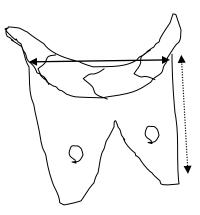

SURFACE AREA CALCULATION SHEET (COMPRESSION MACHINE 27 STATION)



Discharge chute

Turret with Feed Frame

Hopper

SURFACE AREA CALCULATION SHEET (COMPRESSION MACHINE 27 STATION)

SURFACE AREA OFCOMPRESSION MACHINE:

Surface Area of Feeder Frame (2 nos.)

Let assume Feeder Frame as Rectanglular Length =cm Width = cm Surface area = L x W

Total Area=.....inch²

Surface Area of Turret

Diameter =cm Surface Area = $\pi \times r^2$

Surface Area of Hopper

Area of cylindrical shape Diameter = ... cm Height = cm Surface area = $(2 \times \pi \times r \times h) + (2 \times \pi \times r^2)$

Surface area of Lower Trapezium shape

B1= B2= cm Height = cm Surface Area = $B1+B2/2 \times H$

Surface area of cylindrical shape

Length =cm Diameter =cm Surface area = $(2 \times \pi \times r \times h) + (2 \times \pi \times r^2)$ Total area of hopper =511.04 +83.7 +16.05 = 610.8 inch²

SURFACE AREA CALCULATION SHEET (COMPRESSION MACHINE 27 STATION)

Surface area of Exit Chute

Surface area of Rectangular shape

Length = cm Width=..... cm Area= LxW

Surface area of lower rectangular shape

Length = cm Width=.... cm Area= LxW

Surface area of lower cylindrical shape

Length= cm Diameter= cm

Surface area = $(2 \times \pi \times r \times h) + (2 \times \pi \times r^2)$

Total area of exit chute= \dots inch²

Total surface area of compression machine

=.....inch²