with 360° |                    |
|                     |                       | water flow : 89 LPM at 2 Bar          |                    |
| 28.                 | Spray Ball            | MOC : SS 316 L                        | Design Requirement |
|                     |                       | Conn. size : 3/4" BSP                 |                    |
|                     |                       | Spray : Jet spray                     |                    |
|                     |                       | Type : PT 100, 3 wire , simplex       |                    |
| 20                  | Temperature Sensor    | Shed dia. : 6 mm                      | Design Desuinement |
| 29.                 |                       | Range : 0-150 °C                      | Design Requirement |
|                     |                       | MOC : AISI 316 L                      |                    |
| 20                  | Temperature           | Mounting : Panel door                 | Design Desuinement |
| 30.                 | Indicator             | Mode : TC 513 AX                      | Design Requirement |
| 21                  |                       | Mounting: Panel Door,                 | Desis Persingung   |
| 31. Speed Indicator |                       | Mode: PIC101 N                        | Design Requirement |
|                     |                       | Model: WFS-06-S1                      |                    |
|                     | Flow switch           | Max, Temp100 °C                       |                    |
| 52.                 |                       | Line Size-1/4" B.S.P                  | Design Requirement |
|                     |                       | Minimum flow setting- 2 Ltrs/Min      |                    |

# 8.3.1 NOZZLE SCHEDULE FOR LIQUID MANUFACTURING VESSEL 2000 LTRS:

| S. No. | Service                                                      | Size 'Ø'           | Туре           | MOC      |
|--------|--------------------------------------------------------------|--------------------|----------------|----------|
| N1     | Manhole with Sight glass on cover with Davit arm fitting     | 450 mm /<br>100 mm | Davit arm/Pad. | SS 316 L |
| N2     | Product Inlet with manually operated butterfly valve         | 38 mm              | Tri-Clover.    | SS 316 L |
| N3     | Spare with manually operated butterfly valve                 | 38 mm              | Tri-Clover.    | SS 316 L |
| N4     | Air vent with manually operated butterfly valve              | 50 mm              | Tri-Clover.    | SS 316 L |
| N5     | Light glass with light assembly                              | 75 mm              | Pad            | SS 316 L |
| N6     | Dynamic Spray Ball with manually operated butterfly valve    | 65/25 mm           | Tri-Clover.    | SS 316 L |
| N7     | DM Water Inlet with manually operated butterfly valve        | 38 mm              | Tri-Clover.    | SS 316 L |
| N8     | Bottom outlet with manually operated flush bottom ball valve | 38 mm              | Pad            | SS 316 L |



## 8.3.2 VOLUME AND SURFACE AREA CALCULATIONS:

| Diameter of shell $(D) = 1350 \text{ mm}$        | Height of shell $(H) = 1250 \text{ mm}$      |
|--------------------------------------------------|----------------------------------------------|
| Straight face of dish ends $(f) = 40 \text{ mm}$ | Radius of shell (r) = $D/2 = 675 \text{ mm}$ |

#### **VOLUME:**

| ٠ | Volume of shell                  | $=\pi r^{2}H$          | $=\pi x$ | (675)² x 1250           | = 1789 Liters |
|---|----------------------------------|------------------------|----------|-------------------------|---------------|
| • | Volume of dish end straight face | $e = \pi r^2 f$        | $=\pi x$ | (675) <sup>2</sup> x 40 | = 57 Liters   |
| • | Volume of dish end               | $= 0.1 \text{ x } D^3$ | = 0.1    | x (1350) <sup>3</sup>   | = 246 Liters  |
|   |                                  |                        |          |                         |               |
| • | Total Gross Volume               |                        | = 178    | 9 + 2 (57 + 246)        | = 2395 Liters |
|   | Working Volume                   | = Gross Volume         | x 85%    | = 2395 x 85%            | = 2036 Liters |
| • | Working Volume required          |                        |          |                         | = 2000 Liters |

#### **CONTACT SURFACE AREA:**

| • | CSA of shell         | $= \pi \mathbf{D} \mathbf{H}$ | $=\pi x 1350 x 1250$      | $= 5.3021 \text{ m}^2$       |
|---|----------------------|-------------------------------|---------------------------|------------------------------|
| • | CSA of straight face | $= \pi \mathbf{D} \mathbf{f}$ | $= \pi x 1350 x 40$       | $= 0.1697 \text{ m}^2$       |
| • | CSA of dish end      | $=\pi (1.1 r + f)^2$          | $=\pi x (1.1 x 675 + 40)$ | $(1)^2 = 1.9239 \text{ m}^2$ |

• Total Contact Surface Area (including top dish end and bottom dish end)

 $= 5.3021 + 2 (0.1697 + 1.9239) = 9.4893 \text{ m}^2$ 



# 8.4 MATERIAL OF CONSTRUCTION:

| S.No. | PARTS NAME                | MATERIAL OF CONSTRUCTION |
|-------|---------------------------|--------------------------|
| 1.    | Main Shell                | SS 316L                  |
| 2.    | Bottom Dishend            | SS 316L                  |
| 3.    | Top Dishend               | SS 316L                  |
| 4.    | Leg Pipe                  | SS316 L                  |
| 5.    | Agitator shaft            | SS316 L                  |
| 6.    | Agitator Blade            | SS316 L                  |
| 7.    | Lifting Hooks             | SS316 L                  |
| 8.    | Baffles                   | SS316 L                  |
| 9.    | Monkey Ladder             | SS316 L                  |
| 10.   | Gasket for Bottom Valve   | Silicon                  |
| 11.   | Gasket for manhole        | Silicon                  |
| 12.   | Eye Bolt                  | SS 304                   |
| 13.   | Davit arm Assembly        | SS 304                   |
| 14.   | Davit arm Bearing Housing | SS 304                   |
| 15.   | Davit arm swing shaft     | SS 304                   |

## **8.5 SAFETY:**

| <b>CRITICAL VARIABLES</b>         | ACCEPTANCE CRITERIA                                                                                                                            | REFERENCE          |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Electrical Wiring And<br>Earthing | Electrical wiring should be as per approved drawings.<br>Double external Earthing to control machine, Panel<br>and operator should be provided | Safety Requirement |
| Variable Frequency Drive          | Motor safety from overload                                                                                                                     | Safety Requirement |
| Main Suppl <b>y</b>               | Main power supply should be always switched off when not in use.                                                                               | Safety Requirement |
| Safety valve                      | Safety against over pressure                                                                                                                   | Safety Requirement |
| Rupture Disc                      | Safety against Over pressure                                                                                                                   | Safety Requirement |
| Emergency Button                  | Protection against abnormal condition                                                                                                          | Safety Requirement |
| Instrument air pressure           | Low air pressure protection                                                                                                                    | Safety Requirement |
| Overload Relay                    | For motor & equipment protection                                                                                                               | Safety Requirement |



# 8.6 **VENDOR SELECTION:**

| CRITICAL VARIABLES                    | ACCEPTANCE CRITERIA                      | REFERENCE        |
|---------------------------------------|------------------------------------------|------------------|
| Selection of Vendor for Manufacturing | Selection of Vendor is done on the basis |                  |
| vessel                                | of review of vendor. Criteria for review |                  |
|                                       | includes Vendor Background (General /    |                  |
|                                       | Financial), Technical know -how, Quality | cGMP Requirement |
|                                       | Standards, Inspection of Site, Costing,  |                  |
|                                       | feedback from Market.                    |                  |

Reference: (1) User Requirement Specifications (URS).(2) Design & Functional Specifications provided by Vendor.

#### 9.0 DOCUMENTS TO BE ATTACHED:

- Technical details for Equipment Requirement with Engineering Drawings.
- Approved Design and Specifications.
- Any other relevant Documents(Certificates)

## **10.0 REVIEW (INCLUSIVE OF FOLLOW UP ACTION, IF ANY):**

# 11.0 ANY CHANGES MADE AGAINST THE FORMALLY AGREED PARAMETERS:



# **12.0 RECOMMENDATION:**

#### **13.0 ABBREVIATIONS:**

| BSP    | : | British Standard Pipe                |
|--------|---|--------------------------------------|
| cGMP   | : | Current Good Manufacturing Practices |
| D      | : | Depth                                |
| DQ     | : | Design Qualification                 |
| GA     | : | General Arrangement                  |
| HMI    | : | Human Machine Interface              |
| HP     | : | Horse Power                          |
| Hz     | : | Hertz                                |
| Kg     | : | Kilograms                            |
| kW     | : | Kilo Watt                            |
| LPH    | : | Liter per Hours                      |
| LPM    | : | liter per Minute                     |
| MFT    | : | Manufacturing Vessel                 |
| mm     | : | Millimeter                           |
| MOC    | : | Material of Construction             |
| OD     | : | outer Diameter                       |
| PO     | : | Purchase Order                       |
| PT-100 | : | Platinum-100                         |
| RPM    | : | Revolution per Minute                |
| SS     | : | Stainless Steel                      |
| Temp.  | : | Temperature                          |
| V      | : | Volt                                 |
| VFD    | : | Variable Frequency Drive             |
|        |   |                                      |



# **14.0 REVIEWED BY:**

| DESIGNATION           | NAME | SIGNATURE | DATE |
|-----------------------|------|-----------|------|
| HEAD<br>(ENGINEERING) |      |           |      |

| DESIGNATION                              | NAME | SIGNATURE | DATE |
|------------------------------------------|------|-----------|------|
| OPERATING MANAGER<br>(QUALITY ASSURANCE) |      |           |      |

| DESIGNATION          | NAME | SIGNATURE | DATE |
|----------------------|------|-----------|------|
| HEAD<br>(PRODUCTION) |      |           |      |

| DESIGNATION                | NAME | SIGNATURE | DATE |
|----------------------------|------|-----------|------|
| HEAD<br>(QUALITY SSURANCE) |      |           |      |