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Preface

 

The inherent dynamic nature of batch processes allows for their ability to handle
variations in feedstock and product specifications and provides the flexibility
required for multiproduct or multipurpose facilities. They are thus best suited for
the manufacture of low-volume, high-value products, such as specialty chemicals,
pharmaceuticals, agricultural, food, and consumer products, and most recently
the constantly growing spectrum of biotechnology-enabled products.

The last 5 to 10 years have witnessed a renewed interest in batch processing
technologies by manufacturing businesses that is driven by a number of factors: 

• Globalization and strong competition have resulted in reduction of the
high margins that have long been enjoyed, especially by the pharma-
ceutical and high-value specialty chemicals industries.

• The number of differentiated specialty chemicals and biochemicals
introduced in the market has increased.

• Businesses must remain compliant with the growing number of regu-
latory requirements on emission and waste minimization resulting from
environmental concerns.

Reduced time to market, lower production costs, and improved flexibility are
all critical success factors for batch processes. In response to these industrial
needs, batch processes have also recently attracted the attention of the academic
world.

The aim of this book is to provide an inclusive review of the wide-ranging
aspects of design, development, operations, and control of batch processes. The
development of systematic methods for the synthesis and conceptual design of
batch processes offers many challenges and has not received considerable atten-
tion, with the exception of chemical route selection and solvent selection. 

The unsteady nature and flexibility of batch processes pose challenging design
and operation problems. Traditional approaches to the design of batch unit oper-
ations include short-cut estimation methods, rules of thumb, and design by anal-
ogy. Although not necessarily optimal, they are valuable techniques during pro-
cess development. Especially in the case of solid–liquid and solid–solid separation
unit operations, it is not uncommon to hear manufacturers say that their equipment
can be properly fitted to a particular task only on the basis of some direct
laboratory and pilot plant work. Recent fundamental research is seeking to
develop models for unit operations involving solids. In the biochemical and
pharmaceutical sectors, batch fermentation and separation of optically pure chiral
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compounds are examples of research areas that are experiencing a rapid devel-
opment of new technologies and supporting design methods in both industry and
academia.

Batch process scheduling is important for maximization of facility utilization
and production rates while meeting product market demands. It is a mature yet
still active area of research. Powerful optimization techniques and solutions are
available today that are opening up new opportunities for planning and supply
chain management, an area of utmost interest for large manufacturing businesses. 

Design software tools for the modeling of single-unit operations, such as
batch reactors and distillation columns, have been available for a number of years.
Significant advances that have taken place in the field of process development,
plant operation, and information management have resulted in the recent emer-
gence of tools that model the behavior of the entire batch process and are
attempting to address the challenging task of automation of manufacturing batch
processes. This book presents the latest of these technologies, shows how they
are currently being implemented, and discusses their advantages as well as poten-
tial future improvements.

Minimizing safety hazards and designing inherently safe batch processes are
crucial for the batch processing industry and have been extensively covered in
other publications, which is why we have omitted the subject from this book. In
addition, topics such as toxicology and special formulations are not covered here
due to their specificity to individual industry sectors.

It is not possible today for any individual to be an expert in all or even many
aspects of batch processing. With the exception of very small companies or simple
problems, interdisciplinary project teams are required to address and manage the
complexities and challenges of batch processes across their life-cycles — from
conception through manufacturing. The need for such collaboration is evident in
this book. The contributors represent a blend of academic and industrial back-
grounds with considerable experience in research, process design, development,
operation, and control of batch processes. 

The intended audience for this book primarily includes practitioners and
researchers in the batch process industries. They may choose to read the intro-
ductory comments of each chapter in order to gain an overview of the field, or
they may use it as a reference book for specific needs. In either case, they will
benefit from the up-to-date coverage of all aspects of batch processing and the
combined expertise of the contributing authors. For academic and industrial
researchers alike, portions of the book should provide perspectives on the practical
context of their work and stimulate research activity in the understudied aspects
of batch processes. In recent years, chemical engineering students have been
increasingly exposed to batch processing. Although we have not designed the
book to be used as a textbook, we hope that many of the ideas presented here
can effectively be brought into the classroom. 
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1

 

Introduction

 

Ekaterini Korovessi and Andreas A. Linninger

 

The inherent dynamic nature of batch processes allows for their ability to handle
variations in feedstock and product specifications and provides the flexibility
required for multiproduct or multipurpose facilities. They are thus best suited for
the manufacture of low-volume, high-value products, such as specialty chemicals,
pharmaceuticals, agricultural, food, and consumer products, and most recently
for the constantly growing spectrum of biotechnology-enabled products.

This book presents the latest batch processing technologies, how they are
currently being implemented, and discusses advantages, limitations, and potential
future improvements.

batch processing industries. The unsteady nature and flexibility of batch pro-
cesses, which make them so attractive, pose challenging design and operation
problems. Process and equipment design issues in batch processing are covered

A description of the structure and contents of the book is included in this

istics of batch processes and batch dynamics and proceeds with a review of the
industries that use predominantly batch processing. The subsequent discussion of
the various stages of the lifetime of a drug, from conception through manufacturing,
focuses on the interactions between the parallel tracks of product development and
batch process development and the challenges of their optimization under the
constraints of the Food and Drug Administration (FDA) regulatory approval pro-
cess. Use of the Merrifield process for solid-phase peptide synthesis is presented
as a case study that is discussed in some detail and is used to introduce the use of
various batch unit operations and demonstrate the flexibility of batch processing.
The diversity of the specialty chemicals industries is exemplified in the section of
the chapter that introduces specific equipment, critical variables, varying quality
specifications, and operational practices for the high-purity chemicals and cosmetics
industrial sectors. Selected examples of the use of batch processing in the food

synthesis of batch processes. The solution strategies of the mathematically for-
mulated batch synthesis problem can be based on heuristic, mathematical pro-
gramming, or hybrid approaches. The discussion focuses on a framework of
methods and tools that are required by the various solution methodologies for
the problem formulation, generation of alternative feasible solutions, and ulti-
mately evaluation of these alternatives and the arising challenges. Simple illus-
trative examples complement the chapter.
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The book is divided into three sections. Part I presents an overview of the

in Part II, and Part III deals with the management of batch process operations.

chapter. Chapter 2 begins with an introductory discussion of the distinct character-

Chapter 3 covers some recent academic work addressing the problem of
industry are presented in the last section of Chapter 2.



 

4

 

Batch Processes

 

of the most important batch unit operations, including operation overview, design,
and, in some cases, simulation and control. Traditional approaches to the design
of batch unit operations include short-cut estimation methods, rules of thumb,
and design by analogy. Although not necessarily optimal, they are valuable
techniques during process development. In the biochemical and pharmaceutical
sectors, batch and fed-batch fermentation is a research area experiencing rapid
development of new technologies and supporting design methods in both industry
and academia. Kinetics and mass transfer considerations during the design of

distillation, one of the oldest and most widely used unit operations in the batch
industries, have advanced to state-of-the-art, computer-aided design techniques
that are based on rigorous mathematical models. A complete review of batch

solid–solid separation unit operations, it is not uncommon for manufacturers to
fit their equipment specifically to a particular task only after some direct labora-
tory experimentation and pilot plant work. Recent fundamental research has
sought to develop models for unit operations involving solids. Crystallization is
often the final purification step for pharmaceuticals and specialty chemicals.
Despite the importance of batch crystallization on product quality, methodologies
for the design of batch crystallizers are still in developmental stages. The funda-
mental concepts of batch crystallization from solution and the theory of crystal-

associated downstream solid–liquid separations while at the same time consider-
ing the integration and interdependency of these technologies. The chapter brings
together a compilation of valuable important considerations, approaches, and
resources required by practitioners of crystallization and solid–liquid separations.
It also serves as a guide for laboratory and pilot testing, as well as for scale-up
aspects.

Minimization of waste generation can most effectively be addressed during

pollution concerns in the batch pharmaceutical and specialty chemical industries
and provides an overview of the various pollution control methodologies. The
impact of environmental regulations and regulatory incentives for pollution pre-
vention is discussed, and guidelines for selection of pollution prevention strategies
are presented. The chapter includes a comprehensive list of either commercially
available or academic software tools that is not limited to computer-aided pollu-
tion prevention but also covers batch process modeling.

Recent research activities aimed at the use of rigorous mathematical modeling
and optimization for the design and optimization of batch processes are discussed

the optimal design of batch processes of predetermined fixed structure as well as
batch processes having a structure subject to optimization. The incorporation of
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batch bioreactors are discussed in detail in Chapter 4. Theoretical studies of batch

distillation is presented in Chapter 5. Especially for the case of solid–liquid and

lization kinetics are presented in Chapter 6. A design methodology is proposed
and a few examples are used to illustrate the presented design principles. Chapter
7 addresses practical aspects of the development of batch crystallization and the

the design of batch processes. Chapter 8 summarizes the waste sources and

in Chapter 9. The chapter presents an overview of mathematical techniques for

The remaining chapters in Section II provide detailed descriptions of some
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uncertainties in the optimization problems is also considered. Finally, the concept
of dynamic real-time optimization and control is presented. The management of
batch processes involves decision making at all levels of the plant operation
hierarchy. Such decisions include scheduling, planning, monitoring, control, and

scheduling and campaign planning problems, outlines approaches to their solu-
tion, and discusses the practical implementation of these approaches. Both prob-
lems are information intensive, and solution methodologies should be able to
handle uncertainty in the input data. The importance and challenges of integrating
information management systems with production scheduling and campaign plan-

and control concepts for batch processes and presents recent advances in the
development of methods for the practical implementation of batch process con-

operational uncertainties, such as demand fluctuations, with the ultimate goal of
driving down the overall supply-chain costs. The authors discuss typical catego-
ries of supply-chain problems: supply-chain infrastructure design, supply-chain
planning, and supply-chain execution and control. Scenario-based approaches for
dealing with uncertainties during the strategic supply-chain network design are
presented. The chapter also discusses the main elements of supply-chain planning
— namely, management of demand, inventories, production, and distribution, as
well as recent academic work on the topic of dynamic supply-chain simulation.
The latter is an emerging area aiming at the effective execution and control of
supply-chain management decisions. 

The authors of the individual chapters have included extensive bibliographies
to serve as resources for more detailed information regarding the topics discussed
or briefly mentioned in the chapter. 

 

DK3017_C001.fm  Page 5  Monday, August 15, 2005  12:24 PM

© 2006 by Taylor & Francis Group, LLC

supply-chain management. Chapter 10 introduces batch process production

ning are emphasized. Chapter 11 provides an overview of advanced monitoring

deal effectively with external strategic changes, such as globalization, as well as
trol. The purpose of supply-chain management, the subject of Chapter 12, is to
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2.1 INTRODUCTION

 

Batch chemical processing is still widely used and offers advantages over con-
tinuous operations in certain cases. These cases include manufacturing operations
in which flexibility is required in either the rate or mix of products, in cases
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where the throughput is very small or the chemistry is not applicable to continuous
operations, and in cases where lot integrity must be maintained. The selection of
a batch vs. continuous operation is based on many factors (see Table 2.1). A
large-scale manufacturing process, such as the refining of petroleum, involves
many continuous operations. A small-scale process, such as the production of a
highly specialized chemical reagent, may be mostly done in batch operations. A
heuristic rule suggests that products with annual requirements of more than
500,000 kg are more economically efficient when done in continuous operations.

 

1

 

Certain products have a demand that changes over time or have seasonal
variability. A manufacturer of these products is faced with either scaling back
production during periods of slack demand or holding product in inventory. This
type of variability is well suited to batch manufacturing, as it is a simple matter
to adjust production by either operating the facility on fewer shifts or manufac-
turing a different product that is in higher demand. Continuous unit operations
do not usually have much operating flexibility. For example, a continuous distil-
lation column has an efficient range of production that is set by the hydraulic
limitations of flooding at the high end and weeping at the low end. Operations
outside these limits are not feasible. In multiproduct facilities, each product is
manufactured in campaigns that are sized to use the equipment efficiently. The
campaign size represents a trade-off between the cost of changing over from one
product to another and the size of the inventory created during the campaign.

Products that have repeated process steps may also require less equipment to
produce in a batch process. For example, a process that isolates solids in several
steps may be less expensive to manufacture if one set of filtration and drying
equipment is reused, or shared between these steps. A multistep batch synthesis
may be able to share the same reactor between each synthesis step. A continuous
process will normally require dedicated equipment for each process step.

 

TABLE 2.1
Selection of Batch vs. Continuous Processes

 

Reasons for Batch Operations Reasons for Continuous Operations

 

Small volume of production (production 
typically <500,000 kg/yr)

Large volume of production

Variability in production rate Steady production rate
Reuse of equipment (shared equipment) Dedicated-use equipment (single product 

use)
Multiproduct operation Single-product operation
Process variables subject to adjustment 
(uncertainties in the reactivity or potency of 
raw materials)

Invariable process conditions (minor 
uncertainties in the reactivity or process is 
sufficiently robust)

Many isolation steps Few purification steps
Lot integrity required Lot integrity arbitrary or not required
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Certain process chemistries, such as the synthesis of large organic molecules,
are sensitive to conditions that may be beyond the control of the operator. As we
will see later in this chapter, the synthesis reactions of polypeptides do not proceed
at the same rate for each step. As a result, the operator must be able to easily
adjust the reaction conditions to compensate for the change in reaction rate. It
may not be feasible to adjust the processing time of continuous operation steps
outside of a narrow range because of the effect on subsequent steps. For example,
unusually long processing time for one step may cause the process to run empty
on downstream operations.

Processes that have a large number of isolation steps, particularly in the
isolation and drying of solids, are more expensive to process in continuous
operations. For example, continuous filtration equipment is typically more expen-
sive than batch filtration equipment (rotary vacuum filters or belt filters have
moving parts, while Neutsch filters or plate-and-frame filters do not.)

Finally, certain types of processes that require a rigorous maintenance of
batch integrity (such as the production of drug products) may be more easily
done in batch operations, where a certain number of batches is blended together
to make a finished lot of raw material. It is a straightforward task to document
each lot of raw material that makes up each lot of finished goods.

 

2.2 BATCH DYNAMICS

 

Batch chemical manufacturing is by nature a dynamic process. For example, a
batch chemical process may involve charging reactants to a reactor, stirring the
reactants while heating to a desired temperature, adding the remaining reactants,
holding at a specified temperature for a period of time, then cooling to a final
temperature over a certain profile to produce a crystalline suspension. The process
chemistry may be strongly affected by the dynamic steps of heating and cooling.
For example, the specific cooling profile of a crystallization process (holding at
a specified temperature for a period of time then reducing the temperature at a
certain linear rate) may be selected to produce a desired particle size distribution
of the product. However, the dynamic nature of batch processing may be difficult
to scale up to larger batch sizes, as the rate of heating or cooling is proportional
to the surface area shared by the vessel and the batch, while the amount of energy
liberated or consumed by a reaction is proportional to the mass (or volume) of
the batch.

Certain batch operations may be less expensive to do than continuous oper-
ations. For example, a ternary system consisting of a low-boiling impurity, an
intermediate product, and a high-boiling impurity may require two continuous
distillation columns in series but only one batch column. The continuous columns
may be operated in such a manner that the first column produces a distillate
stream consisting of the low-boiling impurity and the desired product and a
bottoms stream consisting of the high-boiling impurity. The second column has
as its feed stream the distillate from the first column and produces a distillate
stream of the low-boiling impurity and a bottoms stream of the desired product.
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On the other hand, the batch column may be operated to produce successive
distillate cuts of the low-boiling impurity and the desired product, with a pot
residue of the high-boiling impurity. Although batch chemical processing is
widespread throughout many different facets of the chemical processing industry,
this chapter focuses on specific examples of the pharmaceutical industry and the
food industry.

 

2.3 INDUSTRIES THAT USE BATCH PROCESSING

 

Batch and continuous operations are not absolutely restricted by industry; how-
ever, high-volume industries such as petroleum refining typically use continuous
operations, while low-volume industries or industries using specialized types of
chemistry typically emphasize batch operation over continuous operations. Indus-
tries in which batch operations are more common include pharmaceutical, spe-
cialty chemical, and food. These industries are quite diverse, encompassing a
very large number of products. The specialty chemical industry is particularly
diverse and difficult to categorize. Two examples of specialty chemical products
are discussed here: high-purity chemicals and cosmetic pigments. The remainder
of this chapter discusses batch processing in the pharmaceutical industries and
introduces operational practices in the specialty chemical and household chemical
industries. It concludes with a brief overview of batch processes in the food
industry.

 

2.4 BATCH PROCESSING IN THE PHARMACEUTICAL 
INDUSTRY

 

The pharmaceutical industry had U.S. sales in 2002 of $192 billion. Research
and development expenses for that year were $32 billion.

 

2

 

 The pharmaceutical
industry employs a number of special batch unit operations in the manufacturing
of products. Many of the new products being developed are compounds that are
active in very small doses, have process chemistries that use these special batch
unit operations, or both. Batch manufacturing techniques are commonly used in
these products. A description of the life-cycle of a drug product and a specific
example of a synthetic biochemical product are presented below.

 

2.4.1 L

 

IFE

 

-C

 

YCLE

 

 

 

OF

 

 

 

A

 

 D

 

RUG

 

 P

 

RODUCT

 

An innovator company may devote many years of research and many hundreds
of millions of dollars to discovering and developing a new drug. On average, the
total timeline required to navigate a medication from the researcher’s laboratory
to the patient is about 10 to 15 years.

 

3

 

 DiMasi et al.

 

4

 

 found that the average cost
of developing a new drug (new molecular entity) is $403 million in actual dollars,
and $802 million if the time between discovery and marketing is accounted for
(the product may not be sold until approval has been granted). Despite these
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efforts, the vast majority of all new candidate drugs that are discovered fail to
reach the marketplace. 

Figure 2.1 shows the typical life-cycle of a new drug product. Pharmaceutical
manufacturing can be broadly classified into two phases: (1) 

 

product development

 

,
the drug discovery and clinical testing phase; and (2) 

 

process-development

 

, the
synthesis of batch operations, scale up, and industrial production phase

 

. 

 

It can
be inferred from Figure 2.1 that, after molecular discovery, drug development is
the critical time-to-market path. Patents may be filed for promising new drugs
right after molecular discovery. The total patent life of a new drug is approxi-
mately 20 years, and the clock starts ticking right after drug discovery, several
years before the product goes to market. After the patent of a drug expires, other
companies can copy its formula and sell generic versions. 

A candidate drug originates from knowledge of the pharmacology and bio-
chemistry of the disease or medical condition to be treated. A candidate molecule
is proposed and then studied under laboratory conditions (discovery). Some
preliminary animal testing (preclinical testing) may be done to establish toxicity
and efficacy. The innovator may file to patent the drug candidate. At the same
time, early development work (batch process synthesis) is done on the chemical
process to manufacture the drug. Numerous routes to synthesize (or extract the
drug from natural sources) may be evaluated and discarded due to process eco-
nomics, quality, safety, or environmental concerns (sequence selection 

 

→

 

 route-
selection 

 

→ 

 

recipe development). A final process is then devised, and an impurity
profile is obtained. Formal 

 

preclinical studies

 

 to demonstrate the safety and
biological activity of the drug in laboratory and animal studies are conducted.
An 

 

Investigational New Drug Application

 

 (INDA) for the candidate drug is filed
with the Food and Drug Administration (FDA) in order to conduct clinical studies
in humans. After approval of the INDA, 

 

clinical trials

 

 (phases I to III) are

 

FIGURE 2.1

 

Life-cycle of a new drug product (total patent life = 20 years).
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performed in order to test the efficacy of the drug on human subjects. At the same
time, process development by pilot testing, Environmental Health and Safety
(EHS) studies, and trial productions are set up. The process is then filed for New
Drug Approval (NDA) at the FDA. When the FDA approves the NDA, the new
medicine becomes available for physicians to prescribe. The FDA-approved drug
manufacturing recipe is finally scaled up to an industrial production scale in order
to meet market demands. The pharmaceutical company must continue to submit
periodic reports to the FDA, including any cases of adverse reactions and appro-
priate quality-control records. The next sections describe in detail the activities
involved in each of the phases (i.e., product and process development phases).

 

2.4.1.1 Pharmaceutical Product Development

 

(INDA), (4) clinical trials, (5) New Drug Application (NDA) for FDA approval,
and (6) follow-up evaluations (post-approval clinical trials). Each of these stages

 

2.4.1.1.1 Drug Discovery

 

Pharmaceutical companies constantly engage in the process of discovering new
chemical substances with desired pharmacological properties. Drug discovery
and development are creative, complex, and highly regulated processes.

 

5

 

 The
process of drug discovery and development is time consuming and expensive,
and the rate of success is low. Only five in 5000 compounds that enter preclinical
testing make it to human testing. Finally, only one of these five tested in people
is approved. Therefore, pharmaceutical companies invest significant resources in
new technologies (e.g., recombinant DNA, genomics, macromolecule synthesis)
and developing alliances with research organizations to improve the discovery
rate of new chemical entities and molecules. Drug discovery usually involves the
following three steps:

1. Selection and validation of target drugs (enzymes, regulatory proteins,
or other bioactive molecules) that are related to the disease of interest

2. Design of appropriate biochemical and biological assay models to
screen libraries of compounds (from natural resources or synthesis
labs) that interact with the selected biological targets in order to dis-
cover lead compounds

3. Modification of lead structures in order to optimize efficacy and the
adsorption, distribution, metabolism, excretion, and toxicology
(ADNET) profile

After molecular discovery, the critical path in time-to-market is clinical testing.
Table 2.2 highlights the major activities involved in clinical testing during the
drug development phase. 

 

DK3017_C002.fm  Page 12  Friday, August 5, 2005  10:12 AM

© 2006 by Taylor & Francis Group, LLC

is discussed in the following paragraphs. (See Table 2.2.)

(1) discovery, (2) preclinical trial, (3) Investigational New Drug Application
Figure 2.2 illustrates the following stages involved in development of a new drug:
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2.4.1.1.2 Preclinical Studies

 

A pharmaceutical company conducts laboratory and animal studies to determine
the biological activity of the compound against the targeted disease, and it eval-
uates the compound for safety. These tests take approximately 3.5 years. 

 

FIGURE 2.2

 

Development process for a new drug.
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TABLE 2.2
Drug Development: Clinical Trials

 

Years
Preclinical 

Testing
File IND
at FDA Phase 1 Phase II Phase III

File NDA 
at FDA FDA

Total
Test Phase IV

 

— 3.5 — 1 2 3 — 2.5 12
total

Additional post-
marketing tests 
as required by 
FDA

Test 
population

Laboratory and 
animal studies

— 20–80 
healthy 
volunteers

100–300 patient 
volunteers

1000–3000 
patient 
volunteers

— Review 
process and 
approval

— —

Purpose Assess safety 
and biological 
activity

— Determine 
safety and 
dosage

Evaluate 
effectiveness; 
look for side 
effects

Verify 
effectiveness; 
monitor adverse 
reactions from 
long-term use

— — — —

Success rate 5000 
compounds 
evaluated

— Five enter trials — One 
approved

— —

 

Source: 

 

Adapted from Wierenga, D.E. et al., 

 

Phases of Product Development

 

, Pharmaceutical Manufacturers Association, Office of Research and Development
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2.4.1.1.3 Investigational New Drug Application

 

After completing preclinical testing, the

 

 

 

company files an INDA with the FDA
to begin testing the drug in humans. The INDA contains information on the results
of previous research, including any toxic effects found in animal studies and how
the drug is thought to work in the human body. 

 

2.4.1.1.4 Clinical Studies

 

Clinical trials consists of three phases:

• In phase I, studies are done to establish the human toxicity of the
candidate drug and related impurities and to determine dosage require-
ments. The studies also determine how a drug is absorbed, distributed,
metabolized, and excreted, as well as the duration of its action. These
tests involve about 20 to 80 normal, healthy volunteers and take about
a year to complete.

• In phase II, a candidate drug that passes the toxicology studies must
then be evaluated for dosage, efficacy, and side effects of short-term
use among a larger patient population of approximately 100 to 300
volunteer patients (people with the targeted disease). This study takes
approximately 2 years.

• In phase III, if the short-term results are satisfactory, the efficacy of
the drug and its safety over the long term are then verified on a patient
population of several thousand volunteers. Phase III studies gather
precise information on the effectiveness of the drug for specific indi-
cations, determine whether the drug produces a broader range of
adverse effects than those exhibited in the small study populations of
phase I and II studies, and identify the best way to administer and use
the drug for the purpose intended. This phase lasts about 3 years and
usually involves 1000 to 3000 patients in clinics and hospitals.

 

2.4.1.2 New Drug Application

 

The regulatory approval process for drugs is normally established by law in each
country. Regulation of the manufacture and distribution of drugs in the United
States is administered by the FDA. Regulatory authority of the FDA was granted
under the Federal Food, Drug, and Cosmetic Act of 1938. The FDA recognizes
two broad classes of drugs: new and generic. The regulatory approval process is
more demanding for new drugs. For a new drug to be marketed in the United
States, an NDA must be submitted to the FDA. The NDA contains the following
information:

 

5

 

• Documentation of investigations showing that the drug is safe and
effective for the intended use

• A complete list of components of the drug
• A full statement of the composition of the drug
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• A full description of the methods, facilities, and controls for the man-
ufacturing, processing, and packaging of the drug

• Samples of the drug and components
• Specimens of labels proposed for the drug

An NDA may be tens of thousands of pages long. The innovator may be
required to include all clinical data, including adverse events (side effects) in the
NDA. The FDA may audit the innovator’s proposed manufacturing facility and
inspect the manufacturing unit, quality control labs, warehouses, and other facil-
ities. The FDA may audit the manufacturing and testing procedures and docu-
mentation, validation studies of the analytical methods and key process param-
eters, documentation of the processing and packaging equipment for the process,
and control of the storage and handling of labels. All drugs must be manufactured
under the current good manufacturing practices (GMPs) as established by current
regulations. Documentation of the manufacturing and testing is extremely impor-
tant; each lot of drug produced must have written records that document the steps
followed during manufacturing and each lot of raw material and each batch or
lot of intermediate used. All testing, including intermediate and final lot testing,
must also be documented.

 

2.4.1.3 Approval

 

The innovator may begin selling the drug when approval has been granted. The
innovator normally begins stockpiling the drug in advance of the date of approval
in order to generate revenue from the product as quickly as possible. This means
that the manufacturing facility must be ready some months prior to the expected
approval date. All equipment must be installed, validated, and cleaned. All
employees must be hired and trained, and all procedures must be written,
reviewed, and approved. Only a small number of candidate drugs achieve
approved status. Kaitin and Cairns

 

6

 

 reported that during the period of 1999, 2000,
and 2001 the total number of new drugs approved by the FDA was 86: 35 in
1999, 27 in 2000, and 24 in 2001. Of these 86 drugs, 82 were New Chemical
Entities (NCEs). The NCEs had a mean clinical phase time of 5.5 years, a mean
approval phase time of 1.4 years, and a mean total development time of 6.9 years.

tical drugs for the last two decades.

 

7

 

2.4.1.4 Post-Approval Clinical Studies (Phase IV)

 

Experimental studies and surveillance activities are also undertaken after a drug
is approved for marketing. Clinical trials conducted after a drug is marketed
(referred to as phase IV studies in the United States) are an important source of
information on as yet undetected adverse outcomes, especially in populations that
may not have been involved in the premarketing trials (e.g., children, the elderly,
pregnant women), as well as the long-term morbidity and mortality profile of the
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drug. Regulatory authorities can require companies to conduct phase IV studies
as a condition of market approval. Companies often conduct post-marketing
studies even in the absence of a regulatory mandate. 

 

2.4.1.5 Pharmaceutical Process Development

 

ceutical company. Pharmaceutical process development primarily consists of
three stages: (1) batch process synthesis (sequence selection 

 

→

 

 route selection

 

→

 

 recipe development 

 

→

 

 environmental health and safety measures), (2) pilot
studies (pilot scale-up 

 

→

 

 trial production 

 

→

 

 regulatory compliance), and (3)
industrial production (site evaluation 

 

→

 

 industrial scale-up 

 

→

 

 production). The
different process stages are developed parallel to product testing after drug dis-
covery. Batch synthesis is done parallel to preclinical animal testing, pilot studies
are done during clinical trials, and industrial production begins after FDA
approval. The next sections discuss the various stages of the drug development
process. 

 

2.4.1.5.1 Batch Synthesis (Preclinical Process Development)

 

Development of the manufacturing process for the drug candidate closely follows
the regulatory approval process for the drug. During the first stage of process
development, the pharmaceutical company evaluates the economics of the can-
didate drug and estimates a budget for the manufacturing process and the cost of

 

FIGURE 2.3

 

Typical clinical phase and approval phase time for biopharmaceutical drugs.
(Adapted from Tufts Center for the Study of Drug Development, 
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Figure 2.4 outlines the typical work flow of process development in a pharma-

2004, http://csdd.tufts.edu, 2004.)
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the new manufacturing plant. Various routes to produce the drug are proposed
and evaluated in terms of the expected yield, expected raw material and labor
costs, and indirect costs of the manufacturing facility. In addition, the proposed
processes are evaluated in terms of process safety and hygiene and compliance
with environmental regulations. Demonstrations of the manufacturing process are
tested via bench-scale runs, and impurities are identified and characterized. The
most promising route is selected, and product specifications are established.
Small-scale laboratory experiments are conducted to establish operating condi-
tions. At this point, the INDA is filed, and phase I clinical studies begin. 

 

2.4.1.5.2 Pilot Study (Process Development During 
Clinical Studies)

 

The development of the manufacturing process is well underway by the time the
phase I studies are complete. The process development effort becomes focused
on scaling up to the proposed manufacturing scale when the phase I study begins.
Pilot plant studies are conducted in order to obtain the engineering data required
for design of the manufacturing facility. Analytical methods are developed, and
in-process specifications are determined. Key process variables, operating con-
ditions, and analytical methods (for in-process and finished lot testing) are

 

FIGURE 2.4

 

Typical process development work flow in a pharmaceutical company. 
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validated to ensure quality control throughout the entire process. Cleanout pro-
cedures are developed and validated. Documentation of the manufacturing pro-
cess (which includes batch records and work instructions) is completed. All of
these tasks must be completed prior to submitting the NDA. Documentation of
these activities becomes part of the NDA.

 

2.4.1.5.3 Industrial Production (Process Development 
After NDA)

 

After the NDA is submitted, the capital project to build the manufacturing facility
(or to make modifications to an existing shared facility) is written and approved.
Detailed engineering designs are completed and documented. Equipment is pur-
chased, installed, tested, and qualified. Installation, operational, and performance
qualifications are conducted and documented. The FDA makes an on-site inspec-
tion and notes any deficiencies that must be corrected.

 

2.4.2 O

 

PTIMIZATION

 

2.4.2.1 Challenges

 

The main challenge in the pharmaceutical product/process development work
flow is getting the new product to market quickly and cost effectively. While it
continues to cost approximately $800 million and take 10 to 15 years to bring a

$180 million, making it difficult to justify such a large research and development
(R&D) investment.
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 The long product-development cycle from patent to market
can take more than a decade, which means pharmaceutical companies often find
that their products have only a few years to be revenue producers before the
exclusive formula goes public. The two factors governing the profitability of a
drug are (1) market exclusivity or available patent life for the product, and (2)
market demand for the product.

 

2.4.2.1.1 Marketing Exclusivity

 

The innovator normally has 20 years of patent protection for a novel drug under
current U.S. law; however, a significant portion of that period is consumed by
the development and clinical trials of the drug. As a result, only about 8 to 10
years of marketing exclusivity are available. During this period, the innovator
faces competition from existing, but different, drugs. After the patent expires,
generic copies of the drug may be sold by other companies, and the innovator
must now compete on price with essentially identical drugs. A generic manufac-
turer does not face as stringent approval requirements as the innovator and may
obtain approval of an Abbreviated New Drug Application (ANDA), which
requires information identical to that on the NDA for the new drug except that
safety and efficacy data are not required. The generic manufacturer must, however,
show that the effects of the generic drug are similar to those of the innovator
drug (typically, similar bioequivalence). As a result of the regulatory status of
generic drugs, the risk assumed by the generic manufacturer is relatively low
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(e.g., the drug is recognized as safe and effective, although the generic manufac-
turer must show bioequivalence). On the other hand, the generic manufacturer
must compete on price; however, the generic manufacturer has more time to
devote to optimizing the manufacturing process and as a result may be able to
devote resources to develop a more economical manufacturing process than the
innovator.

 

2.4.2.1.2 Demand for Product

 

The innovator normally faces an increasing demand for the new drug after
approval has been granted and the drug wins acceptance in the marketplace. In
the early years of the life of the product, the innovator may experience consid-
erable pressure to expand the manufacturing capacity of the drug; however, if the
market share is eventually eroded by generic manufacturers or by new innovator
drugs, the demand for the original drug will decline. The original innovator now
faces pressure to reduce manufacturing costs, which may include elimination of
slack production time. Batch processing offers such flexibility during periods of
decreasing demand. Continuous equipment may normally be “turned down” to
a somewhat limited extent; however, batch operations may be operated at reduced
capacity simply by making fewer batches. This can be done by reducing the
number of batches produced, by reducing the hours of operation, or by shutting
done some parallel trains of equipment. If the drug is produced in a multiproduct
manufacturing facility, the scheduled time for the drug may be reduced and the
equipment used to manufacture new drugs or other existing drugs. In other words,
the product mix that is produced may be adjusted to meet changing market
demands.

 

2.4.2.2 Optimization of Product Development

 

Improvements in the drug development process can dramatically reduce the total

clinical success rates on total cost.

 

9

 

 A company can save approximately $200
million by reducing the development time by 41% or by increasing the success
rate by 31%. 

 

2.4.2.2.1 Optimal Drug Discovery

 

The key innovation lies in the drug-discovery phases in which pharmaceutical
companies invest significant resources in new technologies (e.g., recombinant
DNA, genomics, macromolecule synthesis) and developing alliances with
research organizations to increase the discovery rates of new chemical enti-
ties/molecules. The pharmaceutical industry has begun employing the newest
technologies available, e.g., high throughput screening, biochips, combinatorial
synthesis, and biochemoinformatics to accelerate the drug discovery and devel-
opment process and reduce the cost of drug development. 
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2.4.2.2.2 Optimal Clinical Trials

 

In phase I, the manufacturing process is frozen at this time. Process changes that
alter the impurity profile may require additional clinical studies to establish the
toxicity of the drug due to the revised process. Laws vary by country, but a
manufacturer may find that all impurities present in amounts greater than 0.1%
must be characterized (the chemical structure identified), and impurities present
in amounts greater than 0.15% may require toxicology studies. Shifts in the
relative amounts of known impurities are cause for further investigation and
corrective action, while the presence of new impurities may be unacceptable
without additional clinical studies. As a result, the innovator faces a trade-off
between the amount of time and expense required for process development
leading to a true optimum manufacturing process (with the risk that the candidate
drug might not pass the approval process) and a shortened development and
approval time using a workable process. In many cases, this trade-off leads to
batch chemical processing. Most laboratory and pilot plant work begins with
batch operations, as batch operations are typically easier to set up on the bench
than continuous operations. The innovator may also be constrained by process
chemistry that is not amenable to continuous processing. For a discussion of some
of the optimization techniques that may be employed during this stage, such as
multi-objective optimization, and stochastic optimization (to obtain the value of
additional research), see Diwekar

 

10

 

 and Chakraborty and Linninger.

 

11,12

 

Under certain conditions (such as the treatment of a fatal illness), phase II
and phase III studies may be combined. The clinical studies must be based on
good science. For example, the effectiveness studies may be double-blind exper-
iments, in which neither the patient nor the clinician knows if the patient receives
the candidate drug, a placebo, or an approved drug that is known to be effective.
In some cases, it is not considered appropriate to administer a placebo (for
example, in the investigation of drugs for lethal medical conditions). The candi-
date drug must have a statistically significant improvement in patient response

 

TABLE 2.3
Impact of Drug Development Time on Total Cost

 

Impact on Cost

Action by Drug Manufacturer $100 Million $200 Million

 

Reduce time by 18.9% 41.3%
Or improve clinical success rates by 25.2–25.6% 30.4–31.7%
Or cut out-of-pocket preclinical costs by 29.8% 59.6%

 

Note:

 

 Current average cost of drug development is approximately $802
million.

 

Source:

 

 DiMasi, J.A., 

 

Pharm. Econ.

 

, 20(53), 1–10, 2002. 
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relative to the placebo and at least a statistically favorable response in comparison
with an existing approved drug.

 

2.4.2.3 Optimal Process Development

 

Key to achieving an accelerated time-to-market are workflow unification and
compression and consolidating the time from discovery through pilot-scale and
full-scale manufacturing. Recently, companies have sought to unite and compress
the work flow because studies indicate that process optimization that keeps the
same synthetic route can yield manufacturing savings of as much as 40%. Process
optimization that considers changes in synthetic route (i.e., optimal batch recipes)
can result in savings of up to 65%; however, it should be noted that after FDA
approval neither the drug nor its operating procedures may be altered without a
new drug approval process. Batch operating procedures should, therefore, be
optimized at the conceptual level, as later improvements require expensive FDA
reapproval. The following case study demonstrates typical operational sequences
used in pharmaceuticals manufacturing.

 

2.4.3 C

 

ASE

 

 S

 

TUDY

 

: S

 

OLID

 

-P

 

HASE
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EPTIDE

 

 S

 

YNTHESIS

 

Certain types of chemical reaction syntheses are particularly well suited to batch
processing. The synthesis of polypeptides by the Merrifield method is an example
of such a process.

 

13

 

 Peptides are an important class of drugs composed of
sequences of amino acids. An amino acid is an organic chemical containing both
an amine group (–NH

 

2

 

) and a carboxylic acid (–COOH). Examples of amino
acids include lysine, glycine, leucine, and aspartic acid. An example of a peptide
is human insulin. The peptide bond between successive amino acids occurs
between the amine and carboxylic acid and has the structure –COHN–. The amino
acids form a chain of 

 

n

 

 amino acids with the following structure:
H

 

2

 

N–AA

 

n

 

–COHN–AA

 

n

 

-1

 

–COHN–…–COHN–AA

 

2

 

–COHN–AA

 

1

 

–COOH. The
peptide has an amine end (at the last amino acid in the sequence) and a carboxylic
acid end (at the first amino acid in the sequence). Peptides are similar to proteins
in that they are both composed of sequences of amino acids. The chief distinction
between peptides and proteins is that peptides are so small (typically with a
molecular weight less than 10,000). Peptides are typically clinically active in
doses of micrograms to milligrams; however, some very notable exceptions to
this dosage have occurred. The high potency of these drugs typically means that
demand is small, on the order of kilograms to hundreds of kilograms per year.
Again, some notable exceptions to this demand can be found. 

The Merrifield

 

13

 

 method of synthesizing peptides employs a sequential assem-
bly of the peptide by coupling individual amino acids to form chains of the desired
sequence that are linked to a solid-phase support. After synthesis of the molecule
is complete, the crude peptide is cleaved from the support. The crude peptide is
purified, typically by using liquid chromatography. Additional purification may
be done to remove pyrogens by using membrane technology. The final, purified
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peptide is then isolated from solution, typically by using lyophilization. The

 

2.4.3.1 The Main Reaction Step

 

The first step in the synthesis of a peptide is to substitute the C-terminal amino
acid to a solid-phase support using a suitable linker. (The C-terminal amino acid
contains the free carboxylic acid, while the N-terminal amino acid contains the
free amine.) The solid-phase support is typically polystyrene resin beads,
crosslinked with divinylbenzene for strength and rigidity. The polystyrene beads
are typically about 100 µm in size initially, but the beads grow as the length of
the intermediate peptide increases. The amino acids are protected at the amine
group in order to improve selectivity of the reaction. Typical protecting groups
include Boc (t-butyloxycarbonyl) and Fmoc (9-fluorenylmethoxycarbonyl). After
the initial substitution, the resin is washed to remove all traces of unreacted amino
acid. Each amino acid addition in the synthesis includes the following steps: 

1. Deprotect the N-terminal amino acid in the sequence to produce a free
amine.

2. Wash the resin.
3. Activate the next amino acid in the sequence.
4. Couple the activated amino acid to the free amine on the peptide

fragment.
5. Wash the resin.

Testing is then done to ensure that all free amines have been coupled to the amino
acid. This sequence is repeated for each amino acid in the peptide.

2.4.3.1.1 Deprotection
The synthesis process typically occurs in an analog of a stirred-tank reactor. The
specific reaction used to deprotect the N-terminal free amine depends on the
protecting group. The Boc group is normally removed with a strong acid (such
as 50% trifluoroacetic acid), while the Fmoc group is normally removed with a
weak base (such as piperidine). This reaction is normally time sensitive. Excessive
contact time between strong trifluoroacetic acid and the intermediate peptide may
lead to degradation of the peptide, and therefore low yields or high levels of
impurities. The typical reaction is to stir a suspension of peptide–resin in the acid
or base for a specified amount of time. The solution is then removed from the
resin by filtration.

2.4.3.1.2 Washing
The peptide–resin is then washed to remove residual acid or base. The washing
may be done by reslurrying the peptide–resin in a clean solvent and then filtering.
The wash step may be repeated as needed.
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sequence of operational steps is depicted in Figure 2.5.
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FIGURE 2.5 The Merrifield process for solid-phase peptide synthesis.
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2.4.3.1.3 Amino Acid Activation
The next amino acid to be added to the intermediate peptide is then dissolved in
solvent and activated using a suitable reagent. The activated amino acid may be
in the form of a symmetric anhydride of the amino acid or an active ester. The
amino acid may be activated in a second vessel under refrigerated conditions, or
activation may be done in situ with the resin suspension. 

2.4.3.1.4 Coupling
The peptide–resin is suspended in a solvent with stirring, then the activated amino
acid is added. The batch is allowed to stir for 1 to 24 hours to allow the reaction
to proceed to completion. The batch is then sampled and tested for residual free
amine. If the batch fails, the reaction may be continued or repeated as necessary.
After the reaction is complete, the batch is filtered and the slurry washed to remove
residual amino acid. The process is repeated until the synthesis is complete. Peptides
with up to about 40 amino acids are typically synthesized in this manner. A number
of innovations in the process technology have increased the speed and scale of the
process and reduced solvent usage. Displacement washes are more efficient than
slurry washes. The geometry of the reaction may be difficult to scale using con-
ventional stirred-tank reactor technology with integrated filter media, because the
resin is very soft and has a tendency to pack during the filtration steps. This means
that the resistance to liquid flow through the resin bed may become excessive. As
a result, shallow beds are sometimes mandatory to minimize contact time during
time-sensitive steps. The properties of the peptide–resin may change during the
course of the synthesis. The resin particle size tends to increase as the length of
the intermediate peptide increases. This means that the resin volume increases over
the course of the synthesis. The amount of required reaction time may change
during the course of a synthesis. As the intermediate peptide grows, coupling
reactions may take longer to go to completion. In addition, certain reactions may
always be difficult. Reactions involving secondary amines are an example of diffi-
cult coupling reactions. As a result, the residence time in the reactor may vary
during the course of a synthesis batch. Batch reactor technology is sufficiently
flexible for this task, as an operator can simply allow the reactor to stir until the
reaction is complete or the step is repeated.

2.4.3.1.5 Cleavage
The next phase of the process is to cleave the peptide from the resin support. The
exact nature of the process depends, again, on the type of amino acid chemistry
used. The linker used in Boc amino acid chemistry must be stable in the strong
acid used during the synthesis deprotection steps. As a result, an extremely strong
acid, such as liquid anhydrous hydrogen fluoride, is used to cleave the peptide
from the resin. The linkers used in Fmoc chemistry are stable in a base but labile
in a weak acid. As a result, a weaker acid, such as dilute trifluoroacetic acid, is
used. A second treatment in more concentrated acid may be used to remove any
additional protecting groups from other potentially reactive sites on the peptide.
In either case, the cleavage reaction is done in a stirred-tank reactor with a high
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degree of temperature control. The cleavage reactions may be exothermic, and
peptides normally have very limited stability to moderate (room) temperatures
under acidic conditions. As a result, the yield and purity of these reactions are
very sensitive to both reaction temperature and reaction time; therefore, the acid
must then be immediately neutralized or removed from the peptide as soon as
the reaction is completed. This may be done by vacuum distillation or by the
addition of another chemical species that is protonated by the acid, such as ether.
The crude peptide is then recovered by filtration and is washed to remove residual
acid.

2.4.3.1.6 Purification
The third phase of the process is to purify the crude peptide. Typical impurities
that may be present include deletion peptides (one or more amino acids is
missing), insertion peptides (one or more extraneous amino acids is present), or
peptides missing one or more functional groups (such as a carboxylic acid). These
impurities are chemically very similar to the desired product and as a result are
very difficult to remove. One unit operation that has proved to be successful is
high-pressure liquid chromatography (HPLC), which uses a column packed with
a stationary phase, a high-pressure pump, and a detector. (In reverse–phase HPLC,
the stationary phase consists of porous silica particles with a hydrocarbon ligand
attached.) The size of the silica particles may be selected based on a trade-off
between the pressure drop required to achieve the required flow of mobile phase
and the number of theoretical plates of separation required for the purification.
Smaller packing (10-µm average size) may be able to achieve more than 10,000
theoretical plates in a 50-cm bed but at a pressure drop of over 300 psi. The
chromatography operation consists of loading an aliquot of peptide solution onto
the column, then eluting the peptide with a mixture of organic and aqueous
solutions. Separation occurs according to the hydrophobicity of each species.
Impurities that are more hydrophobic are more strongly retained on the stationary
phase and, as a result, elute at a slower rate than less hydrophobic species. The
operator can monitor the separation using a suitable detector and, at the proper
time and detector response, collect one or more product fractions that contain the
purified peptide. The purification step may be operated in a more efficient manner
by slowly increasing the concentration of organic solvent in the mobile phase
over time, a process known as gradient chromatography. Certain types of large-
scale chromatography technology have been developed to approximate semibatch
or continuous operations; however, the typical chromatography described above,
especially using gradient elution, is performed as a batch unit operation. Addi-
tional purification using high-performance filtration (such as ultrafiltration) may
be done to remove pyrogens (fragments of microorganisms that can produce
fevers if injected into a patient). An ultrafilter consists of a stirred cell containing
a membrane that has a porosity sufficiently large to pass the peptide solution but
sufficiently small to retain the pyrogens. The stirred cell prevents polarization
(i.e., a layer of peptide from blinding the membrane).
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2.4.3.1.7 Isolation
The final step is isolation of the peptide from solution. Several separate steps
may be performed in the final isolation. First, any residual organic solvent must
be removed from the product fractions by vacuum distillation or diafiltration, in
which the peptide is retained on the filter membrane but solvent passes through.
Fresh water or a sterile aqueous buffer solution is continuously added to keep
the peptide in solution. The final isolation may then be done by lyophilization.
The peptide solution is frozen to a low temperature (–50˚C), then a vacuum is
applied. A typical lyophilizer vacuum is less than 100 mTorr (0.1 mmHg) absolute
pressure; however, the pressure is fixed by the operating temperature. Heat is
applied to the frozen peptide solution, and the water is removed first by subli-
mation and then desorption. The lyophilized peptide is then packaged under
asceptic conditions. Lyophilization may be done in bulk or in single-dosage vials.

2.4.3.1.8 Summary
The peptide manufacturing process illustrates a case in which many different
batch unit operations are used. Process chemistry that involves a repetitious series
of heterogeneous reactions and washes and high-performance purification and
isolation is well suited to batch manufacturing technology but poorly suited to
continuous processing. The typical small demand for peptides also fits with the
philosophy of using batch technology for small-volume manufacturing.

One other important regulatory requirement is that written records must be
maintained for each lot of drug produced. These records include all raw materials
and equipment used and documentation of all process steps used to make the
drug. Written records are also maintained of the results of the quality testing of
all raw materials, intermediates, and finished goods produced. The written records
are necessary in order to rapidly obtain a list of all raw materials and a complete
set of manufacturing records in case of an inquiry about a particular lot of a drug.
A lot of finished goods that does not have the complete set of required documen-
tation is considered adulterated under the law and is subject to recall from the
market. In a batch manufacturing process, records are kept of each batch of drug
manufactured (and of each batch of intermediate produced in a multistep manu-
facturing process, such as the manufacturing of peptides). One or more batches
of finished drug are then combined and blended together to make a lot of drug
product.

2.5 BATCH PROCESSING IN THE SPECIALTY 
CHEMICALS AND HOUSEHOLD CHEMICALS 
INDUSTRIES

The specialty chemical industry is very diverse. Generally, specialty chemicals
are designed for specific applications or customers and are typically produced
in small volumes. Categories include adhesives, catalysts, coatings and paints,
electronic chemicals, industrial gasses, plastic additives, water management
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chemicals, and lubricants. The total U.S. market for specialty chemicals was $110
billion in 2002.14 The household nondurables industry includes household prod-
ucts (such as cleaners and detergents) and personal care products (hair-care
products, color cosmetics and fragrances, skin-care products, deodorants, oral-
care products, shaving products, sun-care products, nail products, and hair colo-
rants). The global sales of this industry are estimated at $150 billion, and U.S.
sales were estimated at $75 billion in 2002.15 This section presents one example
for each of these industries: manufacturing high-purity chemicals and manufac-
turing cosmetics.

2.5.1 HIGH-PURITY CHEMICALS

Potassium sulfate (or sulfate of potash) has a wide variety of uses.16 A relatively
low-purity variety of this chemical may be used in the manufacture of fertilizers;
however, higher purity and other special properties (such as specified particle
size) are required for uses in construction materials (gypsum wallboard), ord-
nance, analytical reagents, glass making, and drugs. Low-purity potassium chlo-
ride may be used as a fertilizer and for ice control. Higher purity grades may be
used in food (as a replacement for sodium chloride), photography supplies, buffer
solutions, electrodes, and drugs. Low-purity calcium chloride17 may be used as
a raw material in the manufacture of concrete, glues, and rubber; in ice control;
and for sizing fabrics. Higher purity grades and certain particle size material may
be used as an antifreeze, for extinguishing fires, as a dehydrating agent, as a
preservative, in foods (cheesemaking, canning, and brewing), and in drugs. 

To meet higher purity specifications, additional unit operations must be per-
formed. These unit operations normally include purification by recrystallization,16

classification by particle size, and size reduction. Specific unit operations include
the use of stirred tanks for dissolving and crystallizing the product, centrifugation
for collecting and washing the product, a forced-air dryer to dry the intermediate
product, classification to isolate various particle sizes, and milling to produce the
finest crystals or powder. Small- to medium-scale manufacturing of the higher
purity grades of these chemicals may be done in batch dissolvers, crystallizers,
and centrifuges.

An operator of a chemical plant may have several sources of raw materials
that meet certain specifications, and these feedstocks may have a significant
variation in availability and price. The operator of the plant may select an indi-
vidual feedstock for each product or may alter the manufacturing process for
each product while using a single feedstock. The latter policy may have economic
advantages over the use of multiple raw materials if an inexpensive grade of raw
material may be used for all of the products. This reduces the number of raw
materials held in inventory, allows the use of a small number of suppliers, and
offers flexibility in scheduling the various products.

In order to save raw material costs, manufacturers want to recycle mother
liquors from the purification process and off-specification product from the clas-
sification and size-reduction steps. One strategy is to start each campaign with
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all fresh raw material and produce the highest purity product first. As the levels
of impurities increase, the production may be shifted to produce products with a
lesser purity. When the impurities become too high to produce the least pure
product, the mother liquors may be discarded and a new campaign begun.

High-purity solvents may start with an industrial grade feedstock and then
be subjected to one or more distillation steps to reduce the levels of impurities
to acceptable levels. Demand for individual solvents may be insufficient for
dedicated continuous stills, so a train of batch distillation units may be used. The
typical product cycle is to distill a batch in three portions: a waste cut containing
low-boiling impurities, a product cut that meets the required specifications, and
a bottoms cut containing the high-boiling impurities. The intended use of the
product places restrictions upon the purity of the product. For example, a low-
purity grade of ethanol may be used as a gasoline additive, but a high-purity
grade is required as a solvent in drug manufacturing, and a very-high-purity grade
is required for use as a mobile-phase solvent in liquid chromatography for ana-
lytical chemistry, where the purity must be sufficient to eliminate any extraneous
signals in the detector. (Special grades of solvents are available that are free of
extraneous substances that may absorb ultraviolet light.)

2.5.2 COSMETICS

Another industry in which batch chemical processing is used due to small volumes
and specialized chemistry is the cosmetics industry. The relatively small volumes
of individual cosmetic pigment products and the specialized precipitation and
pigment-bonding operations favor batch manufacturing. In addition, the flexibility
of batch manufacturing makes it relatively easy for a manufacturer to switch
products due to seasonal or fashion variations. One widely used type of cosmetic
pigment consists of a reflective metal salt precipitated onto a substrate to which
a pigment may be bonded. Cosmetic pigments are then in turn used to provide
color and reflectance to consumer products such as eye shadow and lipstick. The
unit operations for manufacturing cosmetic pigments involve several batch unit
operations, including batch reactions for dissolving the metal or metal salt, pre-
cipitating the salt onto the substrate, heat treatment to produce the desired reflec-
tance (which may include changing the metal from a hydroxide to an oxide),
high-shear dispersion of one or more color pigments into a solvent, bonding of
the color pigment onto the substrate, isolation and drying of the cosmetic pigment,
and blending various batches of cosmetic pigment to product a finished lot.
Blending of individual batches may be done to ensure lot-to-lot consistency. These

The critical variables of the precipitation step include the size and shape of
the substrate, the thickness of the metal salt coating on the substrate, and the
crystalline form of the metal salt. These variables can have a profound effect
upon the appearance of the product; the wrong thickness of salt can lead to the
formation of undesirable interference colors, while the wrong crystalline form of
the metal salt can lead to a chalky appearance instead of a shiny or glittery
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FIGURE 2.6 Flow chart for a cosmetic pigment.
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appearance. Certain products also have a heat-treatment step that may be done
in a rotary kiln or high-temperature oven. For example, titanium products may
be exposed to a temperature of 850˚C under mildly oxidizing conditions to convert
the hydroxide form of the metal into the dioxide form. The dispersion and pigment
bonding steps are also important because the intensity of the color may be
affected, or attrition of the pigment during the dispersion step may cause a dull
appearance of the color.

Cosmetic pigments are also suitable for batch manufacturing because the
demand for individual colors is highly variable. A plant operator may schedule
colors in campaigns to meet current demands and may select the order of man-
ufacture within certain groups of colors in order to minimize changeover costs.
For example, it is not necessary to perform a thorough cleaning of the equipment
when changing from a white pigment to a black pigment, but a very thorough
cleaning is necessary when changing from a black pigment to a white pigment.
As a result, campaigns may be organized into color groups such as white–yel-
low–orange–brown or white–blue–black in order to minimize the time and
expense of cleaning out between individual colors.

2.6 BATCH PROCESSES IN THE FOOD INDUSTRY

Batch processes are widely used in the food industry. Although sometimes sup-
planted by continuous processes, batch processes are still very important and
sometimes irreplaceable in the preparation of certain food items or ingredients,
among them candy18 and modified starches.19,20 Batch processing in the food
industry has some unit operations, such as panning, whipping (emulsifying), and
the pulling of taffy, that are not too often used in other industries, as well as other
operations, such as blending, tabletting (including granulation), and lyophiliza-
tion, that are common in other industries (such as the pharmaceutical industry).
As is the case in the pharmaceutical industry, regulations are in place regarding
the use of approved ingredients and the cleanliness of the manufacturing facility.
Products that could provide media for bacterial growth may require treatments
to kill germs (pasteurization), as well as sanitary processing equipment that can
be easily sterilized and which avoids stagnant areas where bacteria may grow. 

Edwards18 has pointed out that some batch operations have advantages over
continuous operations. For example, the cooking of toffees depends on localized
overheating to produce color and flavor (by the Maillard reaction). If localized
overheating does not occur, the appropriate color and flavor are not formed.
Continuous plants must have special facilities (such as specific residence times
in heated vessels) to form color and flavor. The process of making toffee includes
dissolving sugars in syrup and water, adding fat and skim milk, formation of an
emulsion, cooking (in open saucepans to wiped-film evaporators, depending on
the scale of the operation) to reduce the water to the desired level, and shaping
the toffee. Shaping may be done on a cooled slab with turning to promote even
cooling. Once the toffee has cooled, it may either be cut into sheets or fed
batchwise into rollers that form the toffee into a rope. The rope may then be
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rolled into the desired thickness, cut into the desired size pieces, wrapped, and
packaged. A schematic of a toffee process is presented in Figure 2.7.

Amaranth starch, unique because of its microcrystalline starch granules (1 to
3 µm in diameter) and definitely a specialty food ingredient, has been isolated
using a batch process.21 Pearled and unpearled amaranth seed was wet milled in
a high-pH, batch-steeping process, and the various parts of the seed were sepa-
rated by methods similar to those used in corn wet milling. The process produced
98%+ pure starch from both pearled and unpearled starch. Pearled amaranth gave
a higher yield of starch (32.6%) than did unpearled amaranth (11.2%). Less germ
was recovered from the unpearled amaranth (1.8% vs. 7.3% for pearled seed).

Beverages have long been the subject of batch processes. A patent described
the production of ethanol and fermented beverages via a batch process;22 a
fermentable substrate was contacted with yeast cells encapsulated with a porous,
semipermeable matrix, in this case an alginate gel. The biochemistry of malting
was reviewed in an article that presents the major biochemical reactions occurring
during malting.23 While malting is generally referred to as a batch process, it
should be noted that it really is a series of three steps (in some sense continuous),
the reaction products of which are the starting materials for subsequent steps.
The recovery of beer from surplus yeast was described by Roegener et al.24 This
process employs a filtration process; the recovered beer is of good quality and
can be added to freshly brewed beer up to 10% by volume without adverse
composition or sensory effects. 

FIGURE 2.7 A toffee process.
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Batch processes are common in candy manufacture and chocolate manipu-
lation. A survey of conching systems for chocolate has been published,25 in which
the optimal features of these systems with respect to conching time, energy
consumption, and rheological properties are explored. Also, the formation of
difficult candy bar materials has been examined,26 mainly with the aim of looking
at various techniques of combining different textures within a single candy bar.
Typically, on a small scale, sheeting and cutting performed on slabs comprise the
preferred technique. On a larger scale, specifically developed slitting, spreading,
and cross-cutting devices are employed. 

In the dairy field, hydrolysis of lactose enzymatically using either a batch or
continuous process has been detailed.27 The lactase enzyme can be recycled in
these processes, usually by ultrafiltration. The kinetics of yogurt fermentation in
a continuous process has been compared to the corresponding batch process.28

In this study, 45˚C milk was inoculated with a mixed culture of Streptococcus
thermophilis and Lactobacillus bulgaricus (3%) at dilution rates of 0, 0.6, 1.2,
and 1.5/hr. Yogurts prepared by this method have similar characteristics to those
prepared by batch inoculation; however, the continuous nature of this process
reduced the manufacturing time by 10 to 15% compared to the traditional batch
process. Protein–lipid interactions in processed cheese produced by both batch
and extrusion cooker methods have been studied.29 Adding melting salts and
premelted cheese increased the binding of fat in the cheeses, and proteolysis was
greater in the extrusion cooker method than in the batch method. Lactose-free
milk has been prepared by a batch process.30 Saccharomyces fragilis (40% w/v)
was entrapped in 2% calcium alginate and used to completely remove the lactose
from milk. Ten grams of immobilized cells removed all the lactose from 100 mL
of milk in 3.5 hr. Such an immobilized preparation could be used repeatedly (up
to 15 times in this study) without any decrease in enzymatic activity. A way to
accelerate the production of stirred yogurt has been described.31 This process
utilizes fed-batch prefermentation and a higher initial concentration of inoculating
culture. The quality of the yogurt made by this process is similar to that of batch-
made yogurt. When the cooling of raw milk by batch or continuous processes
was compared, it was found that the continuous-process milk had slightly lower
total bacterial growth and slightly lower hydrolysis and oxidation of milk fat than
the batch-process milk.32 The milks were analyzed after 2 to 6 days for total plate
count, psychrotropic bacteria, sensory score, fatty acid degree, and thiobarbituric
acid (TBA) value. Also, a batch process has been used in the production of a
milk substitute that has a low content of free calcium ions (which destabilize the
casein micelles).33 The composition of this material is 10 to 12% skim milk solids,
5 to 9% whey solids, 7 to 10% lipid, 68 to 80% water, 0.01 to 0.03% carra-
geenanates, and 0.1 to 3% calcium sequestering agent. The substitute is manu-
factured by sequential dissolution of the ingredients in water (a series of batch
processes). The resulting dispersion shows good thermal stability despite having
a large amount of whey protein.

Browning in dried egg whites has also been addressed by way of batch
processing.34 This is a major problem in the manufacture of dried egg whites due
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to the formation of brown pigments via the Maillard reaction between the reducing
monosaccharide D-glucose and primary or secondary amines in the egg white.
Usually this problem is treated by enzymatic conversion of the D-glucose to D-
gluconic acid, which is not a participant in the Maillard reaction. In this particular
approach, eggwhite foam was crosslinked with 0.75% glutaraldehyde in which
glucose oxidase and catalase were immobilized. This enzyme preparation was
able to remove >95% of the glucose from the egg white in 5 hr and could be
reused at least 10 times without loss of enzyme activity.

Improvement of food flavors has also been addressed by batch processing.
Shaw and coworkers35 detailed the use of batch or continuous fluid-bed processes
to improve the flavor of navel orange and grapefruit juices by removal of the
bitter components. A beta-cyclodextrin polymer (seven alpha-1,4-linked glucoses
in a macrocyclic ring) at 1 g polymer per 50 mL juice reduced the levels of
limonin, nomilin, and naringin in grapefruit juice and limonin and nomilin in
navel orange juice by about 50%. The chelating polymer could be regenerated
for further batch use by treatment with aqueous alkali or ethanol. Sensory inves-
tigation revealed that the panelists preferred the reduced bitterness juices com-
pared to the control juice. The polymer treatment was quite specific and did not
affect the soluble solids, total acid, or vitamin C content of the juices but did
reduce the citrus oil level by about 40%. In addition, alpha-cyclodextrin (six
alpha-1,4-linked glucoses in a macrocyclic arrangement) was also effective in
removing the bitter principals. Similar work was reported by Ujhazy and Szejtli36

in which they used a cyclodextrin polymer to remove naringin from grapefruit
juice in a batch process. Two grams of the polymer would bind >75% of the
naringin content of a 80 mg/100 mL dispersion. The polymer could be regenerated
by washing with aqueous sodium bicarbonate solution. A small initial loss of
binding activity was noticed, but the polymer could be used for up to five
regenerations without significant loss of binding. Continuous and semibatch pro-
cesses for recovering the aroma components of apple juice have been compared.37

The cost of the semibatch process was found to be an order of magnitude higher
than for the continuous process, and it was concluded that perevaporation has the
potential to become a viable alternative for the recovery and concentration of
food aromas.

Batch processes are employed in the freezing of foods.38 The Cryomix™
process (a batch process for mixing, coating, and quick freezing food materials)
has been reviewed, considering cryogenics generally, and early and current appli-
cations, including individual quick freezing (IQF) as applied to fried vegetables,
ratatouille, chili con carne, and coated fruits or cakes.

Batch applications have found use in the preparation of gum materials, as
well. While not a typical food application, it is near enough to warrant mention.
Coating of chewing gum and bubble gum can be achieved by both continuous
and batch processes.39 Small cores of gum material can initially be coated by a
batch process before being introduced into the continuous coating drums. 

Carbohydrate macromolecules (specialty items compared to, for instance,
corn starch) have also been the target of batch processes. Xanthan gum was
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prepared in a repeated batch process utilizing Xanthomonas cucurbitae in sugar-
cane juice or synthetic sucrose/salt media.40 Fermentation in a 10-L fermenter
was faster and more complete than in 1-L flasks; that is, the rate of synthesis and
percent conversion of sucrose to gum was greater in the fermenter than in the
flask. The efficiency of the culture was unchanged in three cycles of 50 hours
each. Gum formation was greater in the sucrose/salt medium than in sugar cane
juice. Another polysaccharide, pectin, has been extracted from sunflower heads
by both batch and continuous processes.41 Variables investigated in this study
were solvent pH and liquid-to-solid ratio (LSR). Dried sunflower heads were
ground, sieved, and extracted. Both batch and continuous processes produced a
maximum pectin extraction of about 50%; however, the continuous process
achieved a higher pectin yield over a broader range of LSR and pH values. The
result of this is that the pH could be selected to yield a desired pectin firmness
without affecting polymer yields. The lack of sensitivity to LSR gave significant
advantage to the continuous process with respect to solvent levels and wastewater
treatment costs.

Pasta fillings prepared via batch and continuous processes have been the
subject of investigation.42 This study was conducted to assess the effects of
processing type on meat-based fillings for pasta such as tortellini. Among vari-
ables examined were total plate counts and total coliform counts, Escherichia
coli, molds, staphylococci, and Streptococcus faecalis in the meat samples. The
continuous process had significant advantages over the batch process, and the
spices used were a significant source of bacterial contamination. Also, the use of
frozen meat improves microbial quality compared to fresh meat.

The use of steam to sterilize chicken breast strips has been reported.43 Fully
cooked chicken breast strips were surface inoculated with Salmonella or Listeria.
After vacuum packaging, the chicken was steam pasteurized at 88˚C in either a
continuous process (26 to 40 minutes) or a batch process (33 to 41 minutes). For
the continuous-process product, a cooking time of 34 minutes was required to
achieve a 7-log reduction of microorganisms, while a cooking time of 40 minutes
was required for the same log reduction in the batch-process product. A general
review of batch processing by Russell44 addresses the market for batch process
equipment, batch control, availability and facility upgrades, combination systems,
and component groupings and presents examples of systems for specific food
applications.

Use of batch processes for crystallization of glucose or sucrose has also been
explored. Kraus and Nyvlt45 examined the crystallization of glucose in three
different sized crystallizers (1 L, 4 L, or 15 m3) with variable cooling rates. Small
glucose crystals grow more slowly that larger ones, and the addition of fructose
slightly accelerates the nucleation process. A batch process for the production of
large sucrose crystals was described by Bruhns et al.46 The crystals they produced
were >5 mm, preferably >8 mm without adherent threads. Relative motion of the
supersaturated solution and temperature are controlled and are important variables
in the batch crystallization. The use of both batch and continuous processes to
dehydrate maple syrup was described by Rees.47 Maple syrup (34% moisture)
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was dehydrated in a batch process in flat pans at 54˚C under vacuum or in a
continuous process utilizing a vapor separator, crystallizer, dryer, mill, and sizing
screen. Physical differences in products from the two processes were minimal;
however, microscopic examination showed very different structures for the prod-
ucts of the two processes. Either product would provide the maple industry a
new, useful product, but the lower water content and greater density of the
continuous-process product made it the more favored of the two dehydrated maple
syrups.

In a comparison of tofu made by batch and continuous processes,48 coagula-
tion of the tofu was carried out using glucono–delta–lactone at 90˚C and at 120˚C
(2 kg/cm2 pressure in a retort). Scanning electron microscopy was used to identify
the tofu structures, and physical properties related to texture were evaluated with
a Tensipresser. Onion vinegar has been produced by a two-step batch process
system.49 This process combined the use of a flocculating yeast with a charcoal
pellet bioreactor. Red onion juice (67.3 g/L total sugar) was converted to onion
alcohol (30.6 g/L ethanol). The operation was stable, and maximum productivity
was about 8.0 g/L/hr. A packed-bed bioreactor containing charcoal pellets was
then used in a continuous process to convert onion alcohol to onion vinegar.
Maximum productivity was about 3.3 g/L/hr, and maximum acetic acid concen-
tration was about 37.9 g/L. This two-step process was operated for 50 days and
was competitive with other systems of producing onion vinegar.

2.7 SUMMARY

Batch chemical processing is a flexible and widely used means of manufacturing.
Certain types of process chemistry are easily done in batch operations, such as
the manufacturing of polypeptides and certain types of food processing. Common
pharmaceutical batch unit operations include preparative chromatography, lyo-
philization, and membrane processes such as ultrafiltration and diafiltration.
Chemical reactions that have an uncertain endpoint are conveniently done in batch
reactors. Common batch unit operations in the specialty chemical and pigment
industries include batch distillation, centrifugation, classification, and high-shear
dispersion. Product campaigns may be scheduled in order to maximize the purity
of a product or to minimize changeover costs. Batch operations are also widely
used in the food industry. Specific examples of batch manufacturing include
beverage manufacturing; growing sugar crystals; production of carbohydrates,
dairy products, and tofu; and in confection manufacturing. A drug product may
experience a period of rapidly increasing demand early in the product life-cycle;
the demand may be relatively steady as the product matures and then decline as
generic versions or competing new drug products come onto the market. Manu-
facturing using batch technology and short process development times offers
important flexibility to the pharmaceutical industry.
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3.1 INTRODUCTION

 

The conceptual design and synthesis of batch processes can be defined as, given
an initial charge, the identification of a set of batch operations (tasks) required
to produce a sequence of specified products, subject to operational constraints.

 

1–3

 

Each batch process may be defined as a series of operational tasks, such as mixing,
reacting, and separating, and within each task is a set of subtasks, such as heating,
cooling, charging, and discharging. For example, a batch mixing operation at
constant temperature may require a sequence of charging and heating and cooling
operational subtasks while a batch separation task (for crystallization) may require
a sequence of heating and cooling and discharging operational subtasks. Only a
single production line consisting of a network of tasks is considered in this
chapter; that is, only the recipe or sequence of tasks necessary for a single
production line or a single batch operation is considered here. The design of batch
processes involving multiple production lines is usually solved as a planning and
scheduling problem (not covered in this chapter) where the batch recipe for the
single production line is important starting information.

 

4

 

As in the synthesis of continuous process flowsheets, more than one feasible
set of operations might be able to produce the specified products; therefore, an
optimal sequence with respect to a defined performance index also must be
identified. Also as in synthesis of continuous process flowsheets, the batch oper-
ation synthesis problem may be solved by various solution approaches, such as
knowledge-based heuristic approaches, mathematical programming approaches,
and hybrid approaches. In principle, the knowledge-based heuristic approaches
are easy to use and may be able to quickly identify a feasible sequence of batch
operations but not necessarily the optimal solution. Mathematical programming
techniques, on the other hand, may be able to find the optimal solution from a
predefined space of feasible solutions (defined through the models used or a
superstructure of candidate solutions). Hybrid approaches combine aspects of
heuristic and mathematical programming approaches; they are more flexible and
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robust and have a wider application range. Essentially, all approaches follow the
generate-and-test paradigm, but, while some approaches only generate and test
a few alternatives (heuristics), others attempt to generate and test all possible
alternatives (enumeration) or only those leading to the optimal solution within a
defined search space (mathematical programming). Heuristic approaches are rel-
atively easy to develop and apply, whereas mathematical programming
approaches require process plus operational models (an operational model is a
sequence of instructions necessary to perform a desired operation with a particular
piece of equipment) and solvers that can handle large sets of potentially highly
nonlinear equations. Enumeration techniques can suffer from combinatorial
explosion and are not practical for problems with too many degrees of freedom.
Note that heuristic approaches may be considered as a special-purpose (limited)
enumeration approach.

All of the above-mentioned solution approaches require a set of methods and
tools, and this chapter focuses primarily on them. These methods and tools can
be classified as three types: those that help to generate and organize information
(that is, help to formulate the synthesis or design problem), those that help to
generate alternatives (that is, generate feasible solutions), and those that help to
evaluate alternatives (that is, analyze and verify alternatives). Combinations of
all three types of methods and tools are necessary for any of the above-mentioned
solution approaches. In this chapter, some of the methods and tools are described
within the context of conceptual design and synthesis of batch processes. The
methods and tools discussed in this chapter, however, should not be regarded as
the best available but as those used to illustrate and highlight important issues in
conceptual design and synthesis of batch operations with respect to a single
production line. Simple illustrative examples are used to highlight the methods
and tools, and two case studies highlight various aspects of the hybrid solution
approach. 

 

3.2 SYNTHESIS PROBLEM FORMULATION AND 
SOLUTION APPROACHES

 

The synthesis of batch operations can be represented through the following
generic mathematical description.
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Logical constraints (3.7)

In the above equations, 

 

x

 

 represents the vector of continuous variables (e.g.,
flowrates, mixture compositions, condition of operation), 

 

z

 

 represents a vector of
design variables (e.g., equipment design parameters, operation design param-
eters), 

 

y

 

 represents the vector of binary integer variables (e.g., operation task and
subtask identities, solvent identity), 

 

h

 

1

 

(

 

x

 

,

 

z

 

) represents the set of equality con-
straints related to operation (design) specifications (e.g., reflux ratio, reactor
temperature, heat addition), 

 

h

 

2

 

(

 

x

 

,

 

z

 

,

 

t

 

) represents the set of process model equations
(i.e., mass and energy balance equations), 

 

h

 

3

 

(

 

x

 

,

 

z

 

,

 

t

 

) represents the set of equality
constraints related to the operational model (e.g., charge for a specified time
period, heat at a constant rate), 

 

g

 

1

 

(

 

x

 

,

 

z

 

) represents the set of inequality constraints
with respect to process design specifications, and 

 

g

 

2

 

(

 

z

 

,

 

t

 

) represents the set of
inequality constraints with respect to operational constraints. The binary variables
typically appear linearly as they are included in the objective function term, and
in the constraints (Equation 3.7) to enforce logical conditions. The term 

 

f

 

(

 

x

 

,

 

z

 

)
represents a vector of objective functions that may be linear or nonlinear, depend-
ing on the definition of the optimization problem. For process-operation optimi-
zation, 

 

f

 

(

 

x

 

,

 

z

 

) is usually a nonlinear function, while for integrated approaches,

 

f

 

(

 

x

 

,

 

z

 

) usually consists of more than one nonlinear function. 
The solution to the synthesis problem defined by Equations 3.1 to 3.7 is given

in terms of:

• The production recipe
• A list of necessary equipment for each task and subtask (and the

equipment design)
• A list of operational instructions (amounts, time, utilities consumption,

etc.) for each task and subtask 

In principle, what is obtained from the solution of the above problem is a
network of tasks and subtasks with their associated design and operational data

Many variations of the above mathematical formulations may be derived to
represent different batch-operation synthesis problems and their corresponding
solution methodologies. Some examples are given below.

• Heuristic approaches solve synthesis problems formulated by Equa-
tions 3.2 to 3.7. Although their solutions are feasible, they are not
necessarily optimal. Rule-based procedures are employed to generate
feasible solutions. The rules guide the user toward promising but not
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as well as an operation model (see Figure 3.1). 
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necessarily optimal solutions. Examples of these approaches are pro-
vided by Linninger et al.

 

1

 

 and Papaeconomou et al.

 

2,3

 

• Mathematical programming approaches solve synthesis problems that
involve Equation 3.1 plus different combinations and forms of Equa-
tions 3.2 to 3.7. For example, the solvent recovery targeting algorithm
of Barton et al.

 

5

 

 employs linear equations for all constraints (and
Equation 3.3 represents a steady-state process model). This results in
the formulation of a mixed-integer linear programming (MILP) prob-
lem. Kondili et al.,

 

6

 

 on the other hand, solved a nonlinear programming
(NLP) problem for fixed-state task networks by employing Equations
3.1 to 3.6 for fixed 

 

y

 

. 

 

• Solving all the equations represents an integrated process/product
design problem and is usually quite difficult to achieve due to the
potential complexity of the model equations. Usually, a superstructure
of known networks of tasks and subtasks is specified to restrict the
search space and complexity of the process and operational models.

• Hybrid approaches decompose the synthesis problem into subproblems
such that each subproblem satisfies a subset of the constraints (Equa-
tions 3.2 to 3.7). The objective function plus the remaining constraints
form an NLP or a mixed-integer nonlinear programming (MINLP)
problem with a well-defined search space. Combining heuristic and
mathematical programming approaches produces a hybrid solution
approach. The solution approaches developed by Linninger et al.

 

1

 

 and
Papaeconomou et al.

 

2,3

 

 fall into the hybrid category, as they propose a
final optimization step after identifying a small search space where the
optimal solution is likely to be found. 

Note that for all batch-process synthesis problem formulations, unlike syn-
thesis of continuous processes (usually considering only the steady state), an

 

FIGURE 3.1
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Batch Processes

 

operational model (Equation 3.3) is needed in addition to the process model.

addition to the dynamic model for a two-phase reactor, a model for the batch
operation is also needed. For the problem highlighted in Figure 3.1, determination
of the operation model requires the use of a number of methods and tools — for
example, a tool for solvent selection, a model for liquid miscibility calculations,
and a tool to evaluate the reaction kinetics. The conceptual design and synthesis
of batch operations requires determination of the operation model for a desired
batch process. 

Using the heuristic approach, an optimal design may be obtained by ordering
all the generated feasible candidates according to the objective function (Equation
3.1) value. Global optimality, however, can only be guaranteed if and only if all
possible alternatives were considered in the generation of the feasible set of
candidates. 

On the other hand, trying to solve all the equations may become too complex
if the process and operation models are highly nonlinear and discontinuous. Also,
the solution approach is not able to accommodate multiple process and operation
models for the same sequence of operation tasks. Although these problem for-
mulations can determine the optimal design, their application range is usually
not very large; however, because relatively simple process and operation models
are employed in planning and scheduling, problem formulations of this type are
common.

 

3.3 METHODS AND TOOLS FOR KNOWLEDGE 
GENERATION

 

Information related to the initial charge, a set of desired products, and a set of
operational constraints is usually not enough to formulate and solve problems of
conceptual design and synthesis of batch processes. Additional information
(knowledge or data) must be generated and analyzed to define a subset of con-
straints (Equations 3.2, 3.5, 3.6, and 3.7). The following four classes of informa-
tion (knowledge or data) must be generated when they are not available so the
synthesis problem can be formulated with sufficient clarity.

1.

 

Identify the batch operation tasks that must be performed.

 

 It is neces-
sary to establish as early as possible the tasks necessary to achieve the
desired operation. Some of these are obvious; for example, a reaction
task is required if a reacting system is specified, or a separation task
may be required when products are to be separated from a specific
mixture. The objective is to use this information to generate more
details on the synthesis problem so the subtasks necessary to achieve

Consider an initial charge of benzene, monochlorobenzene (MCB),

 

DK3017_C003.fm  Page 48  Friday, August 5, 2005  1:21 PM

© 2006 by Taylor & Francis Group, LLC

Figure 3.1 illustrates a batch solvent-based, two-phase reactor process, where, in

the identified main tasks can be identified (see steps 2 through 4).
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and 

 

ortho

 

-di-chlorobenzene (DCB), at 1 atm pressure and 300 K tem-
perature, from which benzene needs to be removed. Obviously, this
involves a separation task as the initial mixture already contains all the
three compounds, which are not known to react under the specified
conditions. This problem will be referred to as the benzene separation
problem and is discussed further in the text below. 

2.

 

Analyze the initial charge and the desired products.

 

 It is necessary to
know the state of the initial charge and products (solid, liquid, gas, or
multiphase), their properties (e.g., phase behavior, presence of azeo-
tropes), reacting or nonreacting, and many other variables. This helps
to identify the subtasks required for any main operational task. Con-
sidering the benzene separation problem, at the specified condition the
ternary mixture of benzene, MCB, and DCB is a liquid, none of the
binary pairs of compounds form azeotropes, and because of the differ-
ences in their vapor pressures separation by batch distillation is feasible
for the desired product (benzene). Possible subtasks (for a single stage
batch still) could include charge the feed, add heat to the still, and
condense and collect the vapor as it exits from the top.

3.

 

Identify and select the operational variables to be considered

 

. For each
batch operation task and subtask, the sets of operational variables that
will define the corresponding batch operation must be selected. For
example, in mixing operations, flowrates of the additives and the heat-
ing or cooling medium may be important operational variables, while
in batch distillation operations heating and reflux flowrate may be
important operational variables. For the benzene separation problem,
the amount of initial charge will define the size of the equipment, while
the product (benzene) identity, recovery, purity, etc., will determine the
temperature and pressure of the batch distillation operation and the
amount of energy required to achieve the separation task. 

4.

 

Define the operational constraints and the performance index

 

. Each
operational task and subtask may be constrained in terms of the oper-
ational variables through specified or identified operational tasks —
for example, minimum and maximum temperatures in a reactor, min-
imum reaction selectivity, or maximum flowrate of a solvent. For the
benzene separation problem, the operational constraints could include
product purity, temperature of the residue liquid (at a fixed pressure),
and total time of operation.

When the necessary information (knowledge) has been generated, it must be
organized and represented through modeling frameworks so the methods and
tools for solving the synthesis problem and evaluating the batch process (e.g.,
simulation engine) can use them.
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3.3.1 B

 

ATCH

 

 O

 

PERATION

 

 T

 

ASK

 

 I

 

DENTIFICATION

 

Three of the most common operational tasks found in many batch processes —
mixing, reaction (single or multiple-phases), and separation (various types) —
are considered below.

 

3.3.1.1 Liquid Mixing

 

Mixing (liquid) operations may be necessary in order to prepare the initial charge
for a subsequent reaction or separation as well as in the manufacture of blended
or formulated products. Here, two or more chemicals (or mixtures) are mixed to
form a liquid (single-phase or emulsion) product. The mixture is not reactive and
does not (usually) split into two or more phases. The product is a liquid solution
(or emulsion) with a specified composition and properties. 

 

3.3.1.2 Reaction

 

Reactors are required whenever the identities of compounds in the initial charge
are different from the identities of the specified products. To produce the appro-
priate reaction, information related to the reaction chemistry must be generated
or specified. In this chapter, it will be assumed that the reaction chemistry
information is available, but in the case of multiple reactions the reaction sequence
will be considered a design parameter and therefore must be determined by
solving the synthesis problem. 

 

3.3.1.3 Separation 

 

Separation tasks are necessary whenever the number and identity of compounds
in the cumulative products obtained at different times of the batch operation (each
product having different compositions) are the same as the initial charge. Usually,
a sequence of separation-related (operation) tasks must be performed. The sepa-
ration may be achieved by creating additional phases with differences in proper-
ties and compositions. The additional phases may be created by heating or
cooling, by the addition of mass separating agents, or by creating a barrier, among
other means. Batch (separation) operations through heating or cooling, such as
evaporation, crystallization, distillation, and liquid–liquid extraction, are among
the most common. In this chapter, only these separation operations will be
considered. The type of separation task required can be identified through an

 

3.3.2 A

 

NALYSIS

 

 OF INITIAL CHARGE AND PRODUCTS

The objective here is to generate enough information (knowledge) so steps 3 and
4 can be carried out efficiently. Identification of the batch operation tasks required
to achieve the desired product also implicitly defines the information necessary
for their analysis and which must be generated by the analysis. Note that the

DK3017_C003.fm  Page 50  Friday, August 5, 2005  1:21 PM

© 2006 by Taylor & Francis Group, LLC

analysis of the initial charge and the desired products (see Section 3.3.2.3). 
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initial charge is used in the discussion below to indicate the amount of material
(chemicals) charged to a production line or to a specific task in a production line.

3.3.2.1 Liquid Mixing

In the liquid mixing task, the most important information to be generated is related
to the effect of the mixing operation. For example, do the initial charge and
additions form a single homogeneous liquid (or emulsion)? If not, is the creation
of another phase desirable? Does the mixing operation generate negligible heat
of mixing? If not, should the temperature be controlled? In the case of emulsion,
what is the critical miceller concentration and how can it be reached? Also, for
reactive systems, if the initial charge does not have all the reactants, then the
missing reactants will have to be added. Information related to the above questions
can be generated by property estimation features in commercial simulators, or
specialized software such as iCAS7 may be used. Heats of mixing data may be
obtained through experimentally measured data, retrieved from an appropriate
database, or predicted through specialized software. Choice of the appropriate

the reactants plus the reagent must be charged and mixed before the reaction can
take place. 

3.3.2.2 Reaction

The number and identity of the phases are important and must be analyzed
together with the reaction chemistry. The heat of reaction is an important property
as is the reaction kinetics (or chemical equilibrium). For multiple reactions sys-
tems, the total heat of reaction will identify the need for heating or cooling. If
the total heat of reaction is negligible, adiabatic reaction operation is feasible;
isothermal reaction operation is recommended when the heat of reaction is not
negligible. Identity of the state (phase type and number) of the reacting mixture
is important information, and an initial guess can be very quickly made through
the pure component boiling points (at the operating pressure) and the melting
points. Creation of two phases is considered when it is feasible or necessary to
simultaneously react and separate products or byproducts. Referring to Figure
3.1, upper and lower bounds on the reactor temperature could be set to maintain
a high yield of the desired product; therefore, necessary tasks during the reaction
are to heat or cool until the reaction has been completed. Note that if a solvent
is added while the reaction is going on, the solvent effect (and simultaneous
separation reaction) will also have to be considered. 

3.3.2.3 Separation 

Because many separations are caused by the creation of an additional phase, the
number and identity of the phases present at the initial point (which can be the
discharge from a reaction operation) are important with respect to the type of the
separation task, while the behavior of the phases as a function of temperature
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property models is an important first step. Referring to Figure 3.1, it is clear that
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and pressure provides information related to the products that can be obtained.
For vapor–liquid separations, the existence of azeotropes must be determined,
while for solid–liquid separations any eutectic points must be identified. For
liquid–liquid extraction, a liquid phase split with sufficient differences in com-
positions in the two phases must be maintained. The selection and effect of adding
mass separating agents must also be analyzed. For purposes of illustration, con-
sider an aqueous mixture containing a valuable product that must be recovered
or a contaminant that must be removed. The identity of the product or contaminant
influences the separation technique to be employed. Consider now that the product
or contaminant is phenol. If only a small amount of phenol is present, solvent-
based liquid extraction or crystallization may be preferred, while batch distillation
or short-path distillation may be preferred if water is present in only a small
amount. In the case of solvent-based liquid extraction, a solvent (for example, 2-
methylpropyl ester) that selectively dissolves phenol and creates a phase split of
the original mixture would be necessary. 

In order to identify the required separation tasks, a method for synthesis of
process flowsheets, based on thermodynamic insights and developed by Jaksland
et al.,8 can be applied. The method was originally developed for (continuous)
process flowsheet synthesis but it is clearly valid for identifying batch (separation)
operations as well. According to this method, the mixture to be separated is
analyzed in terms of phase state, azeotropes, eutectic points, mutual solubility,
and so on. All possible binary pairs for the mixture components are then identified,
and for each pair binary ratios of the properties are calculated: 

B(k,l)ij = θ(l)i/θ(l)j (3.8)

where B(k,l)ij is the property ratio of binary pair k consisting of compounds i and
j, θ(l)i is the property l for compound i, and θ(l)j is the property l for compound
j. If the B(k,l) values are much greater than unity for property l and binary pair
k, then a separation technique based on exploiting this property difference is
feasible (compounds i and j are selected such that θ(l)i > θ(l)j). Detailed examples
of application of this algorithm can be found in Jaksland,9 and a simple example
is given here for the benzene separation problem. The mixture contains three
compounds, so the binary ratios of properties for the three binary pairs of com-

ratios of properties for the three binary pairs. Note that, because the ratios of
normal boiling points are relatively larger than 1 and none of the pairs forms
azeotropes, separations involving vapor–liquid phases are feasible. For the same
reasons, crystallization is also possible but, because of the low temperatures
required, may not be economically feasible. 

In a similar way, we can take advantage of differences in the compositions
of two phases (for example, vapor–liquid). Gani and Bek-Pedersen10 referred to
these differences in compositions as driving forces and exploited these differences
to sequence distillation columns and for hybrid separation techniques. The same
principle can also be used to identify the feasibility of batch separations. (When
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pounds must be generated and analyzed. Table 3.1 provides a partial list of binary
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the driving force is zero, no further separation is possible; when the driving force
is at a maximum, the separation is easy and low cost.) Calculating the driving
forces requires knowing the compositions of two coexisting phases (in equilib-
rium or not) for binary or multicomponent mixtures. For the benzene separation
problem, only the two binary pairs involving benzene need to be investigated.

benzene–MCB mixture and residue curves on a ternary benzene–MCB–DCB

distillation operation alternatives.

3.3.3 IDENTIFICATION AND SELECTION OF OPERATIONAL 
VARIABLES

The variables for specifying a batch operation task must be identified. In liquid
mixing, the amounts of chemicals necessary to achieve a blend or formulation
with a desired set of properties are important variables. The temperature can also
be a variable if the desired properties of the blend or formulated product are
dependent on it. For reactors, reaction selectivity, reactor liquid composition,
heating and cooling, temperature, and pressure are important variables. Note that
not all variables have to be considered; for example, in a single-phase (liquid)
batch reactor operation, pressure may be assumed to play an insignificant role,
while in a two-phase vapor–liquid (but not solid–liquid) reacting system, pressure
plays a very important role. For all reactor systems with significant total heats
of reaction, temperature is always very important and upper and lower bounds

TABLE 3.1
Binary Ratio of Properties for Three Binary Pairs (Benzene Separation 
Problem)

Binary Pair

Binary Ratio Property Values

Mw Tc Pc Tb Tm Vm Vdw

Benzene–MCM 1.44 1.12 1.08 1.15 1.22 1.14 1.20
Benzene–DCM 1.88 1.25 1.20 1.28 1.09 1.26 1.39
MCM–DCM 1.31 1.11 1.11 1.12 1.12 1.10 1.10

Binary Pair

Separation Technique

Adsorption Distillation Crystallization
Membrane-Based 

Separation

Benzene–MCM Ratio of Vdw Ratio of Tb Ratio of Tm 
(T < 278 K)

Ratio of Vm

Benzene–DCM Ratio of Vdw Ratio of Tb Tm too low 
(<227 K)

Ratio of Vm

MCM–DCM Ratio of Vdw Ratio of Tb Tm too low 
(<227 K)

Ratio of Vm
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diagram. See also Section 4.3 for use of driving force diagrams to generate batch

Figure 3.2a and Figure 3.2b show calculated driving force diagrams for the
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are usually specified. For multiple reacting systems, an attainable region diagram
of concentration of the product vs. concentration of the key reactant provides

shows the attainable region for a multiple reaction system. Clearly, the best
operating point is to maintain the batch operation around the maximum concen-
tration of the product (that is, maintain the operation at the corresponding key
reactant concentration). This diagram can also be used to generate the list of
subtasks needed to attain the maximum area within the curve, starting from the
key reactant concentration of 1 and moving beyond the value corresponding to
the maximum product concentration. As these curves are functions of reaction
rates (kinetics), changing the reacting temperatures as the concentration of reac-
tant decreases is one option. In the case of separation, the variables depend on
the type of operation as well as the identity of the phases. For example, in batch
distillation, the amount of heating or cooling and the reflux rate are important;
in crystallization, heating and cooling and evaporation and mixing are important. 

3.3.4 DEFINITION OF OPERATIONAL CONSTRAINTS AND 
PERFORMANCE INDEX

The operational constraints define the batch operational windows (boundaries).
This point is more important for reaction and separation operations than for
mixing operations. These boundaries are governed (implicitly) by the sensitivity

(a)

FIGURE 3.2 (a) Binary driving forces for the binary pair benzene–MCB; (b) residue
curves (batch distillation) for the ternary system benzene–MCB–DCB.
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useful information related to the selection of operational variables. Figure 3.3
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of the important properties on the intensive variables (temperature, pressure, and
composition). For example, in reactions and separations, the temperature may
change the reaction rate and separation driving force, respectively. In the case of
multiple reactions, product yield and reaction selectivity provide important per-
formance index criteria, while temperature, pressure, and reactant concentration
impose operational constraints. In the case of separation (azeotropic separation
or crystallization), temperature and pressure also define distillation and crystal-
lization boundaries and, therefore, the sequence of operations required to obtain
a product. The performance index in all cases may be related to the cost of
operation or total time required for the operation. In their tool for solvent recovery
targeting, Ahmad and Barton11 used the identified distillation boundaries as oper-
ational constraints to predict all possible product sequences achievable for dif-
ferent (azeotropic) mixtures of a given set of components. In order to obtain the
optimal product sequence for a given mixture, they used the maximum achievable
recovery (of the solvent) in each product cut as the performance index. Linninger
et al.1 have shown how environmental constraints can be incorporated into the
synthesis of batch processes to minimize avoidable pollution. In some cases (e.g.,

(b)

FIGURE 3.2 (Continued).
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synthesis based on driving forces10), near-optimal solutions with respect to both
time and cost can be obtained without directly using a performance index because
the driving force by definition is inversely proportional to the energy (external
medium) cost and directly proportional to ease of operation.

3.3.5 INFORMATION (KNOWLEDGE) REPRESENTATION

The recipe for the manufacture of a product is modeled as a network of tasks
and each task as a sequence of subtasks. A task consists of all of the operations
performed in a single item of equipment; a subtask consists of a model of one
of these operations. Tasks have associated with them requirements for specific
types of equipment and selection priorities; thus, the synthesis of batch operations
also implies modeling of the batch operations. A modeling framework is needed
to represent (organize) the generated information so the synthesis, design, and
simulation problems can be formulated and solved and the results analyzed. The
modeling task can be decomposed into two distinct activities: modeling funda-
mental physical behavior and modeling the external actions imposed on this
physical system resulting from the interaction of the process with its environment
due to disturbances, operation procedures, or other control actions.4 The model
for the physical behavior of the system is the process model (see Equation 3.2;

actions imposed on the batch process (physical system) is the operations model
(Equation 3.3), where a process representation framework is usually employed. 

FIGURE 3.3 Attainable regions for a multiple reaction system.
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see also Sections 3.3.2 to 3.3.4 and Sections 4.4.1 to 4.4.4). The model for external
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3.3.5.1 Process Representation Frameworks 

Kondili et al.6 proposed a representation of the state–task network (STN) that is
similar to flowsheet representations of continuous plants but is intended to
describe the process itself rather than a specific plant. The distinctive character-
istic of STN is that it has two types of nodes: state nodes, representing the feeds,
intermediates, and final products, and the task nodes, representing the processing
operations that transform material from input states to output states. Circles and
rectangles denote state and task nodes, respectively (see Figure 3.4a). Process
equipment and its connectivity are not explicitly shown. Other available resources
are also not represented. 

(a)

(b)

FIGURE 3.4 (a) State-task network representation of chemical processes; (b) PMN
describing the processing of two products.
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The STN representation is equally suitable for networks of all types of
processing tasks: continuous, semicontinuous, or batch. It assumes that an oper-
ation consumes material from input states at fixed ratio and produces material
for the output state also at a known fixed proportion. The processing time of each
operation is known a priori and is considered to be independent of the amount
of material to be processed; otherwise, the same operation may lead to different
states (products) with different processing times. The rules followed when con-
structing this model are:

• A task has as many input (output) states as different types of input
(output) material.

• Two or more streams entering the same state are necessarily of the
same material. If mixing of different streams is involved in the process,
then this operation should form a separate task.

Barton and Pantelides12 proposed an alternative representation, the
resource–task network (RTN). In contrast to the STN approach, where a task
consumes and produces materials while using equipment and utilities during its
execution, in this representation a task is assumed only to consume and produce
resources. Processing items are treated as though consumed at the start of a task
and produced at the end. Furthermore, processing equipment in different condi-
tions can be treated as different resources, with different activities consuming
and generating them, which allows a simple representation of changeover activ-
ities. 

Graells et al.13 proposed a modeling (framework) environment that employs
a continuous time representation for the scheduling of batch chemical processes.
For this environment, the process structure (individual tasks, entire subtrains, or
complex structures of manufacturing activities) and related materials (raw, inter-
mediate, or final products) are characterized by means of a processing network,
which describes the material balance. Manufacturing activities are considered at

At the process level, the process and materials network (PMN) provides a general
description of production structures (e.g., synthesis and separation processes) and
the materials involved, including intermediates and recycled materials. An explicit
material balance is specified for each of the processes in terms of a stoichiometric-

the input materials into the desired outputs.

3.4 METHODS AND TOOLS FOR GENERATING 
ALTERNATIVES

processes is quite extensive (see the review by Reklaitis
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like equation relating raw materials, intermediates, and final products (Figure
3.4b). Each process may represent any kind of activity necessary to transform

), literature on the
While the literature on design, planning, and scheduling for multiproduct batch

three different levels of abstraction: process level, stage level, and operation level.

14
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conceptual design and synthesis of batch processes is very limited.1–3,15–18 In this
section, step-by-step algorithms for the generation of batch recipes (route selec-
tion) are given for three types of batch operation tasks. When more than one
operation task is needed, the corresponding algorithms are repeated in an estab-
lished sequence. The objective for the synthesis of batch operational sequences
is to minimize the operating time and expense required to obtain specified prod-
ucts. The focus may shift from achieving the optimal time to minimizing energy
and operating costs. Because of the trade-off between these two objectives,
ultimately an optimization problem will have to be formulated and solved where
appropriate weights can be given to time and operating costs. 

This section describes a systematic (hybrid) methodology developed by
Papaeconomou et al.2,3 for the synthesis of batch operational tasks. The method-
ology consists of a set of algorithms that generate feasible and near-optimum
batch recipes for specified operational and end constraints. The common ground
of these algorithms is the existence of a number of constraints that must be
satisfied at all times and use of manipulated variables to ensure feasible operation.
The algorithms take care of the operational modeling of each operation by
identifying the sequence of tasks that must be performed in order to achieve the
objectives of the specified operation. This is done with the help of a set of
knowledge-based rules (e.g., thermodynamic insights), which are employed to
identify the end of each task and determine the next feasible task. Note that the
objectives of this synthesis methodology are to identify and define the contents
of the operation model. When this has been achieved, any modeling framework
can be employed to represent the information. In this way, the modeling and
synthesis of batch operations are simultaneously achieved. 

3.4.1 LIQUID MIXING TASK

The synthesis problem here is defined as follows: Given a list of candidate
chemicals and their available amounts, determine which chemicals should be
mixed and in what amounts in order to achieve a desired formulation or blend.
It is assumed that all the candidate chemicals, when mixed, will form a totally
miscible liquid (or form an emulsion when added to a specific product). It is
assumed that when the chemicals have been mixed for a sufficiently long time,
a homogenously mixed, totally miscible liquid will be obtained. The synthesis
problem does not consider the time required to achieve this but calculates the
time and flowrates of the chemicals that should be mixed to achieve the desired
product. Mixing time is not considered; only what to mix and how much to mix
are considered.

A graphical, composition-free method developed by Eden et al.19 is applied
here to solve synthesis problems related to mixing. According to this method,
the mixing (mass balance) model equations are reduced in terms of property
clusters, which are linear functions of properties or their functions. A property
cluster (ϕ) may be defined as a linear function (with respect to composition) of
property (θ), as shown below (Eq. 3.9):
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ϕ = ∑xiθi (3.9)

where xi is mole fraction of component i, and θi is a property (or property function)
for component i. The mixing model (mass balance) is written as:

Myi = ∑jfijFj, where i = 1, NC (3.10)

where M is the total mixed flowrate, yi is the mole fraction of component i in the
mixed liquid, fij are the mole fractions of component i in stream j (j = 1, NS), Fj

are flowrates of feed streams j (j = 1, NS), NC is the number of compounds in
the mixture, and NS is the number of feed streams being mixed. Multiplying each
term in Equation 3.10 with θi, summing each term with respect to i = 1, NC,
replacing them with Equation 3.9, and applying some algebraic manipulations
give us the following (for three property clusters):

ϕm = z1ϕ1 + z2ϕ2 + z3ϕ3 (3.11)

where the subscripts 1, 2, and 3 represent property clusters 1, 2, and 3, respec-
tively; the subscript m represents the mixture; and z1, z2, and z3 are mole-
fraction-like values of property clusters 1, 2, and 3, respectively. Comparison
of Equations 3.10 and 3.11 indicates that a composition-based mass balance
equation has been transformed into a property-cluster-based (mass) balance
equation for the mixing (operation) model. Note that this transformation satis-
fies Equation 3.10 exactly. This means that the synthesis of mixing operations
in terms of how much and which chemical to add in order to produce a desired
blend or formulation may now be achieved graphically (or by linear program-
ming) for any number of candidate chemicals; that is, all candidate chemicals
may be located on a ternary diagram of property clusters together with the
target mixture properties. Finding feasible solutions means simply joining two
or more points on the ternary diagram and checking if the line passes through
the target point. Because Equation 3.11 satisfies the inverse lever-arm rule, the
amounts of each chemical in the target mixture can be calculated from the

by considering replacing six mutually miscible compounds with an environ-
mentally friendlier blend. This means that the mixing operation can be per-
formed as a function of the desired properties on a composition- and compound-
free basis, making the control of the batch operation easier.

3.4.2 REACTION TASK

Reaction task synthesis problems identify a network of batch reaction operations
where single or multiple reactions may take place and where operational con-
straints on product yield, selectivity, temperature, or pressure may be imposed.
For multiple reactions, particular reactions may be desired while others may be
competing reactions that must be suppressed. Different end objectives (e.g., the
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distances between the target and the chemical. Figure 3.5 illustrates this method
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mole fraction of the limiting reactant in the reaction of interest should be as low
as possible and the progress of the reaction of interest should be as high as
possible) may be specified. At least one of the end constraints has to be satisfied.
Additional constraints related to selectivity may also be introduced. 

This algorithm2,3 helps to identify the first operating step (task) based on a
check of selectivity or product yield. To generate the initial recipe, rules are
employed at all points to identify the end of each task and determine the next
feasible task, such as isothermal operation, adiabatic operation, heating, or cool-

operations. In the case of single-phase reactor operation, some of the rules and
constraints are not necessary (e.g., rule 6 and pressure constraint). Detailed
examples of applying this algorithm can be found in Papaeconomou.2,3

3.4.3 SEPARATION TASK: BATCH DISTILLATION 

This algorithm is based on the use of driving forces; that is, the operation is
driven to always employ the maximum available driving force for the desired
separation. The synthesis algorithm also simultaneously predicts the behavior of
the batch operations, so a simple simulation model based on driving forces has
also been developed and used to solve the synthesis and the simulation problem

FIGURE 3.5 Composition-free synthesis of mixing/blending operation.
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ing. The procedure is repeated until the product (end) constraints are met. Figure

of single-phase (liquid) as well as multiple-phase (liquid–vapor) batch reactor
3.6 illustrates a flow diagram for the complete algorithm. It is valid for synthesis
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simultaneously. The algorithm for this simple model based on driving forces is
presented below, followed by an illustrative example. 

The algorithm uses a set of simple equations for the distillation column and
adapts well-known methods, such as the driving-force approach and the
McCabe–Thiele diagram, to quickly find a near-optimum recipe for the separation

FIGURE 3.6 Flow diagram for algorithm for synthesis of batch reactor operations.
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task. A batch distillation column with negligible holdup in the perforated plates
and the condenser, as described in Diwekar,20 also follows the Rayleigh equation
for simple distillation. The overall material balance and material balance for the
most volatile component around the complete column give us the following
equation:

 =  = (3.12)

Integrating Equation 3.12 leads to the Rayleigh equation:

 (3.13)

In the above equations, B is the amount of product remaining in the still, F is
the initial charge, xD is the instantaneous distillate composition, and xB is the still
composition of the more volatile component.

The overall material balance around the top section gives us:

(3.14)

In the above equation, D is the amount of distillate, V is the vapor boilup rate,
and R is the reflux ratio. For the batch distillation column described here, the
entire column section above the still may be considered as a rectifying section.
So, the functional relationship between xD and xB turns out to be given by the
operating line equation in the enriching section of a continuous distillation col-
umn:20

(3.15)

The easiest method for identifying the bottom composition (xB) is the
McCabe–Thiele graphical method, which can be extended to batch distillation
by writing the equations for the operating line at different time intervals. In order
to calculate xB with this method, we need to know the number of trays of the
column and the reflux ratio; however, the reflux ratio cannot be chosen arbitrarily.
If it is too small the separation might not be feasible, and if it is too high the
separation might consume excessive energy; therefore, it is necessary to identify
the minimum reflux ratio Rmin that is needed to perform the separation. One way
to find Rmin is to use the driving-force approach. The driving force, as defined by
Gani and Bek-Pedersen,10 is the difference in composition of a component in two
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coexisting phases; thus, for the case of a batch distillation column (from Equation
3.15), we have:

= = (3.16)

The existence of a driving force is what makes the distillation possible. Oper-
ating at the largest driving force leads to near-minimum energy expenses.10

From Figure 3.7 it is obvious that, for a specific feed composition, the largest
driving force corresponds to the minimum reflux ratio; however, the minimum
reflux ratio can only be supported by an infinite number of plates. Thus, for a
specific number of plates a ratio larger than the minimum reflux ratio has to
be used. As the composition of the more volatile component in the still moves
to the left (decreases), the reflux ratio used (R1) approaches the minimum value
for the corresponding composition (Rmin,1). At that point, a new reflux ratio has
to be used (R1). This process is repeated until the end (product) constraint is
reached.

Driving-force diagrams (see Figure 3.7) give users visual, physical insights
leading to operation at near-optimum energy costs; moreover, a large driving
force, which corresponds to a low reflux ratio, results in a faster separation. This
finding is also supported by Equation 3.14, where the lower the R the larger the

FIGURE 3.7 Driving force diagram for the binary system benzene–MCB.
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distillate rate. Two basic modes of operation of a batch distillation column may
be considered: 

1. Constant reflux and variable product composition
2. Variable reflux and constant product composition of the key component

In this chapter, we are considering the second mode; that is, the reflux ratio is
changed at specific intervals of time (note that, during any time interval, the reflux
ratio remains constant). Also, we use a constant value for the distillate composi-
tion (a time-averaged value that is above a specified minimum). Now, Equation
3.13 becomes:

(3.17)

And the overall material balance:

(3.18)

In the above equations, F is the initial charge, xD is the allowed minimum distillate
composition, xF is the initial feed composition, D is the amount distilled, and B
and xB are, respectively, the amount remaining in the still and its corresponding
composition by the end of the period operated with a specific constant reflux ratio. 

The time for the period of constant reflux ratio can be found from the
integration of Equation 3.14:

(3.19)

To determine the sequence of periods (subtasks) where at each period the reflux
ratio is changed, we can employ an algorithm that identifies the value of the
reflux ratio and the time of operation for each subtask (described below). 

3.4.3.1 Synthesis Algorithm 

operation. These objectives are product purity and product yield. Initially, the
relationship between the vapor boilup rate and the reflux ratio must be investigated
in order to locate operating problems, such as flooding. In this way, when the
chosen reflux ratio for a subtask is too high for the corresponding vapor boilup
rate, corrective action can be taken. 
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The algorithm for synthesis of batch distillation operations is illustrated in Figure

of tasks in order to achieve a number of end objectives for the distillation
3.8. The objective of the algorithm is to identify in advance the necessary sequence
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The first subtask (operation for period 1) is identified using the following
procedure, which is then repeated until the end objectives are reached. From the
known data, which are the composition of the feed and desired product (distillate)
composition, the driving-force approach is employed to find the minimum reflux
ratio for the specific feed. The next step is to calculate the reflux ratio (R) that
will match the specified number of plates of the column. This is done by

FIGURE 3.8 Schematic presentation of the algorithm for batch distillation.
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performing a special stage-by-stage calculation for a distillation column using a
synthesis tool developed by Hostrup21 (involving sequential calculations of mass
balance and phase equilibria starting from the feed condition and going toward
the endpoint) and implemented in iCAS.22 If the chosen reflux ratio is lower than
the flooding value for the specific vapor boilup rate, the next step is to determine
the bottom composition at the end of this period; otherwise, a new value for the
vapor boilup has to be selected first.

The composition of the amount remaining in the still at the end of this period
can be found by applying the simple McCabe–Thiele graphical method; however,
because the available number of plates might be excessive for the separation, the
bottom composition (xB) is not necessarily identified from the last plate (N) but
from plate j, where no significant improvement in the vapor composition occurs
between the adjacent plates j and j + 1. The amount (D) distilled in this period
and the amount (B) remaining in the still, as well as the operating time (end) of
this subtask, are calculated from Equations 3.10 to 3.12. The next step, in effect,
is designating the bottom composition (xB) and amount in the bottom (B) as the
feed composition (xF) and feed (F) for the next task. Repeating this procedure
leads us to synthesis of a batch recipe for a batch distillation column. The last
task is identified as the one where the yield of the product achieved in the previous
subtask is above a high value of 80%.

3.4.3.2 Short Example

We want to distill a mixture of methanol and methyl acetate (15% kmol MeOH
and 85% kmol MeAc). The objective is to achieve 99%-pure methyl acetate at
the bottom of the column, with 95% recovery of the maximum yield. In the case
of minimum boiling azeotropic mixtures, the azeotrope is considered to be the
first product. The algorithm uses the azeotropic composition (as it is a low-boiling
azeotrope) as the distillate specification. The application of the algorithm provides
the following sequence of subtasks. The simulation engine in iCAS for batch
processes (BRIC) was employed for dynamic simulation to verify the suggested
recipe. The operating conditions for each subtask were defined, with the distillate
composition being the end constraint for each subtask, except for the last subtask,
where the purity of MeAc left in the column was the end constraint. The results

When this operational sequence was compared with a constant-reflux-ratio
operation, it was found that for low values of the reflux ratio the two end objectives
could not both be achieved. For high values of the reflux ratio, the operating time
was significantly higher than the one achieved by the operational sequence.
Compared to operation with a constant reflux ratio where both product objectives
are achieved, the time in the generated recipe is 30% faster, as can be seen in

is only one task with several subtasks. For a multicomponent system, more than
one task would be sequenced in terms of the highest driving force. The identified
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(sequence of tasks and subtasks) are shown in Table 3.2.

Table 3.3. Note that, because this example handles only a binary mixture, there
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separation tasks would be ordered in terms of their corresponding driving forces
in descending order.

3.4.4 SEPARATION: SOLUTION CRYSTALLIZATION

An algorithm for the operational design in batch crystallization is illustrated in

tasks and their sequence in order to achieve a specified set of objectives for the
separation task — namely, the recovery (yield) of solutes. The algorithm uses
insights obtained from analyses of solid–liquid equilibrium phase diagrams for
the purpose of generating a sequence of feasible and near-optimal operational
steps.

The algorithm consists mainly of a repetitive procedure that identifies the
nature of each subtask and the corresponding operating conditions. The initial
step is the actual generation of data for the phase diagram through tools for
knowledge generation (provide a visual picture of the solution behavior). The
phase diagram is obtained by drawing the solubility data for a given temperature
range with respect to operation of the crystallizers. In the repetitive procedure,
the feed mixture is located on the phase diagram and the feasibility of precipitation
of the desired solid is checked. This is done by first checking the location of the
feed point (if it is in the solid–liquid region, a solute can be made to precipitate)

TABLE 3.2
Operational Sequence for Distilling Off the Binary Azeotrope, Leaving 
Pure MeAc in the Column

Subtask
No.

Reflux
Ratio

Vapor
Boilup
Rate

Operating
Time (hr)

Simulated
Operating
Time (hr)

Acetone/MeAc
Purity (%)

Acetone/MeAc 
Recovery (%)

1 4.8 100 0.942 1.176 95.89 —
2 10 100 0.465 0.459 99.05 95.91

TABLE 3.3
Results for Constant Reflux Ratio Operation

Operation
Number of
Intervals

Reflux
Ratio

Vapor
Boilup
Rate

Simulated
Operating Time

(hr)

MeAc
Purity
(%)

MeAc
Recovery

(%)

a 1 4.8 100 1.615 99.05 84.90
b 1 8.5 100 2.324 99.05 95.05
c 1 10 100 2.629 99.05 96.90
d 2 [4.8, 10] 100 1.635 99.05 95.91
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Figure 3.9. The objective of the algorithm is to identify in advance the necessary



Conceptual Design and Synthesis of Batch Processes 69

and then joining the corresponding solute vertex (on a ternary phase diagram)
with the feed point and extending it to meet the saturation curve (calculated at a

removing) the solvent at a constant temperature (same as the temperature of the
saturation curve), the solute will precipitate as a solid in equilibrium with a liquid
solution given by the point of intersection on the saturation curve. Thus, by
changing the temperature and adding or removing solvents, it is possible to move
from different solid–liquid regions where different solids precipitate. Another
way to check for the identity of the solid in the case of multiple solutes is to
calculate the solubility index for solute j (SIj), given by:

(3.20) 

If SIj for solute j at temperature T is >1, then solute j already exists as a solid in
a solid–liquid region. If SIj for solute j at temperature T is <1 but larger than any
other solute, then by removing the solvent at constant temperature T solute j can
be precipitated as a solid. The exact amount of solvent to evaporate or add can
be found from the lever-arm principle, as the material balances can be represented
on the phase diagrams in the form of tie lines. Unless the objective is to produce

FIGURE 3.9 Schematic presentation of the algorithm for batch crystallization.
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given temperature), as shown in Figure 3.10. This means that by evaporating (or
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a solid complex, it is important to avoid regions on the phase diagram where two
solutes may precipitate. For this reason, evaporation is always less than the
maximum, and dilution is more than the minimum. Knowing the exact location
of the slurry, we can compute the product yield using the lever-arm principle.
The composition of the mother liquor (saturated liquid solution) in equilibrium
with the precipitated solute is identified on the phase diagram and treated as a
new feed for the next solid product. The above-described procedure is repeated
until the desired (or maximum) yield for the corresponding feed mixture is
achieved. It can be noted that each precipitation of a solute may require a number
of subtasks. A detailed case study in Section 3.6 highlights all the steps in the
generation of a feasible and near-optimal operation model for a batch (crystalli-
zation) process.

3.4.5 NETWORK OF TASKS

require more than one task. The multiple tasks may be of the same type or of
different types. Thus, even for a single production line, the sequences of tasks
and their corresponding subtasks must be generated. Essentially, a two-level
approach can be used. In the outer level the sequence of tasks is established, and
in the inner level the corresponding sequences of subtasks are established.2,3

 Linninger et al.1 developed a systematic method for synthesis of batch
processes (Process_Synthesizer in BatchDesign_Kit) based on the hierarchical
approach proposed by Douglas.2.3 Linninger et al. proposed the following four
steps for their synthesis (conceptual design) procedure:

FIGURE 3.10 Phase diagram (salt solubility) at different temperatures.
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As shown in Figure 3.1 and Figures 3.4a and 3.4b, most batch processes usually
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1. Construction of multistage (or task) plant diagram
2. Hierarchical decomposition and synthesis of conceptual design for

each task
3. Integration of the process (task) flowsheet for each task
4. Generation and improvement of alternatives

Application of the synthesis method was used to generate a detailed separation
system for the zero-achievable-pollution (ZAP) design of the carbinol production
stage.

3.5 METHODS AND TOOLS: VERIFY AND ANALYZE 
ALTERNATIVES

The effective simulation of batch processes requires representation of the dynam-
ics of the individual batch operations, the decision logic associated with the start
and stop of operations, as well as decisions associated with the assignment of
equipment and other resources to specific operations as defined through the
product recipe. The BATCHES (Batch Process Technologies, Inc.;

batch process features and uses advances in combined discrete–continuous
dynamic simulation methodology to follow the progress of a batch plant over
time. Linninger et al.1 also provide a Process Assessor tool in their
BatchDesign_Kit (BDK) software,24 which is a computer-aided design environ-
ment for the interactive development of processes for manufacturing pharmaceu-
ticals and specialty chemicals.

After generation of a batch recipe, it is important to verify the operational
sequence through simulation. For batch operation simulation, the model must be
able to simulate the behavior of the process subject to a specific set of operational
instructions. Commercial simulators provide this simulation option. The impor-
tant issue here is to be able to capture all the operational instructions to match
the sequence of operations exactly as the synthesis algorithms generate them. In
this chapter, we have used the BRIC toolbox in iCAS7 to illustrate all batch
operation simulation. BATCHES is also a useful tool for evaluation of alternatives.
For input, it requires the recipe network, equipment network, and set of processing
directions (operation model). As output, it gives the states at the end of each task
and subtask.

Another useful analysis tool is to identify areas where the operation can be
improved; for example, study the effect of substituting one solvent with another
or creating a two-phase reactor operation by adding a solvent. Algorithms for
finding suitable replacement solvents based on computer-aided molecular design
(CAMD) have been developed and are available as a toolbox in iCAS. A review
of various types CAMD methods, tools, and applications (especially to solvents
for organic synthesis) can be found in Achenie et al.25 Other tools from iCAS
that are useful for conceptual synthesis and design of batch processes are ProPred
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www.bptech.com) simulation framework accommodates the above-mentioned

http://www.bptech.com
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(pure component property estimation), TML (a thermodynamic model library for
calculating phase diagrams), and PDS (a process design studio for calculation of
distillation boundaries, residue curves, and batch distillation verification) 

3.6 CASE STUDIES

3.6.1 NETWORK OF SEPARATION (CRYSTALLIZATION) TASKS

This case study addresses the generation of a batch recipe for crystallization
(precipitation) of two salts from an aqueous electrolyte mixture. The synthesis
results have been verified through rigorous dynamic simulation, and iCAS soft-
ware has been used for all calculation steps.

3.6.1.1 Problem Definition 

Recover 95% of the dissolved sodium chloride (NaCl) from a mixture of water,
NaCl, and potassium chloride (KCl) with a feed composition (on a 100-kg feed
basis) of 80% water, 15% NaCl, and 5% KCl. The operating temperature range
is 273 to 373 K.

3.6.1.2 Step 1: Generate the Phase Diagrams at 
Different Temperatures

Note that, even though the main components are water, sodium chloride, and
potassium chloride, some extra compounds (double salts and hydrates) must be
included in the component list, as they may also precipitate at various tempera-
tures. These extra compounds are the double salts of the two single salts and their

grams at different temperatures and the saturation lines for different salts. The
position of the feed is in the unsaturated region, which is the upper part of the
triangle defined by the solubility curves. Below the solid–liquid equilibrium
curves, one or two salts precipitate, depending on the position in the triangular
diagram. In the area defined by the NaCl vertex of the triangle, the invariant
point, part of the solubility curve, and the NaCl–H2O axis, the only salt precip-
itating is NaCl. In a similar area on the right side of the triangle, the only salt
precipitating is KCl. In the area defined by the NaCl and KCl vertices and the

phase diagrams are generated through the electrolyte options of TMS in iCAS.

3.6.1.3 Step 2: Check for Feasibility of the Specified Salt

Let (XF,YF) be the rectangular coordinates of the feed and (Xinv,Yinv) the coordinates
of the invariant point at a specific temperature, and consider the following cases.
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hydrates (mono- and dihydrates). Figure 3.10 shows the calculated phase dia-

invariant point, both salts precipitate. This is illustrated in Figure 3.11. All the
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a. YF > Yinv. If

 < (3.21)

• then the salt placed in the bottom left vertex of the triangle will
precipitate. If the X described above is greater than Xinv, then the salt
in the bottom right vertex of the triangle will precipitate. If X = Xinv,
then both salts will precipitate.

b. YF < Yinv. In addition to the constraint above, the following constraint
also has to be satisfied:

 >  (3.22)

• for the salt in the bottom right vertex of the triangle to precipitate.
Otherwise, both salts will precipitate.

FIGURE 3.11 Phase diagram and location of feed and saturation lines.
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3.6.1.4 Step 3: Choose the First (Operation) 
Crystallization Temperature

For the specific problem, the precipitation of the desired salt (NaCl) is feasible
for all the temperatures in the given operating range (constraint 1 is satisfied), so
crystallization at any temperature within the specified range will give NaCl.
Because the feed lies in the unsaturated region, evaporation (to remove the
solvent, water) will have to be applied. As water is removed, the composition of
the feed moves away from the H2O vertex along the line connecting the water
vertex and the feed (as shown in Figure 3.12). From Figure 3.12, it can be seen
that the area where only NaCl precipitates is larger at temperature T = 373 K. At
this temperature, evaporation can be more extensive and the resulting slurry has
a larger density:

Slurry density = Mass of salts/mass of slurry 

= Length slurry_mother liquor/length NaCl_mother liquor  

Therefore, the operating temperature for the crystallization is chosen to be 373 K. 

FIGURE 3.12 Location of operation lines for crystallization operation at 373 K.
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3.6.1.5 Step 4: Precipitation of Salts 
(by Evaporation of Solvent)

As mentioned previously, as water is removed, the composition of the feed moves
away from the water vertex along the line connecting the water vertex and the
feed; however, a maximum evaporation can be achieved without crossing the
boundary into the area where both salts precipitate (unwanted). The composition
of the slurry on that boundary is found as the intersection of the evaporation line
and the line connecting the NaCl vertex and invariant point at T = 373 K. The
actual slurry composition is found for about 99% of the maximum evaporation.

• First precipitation operation: Evaporate feed solution (feed 1). Satu-
ration occurs at point 1, on the curve. Continue evaporation until the
slurry composition is at point 2. 

• Amount of solvent evaporated: Length Feed1_pt.2/length H2O_pt.2 *
100 kg feed = 65.278 kg H2O. At point 2, the remaining feed (charge)
is 100 – 65.278 = 34.722 kg slurry. Reaching point 2, we have only
removed water. The composition at point 2 is given by:

80 – 65.278 = 14.722 kg H2O; 15 kg NaCl; 5 kg KCl

• Slurry at point 2 is NaCl + liquor at point 3. Point 3 is found as the
intersection of the line connecting NaCl vertex and the slurry (point
2) and the solubility curve at T = 373 K:

Slurry density = Length 2_3/length NaCl_3 = 0.3176.  
Solids precipitated = 0.3176 * 34.722 = 11.028 kg NaCl.
Product yield = 11.028/15 = 73.52% < desired yield (95%).
Residue at point 3 is 34.722 – 11.028 = 23.694 kg mother liquor.

Moving from point 2 to point 3 we have only removed NaCl. 

• Second precipitation operation: Because the desired yield for NaCl
was not achieved, the mother liquor from the solid–liquid separation
is treated as a new feed. A feasibility check makes it obvious that it is
not possible to precipitate NaCl at any temperature for that feed (diluted
or condensed); however, the precipitation of KCl is feasible for a wide

required. The operating temperature for the crystallization of KCl is
chosen so the slurry density is the highest. This task is achieved at
temperature T = 273 K; therefore, the second crystallizer is to operate
at T = 273 K. Also, because the mother liquor (point 3) from the first
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temperature range and, as can be seen from the phase diagram (Figure
3.13), point 3 lies in the saturated region for KCl so no evaporation is
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crystallizer is in the saturated region for KCl at 273 K, no evaporation
is needed (see Figure 3.13):

Slurry at point 3 is KCl + liquor at point 4.
Point 4 is found similarly to point 3.
Slurry density = Length 3_4/length KCl_4 = 0.1322.  
Solids precipitated = 0.1322 * 23.694 = 3.132 kg KCl.
Residue at point 4 is 23.694 – 3.132 = 20.562 kg mother liquor.

The mother liquor in equilibrium with the precipitated salt in the second
crystallizer (point 4) is treated as a new feed (see Figure 3.13), for
which, precipitation of NaCl is feasible for a temperature range of 293
to 373 K. For the same reasons as in the first subtask (step 3), the oper-
ating temperature is chosen to be T = 373 K. The new feed (point 4) lies
in the unsaturated region and evaporation must be applied. The evapo-
ration ratio is calculated such that the resulting slurry is in equilibrium
with a mother liquor of composition point 3 – ML1. This means that the
resulting slurry has a composition at the intersection of the evaporation
line connecting point 4 and the water vertex and of the line connecting
the NaCl vertex and point 3 (ML1). The amount of solvent evaporated
is:

FIGURE 3.13 Cooling for crystallization at 273 K.
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Length pt.4_pt.5/length H2O_pt.5 * 20.562 kg feed (point 4) = 9.209
kg H2O.  

From point 4 to point 5: Remaining feed at point 5 = 20.562 – 9.209
= 11.353 kg slurry.

Slurry density = Length 5_3/length NaCl_3 = 0.2179.  
Solids precipitated = 0.2179 * 11.353 =2.474 kg NaCl.
Yield = (11.028 + 2.474)/15 = 90.01% < desired yield = 95%.

• Repeated sequence of precipitation and heating and cooling. Repeating
the procedure and moving from points 3 to 4 to 5 and again to 3 on
the phase diagram (see Figure 3.14) gives us the precipitation of NaCl
and KCl at 373 K and at 273 K, respectively. The operational path
(model) required to recover 95% of the NaCl from the salt solution is

3.6.1.6 Step 5: Verification by Simulation

The BRIC toolbox in iCAS has been used to model and simulate the generated
sequences of batch operations. BRIC uses the operation model to set up the

FIGURE 3.14 Second crystallizer operation and location of operating lines.
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dynamic process model to validate the sequence of batch operations. Figure 3.15
shows a screen shot from iCAS where the model flow diagram is illustrated.
CRYST is the dynamic crystallizer model. It receives a charge from stream 1,
and through streams 2, 3, and 4 it discharges the vapor, mother liquor and solid,
respectively (charging/discharging is achieved by opening and closing of stream
valves). Tmixer1 and Tmixer 2 are tanks that collect the mother liquor and
precipitated salts. Simulation runs are set up by specifying the time of operation,
an evaporation rate, an operation temperature, etc., depending on whether it is
necessary to precipitate, heat or cool, or mix. At the end of each run (operation),
the mother liquor is placed in the CRYST and a new operation is simulated. 

TABLE 3.4
Sequence of Tasks and Subtasks for Crystallization Case Study

Crystallizer
Temperature

(K)
Operational

Task
Predicted Product Yield

(%)

1. NaCl (product) 373 Evaporation 65.28 kg 73.60
2. KCl (product) 273 Cool + crystallization 62.55
1. NaCl (product) 373 Evaporation 9.21 kg 90.09
2. KCl (product) 273 Cool + crystallization 85.95
1. NaCl (product) 373 Evaporation 3.15 kg > 95

Note: In between operations with crystallizers 1 and 2, heating and cooling are also needed.

FIGURE 3.15 Flow diagram for the verification of the generated alternative through
dynamic simulation.
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To reach the first evaporation point, 1 hour of evaporation operation at 3.6234
kmol/hr was needed. At this point, 65.278 kg of solvent (water) was evaporated.
Running the crystallization operation at zero vaporization for 0.67 hr yielded
exactly the same amount of NaCl (11.028 kg). At this point, the mother liquor
was placed back in the crystallizer, which was cooled to 273 K; vaporization was
set to zero and precipitation for 0.53 hr yielded 3.132 kg of KCl. Heating to 373
K and operating for 1 hour at an evaporation rate of 0.511 kmol/hr removed 9.21
kg of solvent. Subsequent precipitation at zero vaporization gave a further 3.15
kg of NaCl. Thus, this model allowed us not only to verify the sequence of
operations needed to obtain the required amounts of salts but also to calculate
the operating times (not estimated by the synthesis algorithm, unlike the batch
distillation algorithm). Placing this simulation in a dynamic optimization loop,
the cost of operation and the time of operation may be optimized. Note, however,
that the operating temperatures and evaporation rates have been chosen (implic-
itly) for the largest amount of precipitation with the lowest amount of evaporation
(as defined by the phase diagrams); thus, the solution obtained from the first
simulation is already a very good operation sequence. 

3.7 USEFUL REFERENCES FOR FURTHER STUDY

• Separation task selection — Jaksland,9 Chakraborty and Linninger17,18

• Solvent selection and design — Achenie et al.25

• Optimization for synthesis and design — Bhatia and Beigler26

• Simulation and design — Salomone et al.27

• Batch process systems engineering — Rippin28

• Computer-aided tools related to batch process — Puigjaner et al.29 

3.8 CONCLUDING REMARKS

This chapter has highlighted important issues related to the conceptual design
and synthesis of batch processes in terms of the methods and tools that can be
applied to such problems. The methods and tools discussed in this chapter are
not necessarily the best available but are ones that would be able to help the
reader in formulating, analyzing, and solving typical conceptual design and syn-
thesis problems. For illustration purposes, application examples have been kept
simple in order to provide a visual picture that is easy to understand and appre-
ciate. More realistic and complex problem formulations and solutions can be
found in the referenced papers. The main message from this chapter is that, even
though the complete synthesis and design of batch operations may be quite
complex, the problem can be divided into smaller problems for whose solution
systematic and easy-to-use methods and tools exist. A number of the smaller
problems require analysis of the available (or generated) information and data,
and design decisions are made based on these analyses. Such synthesis and design
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give us one or more operation models on which to base further studies with
respect to planning and scheduling, control, and operational analyses. 

NOTATION 

B Cost data for structural (binary) variables; amount remaining in batch 
distillation still

B(k,l)ij Binary ratio matrix of binary pair k, property l, and compounds i and j
C Cost data for structural and process (real) variables
D Amount of distillate
DF Driving force
F Initial charge
fij Flow rate of compound i in stream j
Fj Total flow rate of stream j
li Lower limit value for constraint i
M Total mixed flow rate
Mw Molecular weight
Pc Critical pressure
R Reflux ratio
t Independent variable
Tb Normal boiling point
Tc Critical temperature
Tm Normal melting point
ui Upper limit value for constraint i
V Vapor boilup rate
Vdw Van der Waal’s volume
Vm Moral liquid volume
x Vector of continuous variables
xi Mole fraction of compound i
Xj Composition in rectangular coordinates (x-axis) for stream j
y Vector of binary integer variables
yi Mole fraction of compound i in mixture
Yj Composition in rectangular coordinates (y-axis) for stream j
z Vector of design variables
zi Mole-fraction-like values for property cluster i

Greek Symbols
q Property function or property
q Property cluster
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ABSTRACT

 

Stoichiometric relations and kinetic expressions are given for bioreactions as an
introduction to the design of bioreactors, both for aerobic and for anaerobic
processes. It has been shown that the exchange of mass between a gas phase and
the liquid phase reaction medium is an important part of the design, and corre-
lations are given to calculate mass transfer coefficients in different types of tank
reactors. Time profiles for biomass concentration are calculated for simple Monod
kinetics and for rate expressions that exhibit either product inhibition or substrate
inhibition. It is argued that straightforward batch operation is not common practice
in the bioindustry, primarily because undesired side reactions can severely curtail
the overall yield of the desired product in the typical batch reaction where the
substrate concentration is initially high. A variant of standard batch operation,
the so-called fed-batch cultivation, is shown to be a good option. The undesirable
catabolite-repression that makes it unattractive to operate in strict batch mode is
avoided, and the problems concerned with steady-state continuous operation are
also circumvented. The design of a fed-batch process for baker’s yeast is shown
as an example. Time profiles are determined for the increase of biomass concen-
tration and of medium volume, and thereafter the energy requirement for transport
of oxygen to the medium is calculated. Due to an increasing superficial gas
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Batch Processes

 

velocity with increasing medium volume, the power input needed to achieve a
given mass transfer coefficient may actually decrease for large reactor volumes.

 

4.1 INTRODUCTION

 

Producing bulk chemicals by fermentation-based routes rather than by the clas-
sical organic chemistry-based routes is receiving increased attention. The reaction
conditions are environmentally friendly. Reaction temperature is low, and the
reaction medium is usually a highly diluted aqueous solution of mineral salts to
which the carbon-containing substrate is added. Inexpensive carbon-containing
substrates such as glucose can have a bulk price of less than 20¢  per kg (at least
in the midwestern United States), and glucose is the preferred feed of many
industrially used microorganisms.

Right now, large-scale bioprocesses are in the process of being commissioned
for production of lactic acid (Cargill-Dow) and propane 1,3-diol (DuPont). Huge
quantities of ethanol to be used as a fuel additive are being produced by fermen-
tation. Single-cell protein (SCP; a fish meal substitute and a possible future
ingredient in human diets) is produced by microbial oxidation of methane. The
first natural-gas based-SCP plants were built in the Soviet Union more than 20
years ago. Today, a much more energy-efficient process is used in Norway,

 

7

 

 and
the product is sold as feed to the salmon-aquaculture industry.

Reactions in which living cells are used to produce desirable chemicals are
different from other chemical reactions, most of all because of the autocatalytic
nature of the reaction. The rate of reaction is proportional with the biomass
concentration, and biomass is one of the products of the reaction. This leads to
a negative-order kinetics for the reaction, and a continuous stirred-tank reactor
will have a higher productivity than a batch reactor, at least down to very small
residual concentrations of the reactants (substrates). 

Another feature of bioreactions that favors continuous steady-state operation
is the immense complexity of the regulatory network of microorganisms. Even
small changes in the environment can lead to the switching-off of the desired
pathway in the organism, and the carbon flux is then directed toward undesirable
byproducts. An example is the production of industrial enzymes by fermentation
of glucose using filamentous fungi. The genes responsible for production of the
desired proteins will be downregulated as soon as the glucose concentration in
the medium exceeds about 20 mg L

 

–1

 

, which would make it impossible to produce
the proteins by batch fermentation; only worthless biomass but no heterologous
protein is being produced. 

Still, the batch reactor has many advantages, and it is being used for small-
scale productions of biochemicals if catabolite repression can be avoided. A
variant of batch operation, the so-called fed-batch process is also used in the
production of high-volume/low-unit-cost chemicals; hence, this review of the use
of batch reactors in the bioindustry focuses on the fed-batch operation.

To understand how bioreactions are designed, it is necessary to discuss rate
expressions of various degrees of complexity. This is done in the following
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sections with an emphasis on the applicability of different rate expressions in
different situations. Simple, unstructured kinetics can be used for both steady-
state continuous operation and usually also batch operation. Rate expressions that
reflect deeper layers of the regulation of mass flow in microorganisms must be
used for rapid, transient changes in the environment of the cell. The coupling
between mass transfer and the chemical reaction is crucial for the successful
operation of bioreactors; consequently, calculation of mass transfer rates is dis-
cussed in some detail. 

The current debate in the bioindustry revolves around the advantages and
disadvantages of batch or steady-state continuous operation. With an increasing
understanding of the details of microbial physiology and with the appearance of
robust strains that are less prone to degrade to nonproducing “bald” strains by
mutation, some of the objections to continuous fermentations are now disappear-
ing. Low-value products must eventually be made in continuous culture to cut
down the cost of processing, including manpower. The long preproduction breed-
ing of inoculum is avoided, and (cleaning in place) CIP and reactor sterilization
is done less frequently in continuous operation. Even pharmaceuticals are now
produced in continuous culture (e.g., human insulin in recombinant yeast), and
other high-value products will follow suit. One can, however, predict that the fed-
batch variant of batch fermentation will hold its own for a long time. The
productivity can be almost as high as in continuous fermentation, and extraction
of the desired product from the more concentrated broth of the batch- or fed-
batch fermentation is easier than downstream processing of the effluent from a
continuous reactor. 

 

4.2 STOICHIOMETRIC CONSIDERATIONS

 

In contrast to “normal” chemical reactions, the stoichiometry of bioreactions is
very complex, and the study of biostoichiometry is a science in itself. 

 

Metabolic
flux analysis 

 

is the name given to the analysis, at steady state, of the carbon
distribution to the many different metabolic pathways in a given microorganism.
One can obtain widely different stoichiometries for the bioreaction at different
dilution
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in a steady-state, continuous culture or in more general
terms at different specific growth rates = 
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can depend heavily on the operating conditions of the
bioreactor.

The stoichiometry of the bioreaction can be written as a 
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where biomass 

 

X

 

, metabolic product 

 

P

 

, and CO

 

2

 

 + H

 

2

 

O are the products formed
from the substrates glucose, ammonia, and oxygen. In Equation 4.1, the sum of
the yield coefficients of the three carbon-containing products is 1 on a C-mol
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basis; therefore, we will usually work on a one-carbon atom basis for the carbon-
and energy-containing substrate and with a formula weight for 

 

X 

 

based on a one-
carbon atom. If nothing else is stated, we will use a standard biomass with formula

 

X

 

 = CH

 

1.8

 

O

 

0.5

 

N

 

0.2

 

 (

 

M

 

x

 

 = 24.6 g DW (C-mol)

 

–1

 

).
The coefficients of Equation 4.1 are related not only by a carbon balance but

also by a nitrogen, an oxygen, and a hydrogen balance. Usually one is not
interested in the small amount of water formed by the reaction in the very dilute
aqueous medium, and the last term in Equation 4.1 is often left out. In this case,
a combined oxygen + hydrogen balance, a so-called 

 

degree of reduction balance

 

,
is a further constraint on the stoichiometric coefficients. The oxygen demand is
given by:

 

6

 

Y

 

so

 

 = 1/4(4 – 4.20

 

Y

 

sx

 

 – 

 

κ

 

p

 

Y

 

sp

 

) (4.2)

where 

 

κ

 

p

 

 is the degree of reduction of the metabolic product and is calculated
from the formula of the product (on a one-carbon atom basis) and with the
definition of one redox neutral compound for each element (

 

κ

 

H2O

 

 = 

 

κ

 

CO2

 

 = 

 

κ

 

NH3

 

= 0 

 

→

 

 

 

κ

 

O

 

 = –2, 

 

κ

 

C

 

 = 4, and 
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N

 

 = –3, when the redox unit is defined as 
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H

 

 = 1).
With only one metabolic product (

 

P

 

) and a carbon, nitrogen, and redox balance,
all stoichiometric coefficients in Equation 4.1, except 

 

Y

 

sw

 

, can be calculated when

 

Y

 

sx

 

 is measured.
The flaw of this procedure, as indicated above, is that the stoichiometric

coefficients change with the operating conditions. In a cultivation of 

 

Saccharo-
myces cerevisiae

 

 (baker’s yeast), 

 

Y

 

sp

 

 is practically zero when the specific growth
rate (

 

µ

 

) is small (e.g., below 0.20 to 0.25 h

 

–1

 

 for normal strains of 

 

S

 

.

 

 cerevisiae

 

),
but it increases rapidly (to about 0.5 C-mol (C-mol)

 

–1

 

) when 

 

µ

 

 increases above
a threshold value (e.g., 0.25 h

 

–1

 

, corresponding to a volumetric flow 

 

v

 

 = 1/4(h

 

–1

 

)

 

V

 

 in a steady-state continuous tank reactor).
In reality the black-box model, Equation 4.1, is obtained by linear combina-

tion of several redox and adenosine triphosphate (ATP)-balanced elementary
reactions:
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O – 0.2NH
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 +(4(

 

α
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ATP = 0 (4.3)

–3/2CH
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O + CH

 

3

 

 O

 

1/2

 

 + 1/2CO

 

2

 

 + 1/2ATP = 0 (4.4)

–CH

 

2

 

O + CO

 

2

 

 + 2NADH = 0 (4.5)

–O

 

2

 

–2 NADH + 2

 

P

 

/

 

O

 

 ATP = 0 (4.6)

In Equations 4.3 to 4.6, it is assumed that 

 

β

 

 moles of ATP are consumed to make
one C-mol biomass. The ATP production by conversion of 3/2 C-mol glucose to
one C-mol ethanol is 1/2 mol. For each C-mol of biomass produced in Equation
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4.3, (2

 

α

 

 – 0.10) moles of redox equivalents are formed, and by complete oxidation
of glucose (in the TCA-cycle) 2 mol of NADH are produced.

The rate of oxygen consumption

 

 

 

(

 

r

 

O2

 

) per C-mol biomass is obtained from
Equation 4.6. 

 

Σ

 

(

 

r

 

NADH

 

) is the total production rate of NADH by reactions 4.3 and
4.5, and respiration of the NADH gives rise to a rate of formation of ATP (

 

r

 

ATP

 

),
which is equal to –2

 

r

 

O2

 

 P

 

/

 

O, where the P/O ratio is a measure of the efficiency
of the respiratory system to generate metabolic energy by oxidation of NADH
(or H2, in a less formal nomenclature). P/O as well as the coefficients α and β
in Equation 4.3 are empirical parameters with values that depend on the environ-
ment of the microorganism (e.g., the dilution rate in a steady-state continuous
culture).

The black box–stoichiometry is obtained (e.g., per 100 C-mol glucose con-
sumed) by a linear combination of the four metabolic fluxes (vi), the rates of the
four reactions in Equations 4.3 to 4.6. To find the fluxes, one may use an overall
ATP balance as the net rate of metabolic energy production is zero in the steady
state, but even the simplest formulation of the metabolic network still has three
empirical parameters: α, β, and P/O. These parameters must either be estimated
from biochemical data or they must be found by measurements (e.g., of CO2, the
biomass production rate, or the oxygen consumption rate, –rO2).

If the desired metabolic product is an amino acid, a large amount of NADPH
is required for synthesis of the product. Thus, for production of L-lysine from
glucose by Corynebacterium glutamicum:

–C6H12O62NH3 – 4NADPH + C6H14O2N2 + 2NADH = 0 (4.7)

–1/3C6H12O6 + 2CO2 + 4NADPH = 0 (4.8)

–O2 – 2NADH = 0 (4.9)

with the overall reaction:

–4/3C6H12O62NH3 + C6H14O2N2 + 2CO2(+ 4H2O) = 0 (4.10)

In Equations 4.7 to 4.9, another redox-carrying cofactor, NADPH, is introduced.
This is synthesized in the so-called PP-pathway at the expense of glucose that is
oxidized to CO2. 

From Equation 4.10 it follows that the maximum yield of L-lysine is 0.75 C-
mol per C-mol glucose, but other products are formed together with lysine (first
of all biomass), and Equation 4.10 must be coupled with Equation 4.3 and
possibly another equation that describes glucose consumption for maintenance
of cells without any biomass production.

It should be evident that the correct formulation of a stoichiometric repre-
sentation of the large number of bioreactions that together lead to formation of
a desired product is a major task that must necessarily precede any attempt to
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set up a set of rate equations, and the rate equations are needed to set up the mass
balances that constitute the basis for design of the bioreactor.

4.3 KINETICS OF BIOREACTIONS

Just as is the case for ordinary chemical reactions, the rate expression for a
bioreaction is a relation between reactant concentrations (concentrations of sub-
strates and products) and the rate of the reaction. The stoichiometric coefficients
of the previous section were determined by measurements of rates at a given set
of environmental conditions, including the concentrations of reactants, but each
set of measured rates as used in metabolic flux analysis constitutes an isolated
package. With a kinetic expression one can extrapolate to new environmental
conditions, and if the expression is based on a reasonable theoretical or experi-
mental foundation one obtains reliable estimates of the rates at new conditions
without having to do additional experiments.

Rate expressions for bioreactions are grouped into expressions that can be
used for balanced growth and expressions that are suitable to simulate unbalanced
growth. Balanced growth is characteristic for continuous, steady-state cultiva-
tions, whereas rapid transients can only be reliably simulated using a rate expres-
sion for unbalanced growth.

At first it might seem absurd that one has to work with two sets of rate
expressions, but the difference between the two lies only in the amount of detail
included in the model. It is inconceivable that a single rate expression with a
manageable set of parameters would be able to describe at all environmental
conditions the growth and product formation of an organism on a given set of
substrates. This would disregard the vast amount of biochemical knowledge that
is available on mass flow through the metabolic network and the equally important
knowledge of the signal flow network that exerts a tight control on cell behavior.

Conversion of substrates to products in a batch reactor is of course in principle
a transient process, but for all practical purposes one may regard growth to be
balanced in the batch reactor. The inoculum is often taken from a breed reactor
at balanced growth conditions similar to those that will be experienced in the
production reactor. As will be explained below, cell growth and associated product
formation will take place in an environment where the substrate concentrations
are usually so high that the rate is independent of the substrate concentrations.
In the very last part of the cultivation, the relation between substrate concentra-
tions and rate may become more complicated, but this has hardly any influence
on the outcome of the process.

The most frequently used rate expression for balanced growth was proposed
by Jacques Monod in 1942 and is known as the Monod rate expression:

(4.11) q r x x
s

s K
xx x

s

= = =
+

µ µmax
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Variants of the Monod expression that account for inhibition of the reaction by
either the substrate itself or of a metabolic product P are given in Equations 4.12
and 4.13:

(4.12)

(4.13)

In all three cases, the rate expression bears a resemblance with kinetic expressions
derived for enzymatic reactions. It must, however, be realized that, whereas the
corresponding expressions for enzyme kinetics have a definite background in
mechanistically derived rate models, all three expressions Equation 4.11 to 4.13
are strictly speaking only data fitters. There is, however, a good reason for their
applicability to predict the rate of balanced growth. Equation 4.11 is a mathe-
matical formulation of a verbal model for cell growth that tells us that the activity
of the cell to accomplish a certain goal (e.g., to increase its weight) must have
an upper limit (µmax) determined by the amount of “machinery” that can be
harbored within the cell. Also, the rate of any chemical process is eventually
going to be first order in the limiting reactant concentration when this concen-
tration decreases to zero. Hence, the hyperbolic form of µ(s) in the Monod
expression is intuitively correct.

It should be noted that in all rate expressions for bioreactions the volumetric
rate (qx) is the product of the specific rate (cell activity), µ(s) or µ(s,p), and the
biomass concentration, x (g L–1). The reaction rate in the real reactor, the cell, is
denoted ri (specifically, µ (g DW (g DW h)–1) = rx for the rate of biomass
production) while the rate of production in the vessel (the reactor) in which the
cells live is qi (g i (L medium h)–1).

It is only at conditions of balanced growth that the influence of the biomass
can be expressed in terms of the biomass concentration alone. The quality of the
biomass does not enter the picture as it must necessarily do in rapid transients
where the activity of the cell changes due to a changing biomass composition.
Cell viability is not considered, although the culture may contain an increasing
fraction of unproductive or even dead cells at the end of a batch cultivation.
Mutation, whereby a production strain reverts to the unproductive wild-type
strain, is another phenomenon that can invalidate the assumption of balanced
growth.

A simple example of an empirical rate expression where the formation of
product during a batch fermentation has a long-term influence on the quality of
the cells is the kinetics for ethanol formation by the bacterium Zymomonas mobilis
proposed by Jöbses et al.4 Here, the activity of the cells to produce both biomass
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and the product P = ethanol depends on a cell component (E), which at steady-
state conditions will be produced in a minute but constant ratio (ess) to the cell
mass. When the ethanol concentration increases, the rate of formation of this
essential biomass component (it could be related to the RNA content of the cell)
decreases, and cell growth, as well as the ethanol production rate, decreases.
Equations 4.14 and 4.15 are modifications of the kinetics proposed by Jöbses et
al.:4

qx = f(s)ex; qp = (Yxpf(s)e + mp)x; qs = –(Yxsf(s) e + ms)x; qe = Yxef(s)ex
(4.14)

Yxe = (k1 – k2p + k3p2) (4.15)

In Equation 4.14, f(s)e is the specific growth rate (µ) of the culture; f(s) is given
by the Monod expression, Equation 4.11. A characteristic feature of many design
models is that the rates are taken to be proportional (qi = Yxiqx for products and
–Yxsqx for substrates). In the above model, this is true for the rate of formation
of E while an extra term, accounting for maintenance (mpx and –msx) is added
to the growth-related term in the expression for qs and qp. An extra feature of the
kinetic model is that the volumetric growth rates are based not only on x but also
on the tiny fraction e of biomass that constitutes the essential cell component, E.
The yield coefficient of E on X is furthermore taken to be a function of the product
concentration, p.

It would appear from the form of the simple rate expressions in Equations
4.11 to 4.14 that a change in the value of the substrate concentration (s) would
lead to an immediate change of ri. This would be in analogy with rate expressions
typical for chemical reactions. When the hydrogen partial pressure over an ammo-
nia catalyst is changed it takes at most a few seconds to change the coverage of
H2 on the catalyst surface, and thereafter the rate of ammonia production changes
to a new value. This is not so for bioreactions. It may take on the order of hours
to obtain a new steady-state value of µ after an increase of the dilution rate,
despite the fact that the glucose concentration in the tank changes within a few
minutes to a level that is perhaps 100 times higher than the level in the previous
steady state. As demonstrated by Duboc et al.1 and by Melchiorsen et al.,5

catabolism becomes completely decoupled from anabolism during the first part
of the transient. Cell growth is slow, but essential enzymes for the production
of ATP in catabolism are produced much faster — an intuitively reasonable
strategy for any living organism that suddenly experiences a much more benign
environment.

The large difference between the time constant for substrate concentration
change and the time constant for the growth of cellular components is exactly
what makes it obligatory to work with models for steady-state growth (or balanced
growth) and with other models that are able to capture the complex structure of
the bioreactions in transient growth. The kinetics of Equations 4.14 and 4.15 is
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a simple version of models that are sufficiently structured to capture long-range
effects, also in a transient operation. The influence of a higher ethanol concen-
tration is not direct, as in Equation 4.13, but indirect, via the growth effect on E.
One may say that the inhibition is observed after a time delay that depends
primarily on the parameters of f(p) and on the two maintenance coefficients mp

and ms. 
When Equations 4.14 and 4.15 are used in a dynamic model for a stirred-

tank continuous reactor, very complex oscillatory patterns appear. These are also
observed in experimental studies of Zymomonas mobilis. Oscillations are not
likely to occur in batch cultivation, as all elements of the state vector will change
monotonically (sugar is converted to products, but neither biomass nor ethanol
can be used to regenerate the sugar). 

In the previous discussion it has been implicitly assumed that the growth-
limiting substrate (S) can be identified. This is, however, not always easy. Assume
that simple Monod kinetics with maintenance substrate consumption is to be
studied. At a low dilution rate, much of the substrate is used for maintenance.
The observed yield coefficient of biomass is Ysx = µ/(–rs), and this is related to
the “true” growth yield coefficient Ysx

true by:

(4.16)

For increasing specific growth rate, Ysx and Ysx
true approach each other. If the feed

composition is taken to be the same at both a high and low specific growth rate,
one may easily run into a deficiency of another substrate that enters into a biomass
in a constant atomic ratio to, for example, carbon. This happens when µ changes
from a low to a higher value during the batch fermentation, as will typically
happen in carbon-substrate inhibited kinetics (Equation 4.12). The nitrogen source
is a typical representative of other substrates that may become limiting during
the cultivation. Thus, in lactic acid fermentation, the nitrogen source is a complex
mixture of easily absorbable peptides with two to five carbon atoms and other
nitrogen compounds that are much more difficult to digest by the lactic bacteria. 

A “clean” cultivation with glucose as the limiting substrate is characterized
by a value of the saturation constant Ks in Equation 4.11 of the order 1 to at most
150 mg L–1. The lowest values of Ks are observed for growth of filamentous fungi
(used in the production of industrial enzymes). Here, Ks is probably no larger
than 1 mg L–1. When cultivating yeast, the saturation constant can be as high as
150 mg L–1. In all cases, the ratio between the initial glucose concentration s0 =
s (t = 0) and Ks is likely to be more than 200 to 500, and the batch fermentation
operates at the maximum specific growth rate µmax during practically the entire
processing time. This is, of course, what gives rise to the linear relationship
between ln(x/x0) and cultivation time that is characteristic of a successful batch
operation. Unfortunately, one does see published values of Ks that are in the range

Y
Y

msx
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µ
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of 0.5 to 2 g L–1. This result, obtained by data fitting of batch fermentation data
using Equation 4.11, bears no relation to the true value of Ks, which is probably
at least an order of magnitude smaller. What is observed in reality is that another
substrate takes over as the limiting substrate. It could be an amino acid, but it
could also be a mineral (sulfur or phosphorous) or a vitamin (e.g., B12) that the
organism cannot synthesize and which must be supplied with the medium.

Another typical source of errors when fermentation data are used to fit
parameters in kinetic expressions is that the influence of a product on the rate is
not recognized. Thus, in a cultivation that is product inhibited, the ln(x/x0) vs.
time profile will have a long tail for large t values. If Equation 4.11 rather than
Equation 4.13 is used to fit the kinetic parameters, then a very large value of Ks

will be obtained, and this of course is quite wrong. Product inhibition can rather
easily be detected by repetition of the batch cultivation with an initial non-zero
concentration of the product, whereas the detection of another substrate that
becomes growth limiting is a much more difficult task as one may not suspect
the nature of the missing substrate; it may even be a trace element present in
some batches of the complex substrate used in industrial fermentations but lacking
in other batches.

4.4 SUBSTRATES EXTRACTED FROM A GAS PHASE

In aerobic fermentations, oxygen must be supplied by transport from a gas phase
that is sparged to the liquid medium. For a batch reactor, the volumetric rate of
oxygen consumption (–qO2) is given by:

–qO2 = kla(s1
e – s1)  (4.17)

In Equation 4.17, s1 and s1
e are, respectively, the oxygen concentration in the

liquid phase at the conditions of the bioreaction and the oxygen concentration
that is in equilibrium with the gas phase where the partial pressure of oxygen is
π; si

e is proportional to π, and values of si
e for π = 1 bar are available in tables

for many different fermentation media. Thus, for a fermentation medium with 20
g L–1 glucose and 2 to 5 g L–1 mineral salts, one can use s1

e = 1.16 mM at 30˚C.
kla is the mass transfer coefficient (h–1). It depends on the medium properties
(coalescent media giving a lower mass transfer coefficient than noncoalescent
media), and it depends on the equipment used to disperse the gas into the liquid.
But, for all types of mass transfer equipment, kla depends on the specific power
input P/V (W m–3) to the reactor volume V. It also depends on the volumetric
flow rate vg (m3 h–1) of the gas that is dispersed into the liquid. In most correlations
for mass transfer the superficial gas velocity ug (m s–1) is used rather than vg.

ug = vg/(3600A), where A is the cross-sectional area of the reactor (m2)
(4.18)
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For mechanically stirred reactors, van’t Riet9 collected a large number of data
for both small pilot reactors and larger industrial reactors and correlated the data
by:

kla (h–1) = 93.6 ug
0.5(P/V)0.4 (where ug in ms–1 and P/V in W m–3)  (4.19)

The power input can be provided by means other than by mechanical stirring,
and because some of the alternative methods can give the same mass transfer
coefficient at a lower power input and at considerably lower investment costs
these newer types of mass transfer equipment are gaining popularity. The mass
transfer is obtained by circulating the entire mixture of liquid medium and injected
gas through a large loop in which a number of static mixers are installed (a 300-
m3 reactor for production of single-cell protein is operating according to this
principle7), or a small fraction of the total medium volume may be circulated
very rapidly through a loop and reinjected into the bulk liquid. In the latter
procedure, the gas is fed to the pressurized liquid (up to 10-bar gauge pressure)
in the loop, and the gas–liquid mixture is injected into the reaction medium
through rotary jet heads.8

One may conceive of the Norferm reactor as equipment in which the gas is
contacted with the liquid in a more or less plug flow. When the gas is separated
from the liquid after having traveled with the medium through the loop, a satis-
factory degree of conversion of oxygen (or methane in the SCP reactor) must
have been reached. In the system described by Nordkvist et al.,8 the circulation
of liquid and gradual feed of gas to the loop ensure that the reactor works as an
almost ideal stirred-tank reactor.

The power input to the liquid flowing in the loop is proportional to vl
3 if the

liquid flow is turbulent and the power input needed to move the gas phase is
neglected:

P = fvl
3/0.036 (where P is in W and vl is in m3 h–1) (4.20)

In the Norferm reactor, factor f is a function of the number of static mixers and
their construction. In the system described by Nordkvist et al.,8 f is a function of
nozzle diameter d in the rotary jet heads used to dispense the air–liquid mixture
from the loop into the bulk liquid. It was found for all the rotary jet heads used
and independent of the liquid viscosity that

f(d) = (0.1054d2 + 0.4041d)–2 (where d is in mm) (4.21)

In their investigation, a medium volume of V = 3.4 m3 was used, and this was
circulated 5 to 10 times per hour through a loop of volume 70 L. The holding
time of liquid in the loop was from 7 to 14 sec, and liquid velocities in the range
of 1 to 2 m s–1 were obtained. Obviously, a very efficient mass transfer was
obtained when the gas–liquid mixture was injected into the bulk volume.
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The power input (P) to the liquid–gas mixture in the loop is:

P = P0ug
0.60N–3+0.4 = P0ug

0.6N–2.6 (4.22)

In Equation 4.22, P0 is the power input to an unaerated liquid flow vl calculated
by Equations 4.20 and 4.21, and N is the number of rotary jet heads used to
dispense the circulating liquid plus the gas fed to the loop into the bulk liquid.
The power input decreases rapidly with N due to the strong dependence of P on
the volumetric rate of liquid flow shown in Equation 4.20.

Correlation of the oxygen mass transfer data obtained with respectively one
and two rotary jet heads gives the following relations between kla, the specific
power input, and the superficial gas velocity for a water-like medium:

kla = 278 ug
0.631(P/V)0.267 (N = 1) (4.23)

kla = 440 ug
0.631(P/V)0.267 (N = 2) (4.24)

In both expressions kla is in h–1, ug in m s–1 and (P/V) in W m–3.
The ratio between the two numerical constants (1.58) corresponds closely to

the ratio between the total power input to one and two rotary jet heads which is
predicted from Equation 4.22. For a given value of P/V, one would expect that
kla is factor (2)2.6•0.267 = 1.62 higher when two machines rather than one are used
to dispense the circulating liquid (plus gas) into the bulk liquid in the tank.

In both mechanically stirred reactors and in reactor configurations with
forced-flow circulation of the medium the power input is used to set the liquid
into motion and thereby increase the effectiveness of the gas–liquid mixing
process that leads to transfer of oxygen from the gas to the liquid phase. The
power input used to compress the gas is not included, but it is usually much
smaller than the power input to the liquid.

In bubble columns the only power input is that used to compress the gas and
disperse it through spargers to the medium; consequently, the mass transfer
coefficient depends only on the linear gas velocity (i.e., on the volumetric gas
flow rate) and on the liquid properties. For a water-like medium, Heijnen and
van’t Riet3 correlated mass transfer data for bubble columns of widely different
size (diameters ranging from 0.08 to 11.6 m; height, from 0.3 to 21 m; and ug,
from 0 to 0.3 m s–1). Their correlation is:

kl a = 1152 ug
0.7(kl a in h–1 and ugin m s–1) (4.25)

Application of Equation 4.25 for a typical µg value of 0.06 m s–1 yields kla = 161
h–1. For a relatively small extra power input of 2000 W m–3 used to circulate
liquid through the pressurized loop, one obtains a kla value of 358 h–1 (Equation
4.23) and 566 h–1 (Equation 4.24) when, respectively, one and two rotary jet head
machines are used. In order to reach a satisfactory biomass concentration in a
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batch fermentation, it may become very important to use an efficient but still not
excessively energy-demanding method for contacting the gas and the liquid
phases.

Experimental determination of the mass transfer coefficient should preferably
be done in the actual vessel in which the bioreaction is going to be carried out,
although some correlations such as Equation 4.23 and 4.24 are very robust for
scale-up as one could just add more rotary jet heads in a larger medium volume,
assuming that each machine works in its own part of the total reactor volume. 

There are a number of well-proven experimental methods for determination
of kla.6 The best method appears to be the so-called peroxide method originally
proposed by Hickman2 and now used as standard for large industrial bioreactors
by Novozymes, the world’s leading producer of industrial enzymes.

A small amount of catalase is added to the medium, and a constant volumetric
flow of air is sparged into the reactor. The saturation tension (psat) is measured
on an oxygen electrode positioned in the medium at a position where the absolute
pressure is pt. A constant flow of H2O2 to the reactor (M moles of H2O2 per hour)
is started at time t = 0. The peroxide is converted to O2 and H2O by the catalase,
and the excess oxygen is stripped off by the constant flow of air through the
reactor. A steady state is reached after a short time (4 to 5 min for a reactor
volume of 3 m3), and the oxygen tension p in the liquid is recorded. (p/psat – 1)
= DOT – 1 is positive because the oxygen tension in the liquid is higher than psat

as long as the peroxide is degraded. After 20 to 30 min, a large number of steady-
state readings of p has been recorded, and the flow of H2O2 is stopped, and DOT
returns to 1 after 3 to 8 min. The term kla is calculated as:

(4.26)

In Equation 4.26, ssat (mol m–3 bar–1) is the saturation concentration of oxygen
in equilibrium with the gas leaving the reactor volume (V); ssat is slightly higher
than the saturation concentration when the medium is in contact with air alone
due to the release of O2 to the gas.

g
3

air h–1) is contacted with V (= 3.4 m3 water at 25˚C). The constant flow of H2O2

is 93.0 mol h–1. In the steady state, DOT – 1 = 0.5. pt = 1.03 bar, and ssat = 0.223
mol O2 m–3 bar–1 (saturated with water and with 1.14 m3 O2 released h–1); kla is
calculated to 96 ± 1.5 h–1. 

4.5 MASS BALANCES FOR BIOREACTORS WORKING 
IN THE BATCH MODE

The mass balances for bioreactors are of course not different from the balances
that can be set up for batch reactors working with ordinary chemical reactions.

k a
M

V s p DOT
l sat t

=
−2 1( )
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There are, however, a few complicating factors due to the complexity of the
kinetic expressions for the bioreactions. When any of the unstructured kinetic
models, Equations 4.11 to 4.13, are used in the mass balance the result is quite
simple:

, where x = x0 for t = 0 (4.27)

, where s = s0 for t = 0 (4.28)

, where p = 0 for t = 0 (4.29)

At first it would appear as though there are three independent mass balances, but the
substrate (S), the biomass (X), and the product (P) are coupled through total mass
balances if the rates are proportional (i.e., if the yield coefficients are constant):

s = so – Yxs(x – xo); p = Yxp(x – xo) if po = p (t = 0) = 0 (4.30)

Inserting Equation 4.30 in Equations 4.27 to 4.29 leads to one differential equation
in x. It can often be solved analytically by separation of variables, but numerical
solution is not a problem when a specific case is being studied. If maintenance
substrate consumption and corresponding product formation must be included
(and this is necessary for many fermentations, such as lactic acid fermentation),

FIGURE 4.1 Typical mass transfer experiment according to the peroxide method. The
medium is water, and one rotary jet head (d = 10 mm) is used.
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then an analytical solution of Equations 4.27 to 4.29 is not possible, but numerical
solution is always possible.

When a specific cell component such as E in the kinetics of Equations 4.14
and 4.15 is included in the kinetic expressions, then the mass balance for E must
be included with the three balances, Equations 4.27 to 4.29. Thus, in the case of
Equation 4.14:

(4.31)

This equation is independent of the reactor type used in the process. It says that
component E must be generated by cell reactions at least as fast as the culture
grows (i.e., at least as fast as µx; otherwise, the component will eventually be
“washed out” by the growth of the biomass. Because re = Yxef(s) e = Yxeµ, re will
slowly decrease as the ethanol concentration enters the region where Yxe is negative
(i.e., between the zeros of the quadratic). Nielsen et al.6 provide a number of
other examples to show how the so-called compartment-structured kinetic models
are used in mass balances for different types of bioreactors.

Here, only a few examples are given to show the integrated form of the mass
balances for unstructured kinetics and constant yield coefficients. Thus, for the
three kinetic models Equations 4.11 to 4.13, the analytical solutions are:

(4.32)

(4.33) 
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98 Batch Processes

Because, in general, a is of the order of 0.001, the logarithmic dependence
of x on t for small t is apparent for the Monod kinetics (Equation 4.32). For t →
∞, X approaches 1 + X0, and the last term in Equation 4.32 dominates, although
the numerical constant is small. Equation 4.33 is the corresponding analytical
expression for substrate-inhibited kinetics (Equation 4.12). The last term in Equa-
tion 4.33 is equal to the expression F(X) in Equation 4.32, but for X/X0 ~ 1, the
sum of the first two terms can be approximated by b(X – X0)/X0, and if b is large
it may take quite some time before X moves away from X0. The last expression,
Equation 4.34, is the analytical solution of the mass balances for qx given by
Equation 4.13. The product inhibition makes it impossible to reach the expected
value of X for large values of s0, because the last factor in Equation 4.13 becomes
zero at a certain p = pmax = Ysp(s0 – s).

expressions, Equations 4.11 to 4.13. In all three figures, µmax = 0.4 h–1, Ks = 0.2
g substrate L–1, and x0 = 0.1 g biomass L–1. The yield coefficients are Ysx = Ysp =
0.5 g g–1

max = 6 g L–1 
i

–1. Each
figure has two curves, one for an initial substrate concentration of s0 = 5 g L–1

0
–1. In Figure 4.2a it can be seen that the difference x(final)

– x0 increases by a factor of 4 when s0 increases from 5 to 20 g L–1. This also
happens in the substrate-inhibited case (Figure 4.2c), but for s0 = 20 g L–1 it takes
forever to start the climb toward x(final). In the product inhibition case, x – x0 is
limited by pmaxYsx/Ysp = pmaxYpx. For pmax = 6 g L–1 and Ypx = 1, the maximum
difference between x and x0 is 6 g L–1, as also seen in Figure 4.2b. 

The sharp bend of the x(t) curves when the substrate concentration decreases
below Ks is particularly noticeable in Figure 4.2a. Ks/s0 = a is 0.025 and 0.01 for
the two s0 values used in the example. Determination of Ks by batch experiments
is clearly impossible, and the only kinetic parameter that can be obtained is the
maximum specific growth rate, µmax. In Figure 4.2b, falsification of Ks by product
inhibition is particularly noticeable for s0 = 20 g L–1, while the strong substrate
inhibition in Figure 4.2c leads to falsification of µmax.

4.6 FED-BATCH OPERATION

As already mentioned in the introduction, a “clean” batch operation is rarely the
best choice. Catabolite repression will frequently make it impossible to achieve
any satisfactory yield of the desired product on the substrate (glucose), and the
process is not economically viable. The fed-batch operation is, however, very
popular in the fermentation industry, so the necessary mathematical background
for design of fed-batch operation is reviewed in the following text.

 The reactor is started as a batch, and a suitably large biomass concentration
is obtained by consumption of the initial substrate. The rate of product formation
is typically low or even zero during the batch cultivation. At a certain time, usually
when the substrate level has decreased to a very low level, a feed of (usually very
concentrated) substrate is initiated. At the same time, an inducer may be added
to switch on the metabolic pathways that lead to the desired product. During the
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entire fed-batch period, no product is withdrawn from the reactor, and the medium
volume keeps increasing. At the end of the fed-batch period, a certain portion of
the reactor volume may be withdrawn and sent to downstream processing. New
substrate is added, and when the biomass concentration has reached a desired
value by consumption of the added substrate a second fed-batch period is started.
This is known as a repeated fed-batch operation. It will work satisfactorily if the
remainder of biomass used to grow up a new culture has not been weakened,
perhaps producing the desired product with a low yield. Thus, in penicillin
fermentation, one may perhaps withdraw 70% of the reactor volume after the
first fed-batch period, which can take up to 400 h. New substrate is added and
fresh biomass is formed in batches. A second fed-batch period can be successful,
but the high-yielding strains used today in the antibiotics industry are likely to
revert to a very poor penicillin-producing strain (“wild-type”).

When a time-varying feed stream, v(t), containing one or more of the substrates
at a constant concentration (cf) is admitted to a stirred-tank reactor without with-
drawal of a corresponding effluent stream, the mass balances become:

FIGURE 4.2 Time profiles for biomass concentration x for (a) Monod kinetics; (b) product
inhibition, and (c) substrate inhibition (Equations 4.11 to 4.13). Batch reactor with x0 =
0.1 g L–1 and s0 either 5 or 20 g L–1; p0 = 0; Ysx = Ysp = 0.5 g g–1.
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100 Batch Processes

(4.35)

The mass balances for the fed-batch operational mode therefore become:

(4.36)

A striking similarity exists between Equation 4.35 and the mass balances for a
stirred-tank continuous reactor. In Equation 4.35, the dilution rate, D = v(t)/V(t),
is, of course, a function of time, and the fed-batch model is in principle a purely
transient model, although most results can safely be derived assuming that the
growth is balanced.

One may visualize the fed-batch operation as a control problem. Subject to
certain constraints, it is possible to choose the control function, v(t), such that a given
goal is reached. This goal may be defined at the end of the fermentation process,
where V(t) has reached a specified value. This endpoint control problem is a classical
problem of control theory — for example, choosing sf and the initial values s0 and
x0 that characterize the state when the fed-batch process v(t) is initiated so a given
state (x,s) is reached in the shortest possible time. The chemical engineering literature
abounds with solutions to this kind of problem. Here, two simpler problems will be
studied. The control action is applied with the purpose of achieving certain metabolic
conditions for the cell culture at every instant during the fermentation. The concept
of an instantaneous control action is illustrated in sufficient generality with only one
growth-limiting substrate and the biomass as the state vector. To simplify the dis-
cussion, maintenance-free kinetics will be used. The two most obvious feed policies
are:

• Choose v(t) so s = s0 throughout the fermentation.
• Choose v(t) so  throughout the fermentation.

The two policies correspond to fermentation at a constant, specific growth
rate and at a constant volumetric rate of biomass production, respectively. Both
policies have obvious practical applications. When s is kept at a level below that
at which part of the added substrate is converted to undesired products, a large
amount of biomass (together with an associated protein that may be the real
product) is produced at a reasonably high rate, and a high final biomass concen-
tration can be obtained. In the production of baker’s yeast, neither the continuous
stirred-tank reactor (one is afraid that the subtle qualities of the yeast that give
the optimal leavening properties of the product will be lost in a long fermentation
run) nor the classical batch reactor (diversion of glucose to ethanol, which inhibits
the growth and represents a considerable loss of substrate) are suitable reactor
choices. Fed-batch operation is typically the preferred choice. The constant
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volumetric rate policy is important if removal of the heat of reaction is a problem
or if the capability to supply another substrate (e.g., oxygen) is exceeded
when .

Calculation of v(t) corresponding to constant s = s0 (which means that µ is
constant and equal to µ0) is quite simple. From Equation 4.35 and with xf  = 0:

(4.37)

while the substrate balance taken from Equation 4.36 reads:

(4.38)

or

(4.39)

V(t) is found by integration of Equation 4.39 from t = 0, and x(t) by inserting
V(t) in Equation 4.37:

(4.40)

where , and

(4.41)

Equations 4.39 to 4.41 provide the complete explicit solution to the constant
specific growth rate problem. v is seen to increase exponentially with time. The
biomass concentration x is a monotonically increasing function of time with an
upper limit:

The value of x for a specified V/V0 is calculated from Equation 4.41 using a value
of t obtained by solution of Equation 4.40.
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The constant qx fed-batch fermentation can also be designed quite easily. One
would, of course, not voluntarily abandon the constant µ policy that gives the
maximum productivity, consistent with the constraint that no byproducts should
be formed, unless forced to do so. But, with the increasing biomass concentration
x (Equation 4.41) a point may be reached at t = t* when, for example, the rate
of oxygen transfer or the rate of heat removal from the reactor can no longer
match the increasing qx. From that point on, we must work with qx = q0 = q(x*). 

In the constant µ period the value of s = s0 = s(µ0) is usually many orders of
magnitude smaller than sf. In the continued fermentation with constant qx from
V* to Vfinal, the substrate concentration in the reactor decreases even further
because µx is constant and there would be no reason to continue beyond t* if x
did not increase.

If we assume that the reactor volume keeps increasing exponentially also
after t*, then the transient mass balance for the biomass from t1 = t – t* when
the constant µ period ends is:

(4.42)

The exponential increase of V is given by:

V = V * exp(kt1) (4.43)

The value of the parameter k will be determined shortly. The substrate balance
reads:

(4.44)

Integration of a weighted sum of the substrate and biomass balances yields:

x+Ysxs = (x* + Ysxs0 – Ysxsf) exp(–kt1) + Ysxsf (4.45)

Because s and s0 are negligible compared to sf, Equation 4.45 can be simplified to:

x  (x* – Ysx sf) exp(–kt1) + Ysxsf (4.46)

Integration of Equation 4.42 yields another expression for x:

x = (x* – q0/k) exp(- k t1) + q0/k (4.47)

The two expressions for x become identical if:

q0/k = Ysxsf or k = q0/(Ysxsf) (4.48)

dx

dt
x

v t

V t
x q kx

1
0= − = −µ ( )

( )

ds

dt
Y x

v t

V t
s s Y q k s sxs f xs f

1
0= − + − = − + −µ ( )

( )
( ) ( )

DK3017_C004.fm  Page 102  Friday, August 5, 2005  1:24 PM

© 2006 by Taylor & Francis Group, LLC



Batch Reactors in the Bioindustries 103

The design of the constant qx policy is therefore quite explicit; k is chosen
according to Equation 4.48 where q0 as well as Ysxsf are known. Hence, the time
(t1) to reach Vfinal is calculated from Equation 4.43 and the corresponding x value
from Equation 4.47. The approximation in Equation 4.45 does not affect the result.

The constant qx period can be shown to end with the same biomass concen-
tration as would have been obtained if the constant µ policy could have been
maintained until Vfinal was reached, but the processing time t* + (t1)final is longer,
and hence the productivity is somewhat smaller. 

 These concepts will be illustrated by a practical example concerned with the
design of a baker’s yeast production. In the example, it will be assumed that the
yeast grows on glucose with NH3 as nitrogen source. The specific growth rate is
given by:

(4.49)

For µ  0.25 h–1 (s  250 mg L–1), the growth is purely respiratory and Yxo = 0.6836
mol O2 (C-mol biomass)–1.

It is desired to design an optimal fed batch process starting at the end of a
preliminary batch period in which the biomass concentration has increased to x0

= 1 g L–1 and the glucose concentration has decreased to s0 = 250 mg L–1. The
feed concentration during the fed-batch operation is 100 g glucose L–1. At t = 0,
the reactor volume is V0, and the fed-batch process stops when V = 4V0. The
temperature is 30˚C and the oxygen is fed as air with 20.96% O2.

Obviously the constant µ policy will select µ = µ0 = 0.25 h–1, the largest value
of the specific growth rate for which no byproducts are formed. Ysx is calculated
from a redox balance: 

(1 – 1.05Ysx) = Yso = 0.6836Ysx or Ysx = 0.5768

From Equations 4.39 to 4.41 and with b = Yxs/(sf – s0) = (24.6/30)/(100 ⋅ 0.5768)
= 0.02114 L g–1, one obtains the following:

v(t) = 0.25 ⋅ 0.02114 ⋅ 1 ⋅ V0 exp(0.25 t) (4.50)

V(t) = V0(1 – b + b exp(0.25 t)) (4.51)

x(t) = exp(0.25t) V0/Vfor x0 = 1 g L–1 (4.52)

At the time tfinal when V = Vfinal = 4 V0, one obtains from Equation 4.51 that (1 –
b + b exp(0.25 t)) = 4 and tfinal is calculated to 19.84 h. From Equation 4.52, the
corresponding x value is determined to be 35.7 g L–1.

µ =
+

0 4

150

.

( )

s

s mg L-1
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104 Batch Processes

Assume that the largest attainable value of kla is 650 h–1 and that the oxygen
tension in the medium needs to be 10% of the saturation value. The volumetric
air feed is assumed to be so large that the partial pressure of oxygen in the inlet
can be used to determine the saturation concentration of oxygen in the liquid:

(qt)max = 650 (1.16 10–3 ⋅ 0.2096) ⋅ 0.9 = 0.1422 mol O2 h–1 L–1.

This oxygen uptake can support a volumetric biomass growth rate: 

(qx)max = (0.6836)–1 24.6 (qt)max = 5.116 g L–1 h–1, corresponding to 
x = x* = 20.46 g L–1

Solving Equation 4.52 for x = 20.46 g L–1 yields t* = 14.26 h, and from Equation
4.3 V = V* = 1.73 V0. From Equation 4.48, k = 5.116/(0.4730 ⋅ 100) = 0.1082
h–1. Thus, from t = t* (t1 = 0) to tfinal the reactor volume increases as V = V*
exp(0.1082 t), and for V = 4V0 (i.e., V/V* = 2.31) one obtains t1 = 7.73 h and tfinal

= 22.0 h. The value xfinal is calculated from Equation 4.47 to be 35.62 g L–1, and
apart from the permissible approximation in Equation 4.45 this is the same as
the concentration reached at the end of a constant-µ fed-batch fermentation. The
increase in production time from 19.8 to 22 h is not large.

 The optimal design of a fed-batch fermentation that gives the maximum
productivity and yet satisfies the constraint imposed by a limited oxygen transfer
should follow the lines illustrated in this example. One should, however, not be
misled into believing that this is the overall best production policy. A continuous
steady-state fermentation offers far greater productivity.

Let the reactor volume be 4 V0, as this volume must be available at the end
of the fed-batch process. If a continuous production of biomass with x = 35.62
g L–1 is to be maintained in the reactor then sf should be 35.62/Ysx = 61.75 g L–1

when the miniscule effluent glucose concentration is neglected. If D = 0.25 h–1,
the highest D value for which no ethanol is produced, then qx = 0.25 ⋅ 35.62 =
8.905 g L–1 h–1, which cannot be supported by the available mass transfer coef-
ficient. To obtain qx = qxmax = 5.116 g L–1 h–1, the dilution rate must be lower;
namely, D = 0.1436 h–1. But, still, a much higher volume of glucose can be
processed to give x = 35.62 g L–1: v = 4V0 ⋅ 0.1436 L h–1; in other words, in 22
hours (tfinal) a total volume of 12.64 V0  is achieved compared to only 4 V0 by the
optimal fed-batch process. 

To complete the design example one needs to calculate the power input
required to transfer the required oxygen from the gas phase. Assume that the
oxygen partial pressure in the gas leaving the reactor is 0.18 bar, and assume that
the gas phase is ideally mixed into the liquid by the use of the efficient rotary jet
heads that were described in the section on mass transfer. In the following
calculation, the partial pressure of oxygen in equilibrium with the medium will
be taken to be the average 0.1948 bar between the inlet partial pressure (0.2096
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bar) and the outlet partial pressure 0.18 bar. The amount of air needed to give a
certain oxygen quantity VqO2 mol h–1 is (VqO2)/0.0296 mol h–1.

In Table 4.1, the mass transfer coefficient kla that is needed to sustain a given
biomass concentration is calculated at different times during the process. Also
shown in the table is the volumetric airflow rate (vg) and the power input P (kW)
calculated for one rotary jet head and using Equation 4.23.

It is of course quite unnecessary to use the high mass transfer coefficient (650
h–1 when calculating the course of the fed-batch process and now changed to 699
h–1 due to the lower oxygen partial pressure [0.1948 bar] used in the calculations
of the table) when x is below 20.46 g L–1. At this point, the operation must be
switched from a constant µ to a constant qx mode as a consequence of the upper
limit (here, 699 h–1) imposed on kla.

It is at first surprising that P/V and even P have a maximum for an x value
between 1 and 35.6 g L–1, but this result is a consequence of the rapidly increasing
value of µg when the oxygen demand and hence vg increases. In a constant
diameter reactor, the superficial velocity µg increases proportional with V, whereas
it increases with V1/3 when scale-up is done for a constant height-to-diameter
ratio. In the fed-batch design, the aspect ratio, of course, does not change when
the medium volume increases.

TABLE 4.1
Calculation of Specific Power Input P/V During Fed-Batch 
Fermentation of Baker’s Yeast

x (g L–1) 1 10 20.46 26 32 35.62

V (m3) 2 2.48 3.45 4.35 6.06 8.0
kla (h–1) 34.16 341.6 699 699 699 699
qO2 (mol m–3 h–1) 6.947 69.47 142.1 142.1 142.1 142.1
VqO2 (mol h–1) 13.89 172.3 490 618 861 1137
vg (m3 h–1) 11.48 142.3 405 511 711 939
ug (m s–1) 0.00259 0.0322 0.0917 0.1156 0.1610 0.2126
P/V (W m–3) 501 7259 8952 5197 2366 1226
P (kW) 1.002 18.0 30.9 22.6 14.3 9.81

Note: Until x = 20.46 g L–1, the specific growth rate µ of the culture is constant at
0.25 h–1, and the kla value needed to sustain a certain biomass concentration
increases proportional to x. During the constant qx operation for larger x values, kla
remains constant at 699 h–1.
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5.1 INTRODUCTION

 

Distillation has been widely accepted for product separation, purification, and
waste removal in chemical process industries. Depending on whether the industry
is handling petrochemicals, bulk chemicals, specialty chemicals, or pharmaceu-
ticals, the distillation process can be divided into two categories: (1) batch dis-
tillation, which is mainly used in specialty chemical, biochemical, and pharma-
ceutical industries; and (2) continuous distillation, which is primarily
implemented in the petrochemical and bulk chemical industries. Figure 5.1a
shows a conventional batch distillation column where the feed is initially charged
into the reboiler at the beginning of operation. After a total reflux operation (i.e.,
all condensates are recycled to the column), the distillate is continuously with-
drawn while the bottom residue with a high-boiling-temperature component is
concentrated, making this a time-varying process. In continuous distillation (Fig-
ure 5.1b), the feed is constantly supplied to the column, and the top and bottom
products are simultaneously obtained under a steady-state operation. The upper
section of the feed point is referred to as the 

 

rectifying

 

 

 

section

 

, as a low-boiling-
temperature component is enriched. The lower section is referred to as the 

 

strip-
ping section

 

, as a low-boiling-temperature component is stripped off.
Batch distillation is the oldest separation process and the most widely used

unit operation in the batch industry. Batch distillation is highly preferable to
continuous distillation when high-value-added, low-volume chemicals must be
separated. It is also widely used in chemical processing industries where small
quantities of materials are to be handled in irregularly or seasonally scheduled

 

FIGURE 5.1

 

Types of distillation processes: (a) batch distillation, and (b) continuous
distillation.
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periods, and it is implemented when the feed composition varies widely from
period to period or where completely different feed stocks have to be handled.

Theoretical studies on batch distillation began with a simple distillation still
in a laboratory. In this type of distillation, a still is initially filled with a feed
mixture, which evaporates and leaves the still in the vapor form. This vapor,
which is richer in the more volatile component, is collected in the condenser at
the top and accumulated in a receiver. In this operation, no liquid is refluxed back
to the still, and no plates or packing materials are present inside the still. This
simple distillation still is an example of a batch operation, often referred to as

 

Rayleigh distillation

 

1

 

 because of Rayleigh’s pioneering theoretical work in simple
distillation. The concept of reflux and the use of accessories such as plates and
packing materials to increase the mass transfer converts this simple still into a

essentially performs the rectifying operation, it is often referred to as a batch

 

rectifier

 

.
The most outstanding feature of batch distillation is its flexibility in operation.

This flexibility allows one to deal with uncertainties in feed stocks or product
specifications. In addition, one can handle several mixtures just by switching the
operating conditions of the column. The basic difference between batch distilla-
tion and continuous distillation is that in continuous distillation the feed is con-
tinuously entering the column, while in batch distillation the feed is charged into
the reboiler at the beginning of the operation. The reboiler in batch distillation
gets depleted over time, so the process has an unsteady-state nature. A conven-
tional batch column can be operated under the following operating conditions or
policies:

• Constant reflux and variable product composition
• Variable reflux and constant product composition of the key component
• Optimal reflux and optimal product composition

Under conditions of constant reflux, the instantaneous composition of the
distillate keeps changing because the bottom still composition of the more volatile
component is continuously depleted. On the other hand, under variable reflux,
the composition of the key component in the distillate can be kept constant by
increasing the reflux ratio. The third type of operation, known as optimal reflux,
is neither constant nor variable; instead, this type of operation exploits the dif-
ference between the two operating modes. Thus, the optimal reflux policy is
essentially a trade-off between the two operating modes, and is based on the
ability of the process to yield the most profitable operation. 

The flexible and transient nature of batch distillation allows us to configure

 

2

 

the reboiler at the bottom and the condenser at the top. A single column can be
used to separate several products using the multifraction operation of batch
distillation presented in Figure 5.2b. Some cuts may be desired and others may
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batch distillation column, as shown in Figure 5.1a. Because this batch column

the column in a number of different ways, some of which are shown in Figure
5.2.  The column in Figure 5.2a is a conventional batch distillation column, with
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be intermediate products. These intermediate fractions can be recycled to maxi-
mize profits or minimize waste generation. Figure 5.2c shows a periodic operation
in which each charge consists of a fresh feed stock mixed with recycled off-
specification material from the previous charge. Figure 5.2d represents a stripping
column for separating a heavy component as the bottom product where the liquid

 

FIGURE 5.2

 

Examples of ways to configure the batch distillation column.
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feed is initially charged into the top still. In 1994, Davidyan et al.

 

3

 

 presented a
batch distillation column that has both stripping and rectifying sections embedded

recent studies demonstrated that it provides added flexibility for the batch distil-
lation operation. Recently, Skogestad et al.

 

4

 

 described a new column configuration
referred to as a 

 

multivessel 

 

column (Figure 5.2f) and showed that the column can
obtain purer products at the end of a total reflux operation. These emerging
column designs play an important role in separations of complex systems such
as azeotropic, extractive, and reactive batch distillation systems. The batch rec-
tifier configuration for such separations may be very restrictive and expensive.

These emerging designs, combined with different possible operating modes
similar to the ones described earlier for the rectifier, provide greater flexibility
but result in a large number of column configurations. Because of the unsteady-
state nature of the operation, embedded in the design problem is the optimal
control problem of deciding time-dependent variables such as reflux ratios, reboil
ratios, vapor flow rates, and vessel holdups. Given this flexibility, batch distillation
poses a difficult synthesis problem involving the selection of optimal column
configurations and optimal operating conditions. Complex systems, such as azeo-
tropic, extractive, and reactive batch distillation systems, add another dimension
to the synthesis problems as the cuts (fractions) in the multifraction operation
can have significantly different characteristics depending on the feed mixture of
these systems. The complexity in design, synthesis, and analysis of batch distil-
lation due to the (1) unsteady-state nature, (2) operational flexibility, and (3)
emerging column design can only be handled systematically using computer-
aided design techniques and recently developed software tools.

This chapter presents a complete review of batch distillation starting from
the first analysis in 1902 by Rayleigh to the current state-of-the-art, computer-
aided design techniques. The chapter introduces an early theoretical analysis of
simple distillation and various operating policies in Section 5.2. Section 5.3
examines the challenges involved in rigorous modeling of batch distillation
dynamics and provides a hierarchy of models of varying complexity and rigor.
Recent advances in optimal design and control problems are discussed in Section
5.4. Emerging columns, complex systems, and batch synthesis are described in
Section 5.5, followed by an overview of available software packages. The last
section provides overall conclusions and addresses the direction of future
research.

 

5.2 EARLY THEORETICAL ANALYSIS

 

This section presents early theoretical analysis of simple distillation, which was
first analyzed by Rayleigh.

 

1

 

 The limitations of simple distillation that led to the
development of the batch rectifier are discussed, as is the operational flexibility
of batch distillation with regard to the type of operation.
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5.2.1 S

 

IMPLE

 

 D

 

ISTILLATION

 

The analysis of simple distillation presented by Rayleigh in 1902 marks the
earliest theoretical work on batch distillation. Simple distillation, also known as

 

Rayleigh distillation

 

 or 

 

differential distillation

 

, is the most elementary example
of batch distillation. In this distillation system, the vapor is removed from the
still during a particular time interval and is condensed in the condenser. The more
volatile component is richer in the vapor than in the liquid remaining in the still.
Over time, the liquid remaining in the still begins to experience a decline in the
concentration of the more volatile component, while the distillate collected in the
condenser becomes progressively more enriched in the more volatile component.
No reflux is returned to the still, and no stages or packing materials are provided
inside the column; therefore, the various operating approaches are not applicable
to this distillation system.

The early analysis of this process for a binary system, proposed by Rayleigh
is given below. Let 

 

F

 

 be the initial binary feed to the still (mol) and 

 

x

 

F

 

 be the
mole fraction of the more volatile component (

 

A

 

) in the feed. Let 

 

B

 

 be the amount
of compound remaining in the still, 

 

x

 

B

 

 be the mole fraction of component 

 

A

 

 in
the still, and 

 

x

 

D

 

 be the mole fraction of component 

 

A

 

 in the vapor phase. The
differential material balance for component 

 

A

 

 can then be written as:

(5.1)

giving:

(5.2)

or:

(5.3)

In this simple distillation process, it is assumed that the vapor formed within a
short period is in thermodynamic equilibrium with the liquid; hence, the vapor
composition (

 

x

 

D

 

) is related to the liquid composition (

 

x

 

B

 

) by an equilibrium
relation of the form 

 

x

 

D

 

 = 

 

f

 

(

 

x

 

B

 

). The exact relationship for a particular mixture
may be obtained from a thermodynamic analysis depending on temperature and
pressure. For a system following the ideal behavior given by Raoult’s law, the
equilibrium relationship between the vapor composition 

 

y

 

 (or 

 

x

 

D

 

) and liquid
composition 

 

x

 

 (or 

 

x

 

B

 

) of the more volatile component in a binary mixture can be
approximated using the concept of constant relative volatility (

 

α

 

), which is given
by:
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(5.4)

Substitution of the above equation in Equation 5.3 results in:

(5.5)

Although the analysis of simple distillation historically represents the theoretical
start of batch distillation research, a complete separation using this process is
impossible unless the relative volatility of the mixture is infinite. Therefore, the
application of simple distillation is restricted to laboratory-scale distillation,
where high purities are not required, or when the mixture is easily separable.

 

Example 5.1

 

A mixture of components 

 

A

 

 and 

 

B

 

 with 0.6 mole fraction of 

 

A

 

 and relative
volatility of 2.0 is distilled in a 

 

simple

 

 batch distillation column. The feed is 133
mol, and 29.3% of the mixture is distilled. Find the distillate composition (derived
from Converse and Gross

 

5

 

).

 

Solution

 

Because 29.3% of the feed is distilled, the residue amount is 94.031 mol. The
bottom composition can be found using Equation 5.5:

Then the distillate composition (

 

x

 

D

 

 = 

 

y

 

) can be obtained from Equation 5.4,
resulting in a distillate composition of 0.6480. 

Because this distillate composition is quite low for separation purposes,
simple batch distillation cannot be used in real practice. To obtain products with
high purity, multistage batch distillation with reflux has been used. As seen in

is normally charged to the reboiler at the beginning of the operation. Although
the top products are removed continuously, no bottom product withdrawal occurs
in batch distillation, and the reboiler becomes depleted over time. This makes
batch distillation an unsteady-state but flexible operation.

 

5.2.2 O

 

PERATING

 

 M

 

ODES

 

The two basic modes of batch distillation are (1) constant reflux and (2) variable
reflux, resulting in variable distillate composition and constant distillate composition,
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(manifested by internal trays or packing) inside the rectifying section. The feed
Figure 5.1a, the batch rectifier is comprised of multiple thermodynamic stages
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respectively. The third operating model of a batch distillation, optimal reflux or
optimal control, is neither constant nor variable but is between the two. Similar
operating modes are also observed in the emerging batch distillation columns. For
example, a stripper can also have three operating modes: (1) constant reboil ratio,
(2) variable reboil ratio, and (3) optimal reboil ratio. For a middle vessel column,
the combination of the three reflux and three reboil modes results in at least nine
possible operating policies. The operating modes of a multivessel column can be
derived based on the middle vessel column, but this column configuration requires
additional considerations with respect to operating variables such as the holdup in
each vessel. The total reflux mode can be also considered especially in the middle
vessel and multivessel columns. As these column designs are still under extensive
research, early analyses of operating modes are mainly restricted to the batch rectifier
and are discussed below.

 

5.2.2.1 McCabe–Thiele Graphical Method

 

The difference between simple distillation and batch distillation operations is the
relation between the distillate composition (

 

x

 

D

 

) and the bottom composition (

 

x

 

B

 

)
due to the presence of reflux and column internals. The graphical analysis pre-
sented by McCabe and Thiele

 

6

 

 for continuous distillation provided the basis for
analyzing batch distillation operating modes. They suggested a graphical method
to calculate this relation using the following procedure. In the McCabe–Thiele
method, the overall material balance with no holdup is considered from the
condenser to the 

 

j

 

th plate. This leads to the following operating equation:

(5.6)

This operating equation represents a line through the point 

 

(x

 

D

 

, 

 

x

 

D

 

)

 

 where

 

y

 

i

 

 = 

 

x

 

j

 

–1

 

 

 

= x

 

D

 

 

 

at the top plate, with a slope of 

 

R

 

/(

 

R

 

 + 1). Starting from this point
(

 

x

 

D

 

, 

 

x

 

D

 

), Equation 5.6 and the equilibrium curve between 

 

y

 

j

 

 and 

 

x

 

j

 

 can be recur-
sively used from top plate 1 to the reboiler (the reboiler can be considered as the
(

 

N

 

 + 1)th plate). This procedure relates the distillate composition (

 

x

 

D

 

) to the still
composition (

 

x

 

B

 

) through the number of stages.
In the case of batch distillation, however, the still composition (

 

x

 

B

 

) does not
remain constant, as observed in continuous distillation, thus the instantaneous
distillate composition (

 

x

 

D

 

) is also changing. This necessitates using the recursive
scheme several times. If this scheme is used while keeping the reflux ratio constant
throughout the operation, just like normal continuous distillation, the composition
of the distillate keeps changing. This is the constant reflux mode of operation.
On the other hand, the composition of the key component in the distillate can be
maintained constant by changing the reflux, resulting in the variable reflux mode
of operation. The third mode of operation of batch distillation, optimal reflux or
optimal control, is designed to optimize a particular perk mode such as maximum
distillate, minimum time, or maximum profit functions.
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5.2.2.2 Constant Reflux Mode

 

Smoker and Rose

 

7

 

 presented the first analysis of the constant reflux operation of
a binary batch distillation with no holdup. They used the Rayleigh equation in
conjunction with the McCabe–Thiele graphical method to capture the dynamics
of the batch distillation column. In their procedure, the relationship between 

 

x

 

D

 

and 

 

x

 

B

 

 is recursively determined by the McCabe–Thiele graphical method, then,
the right-hand side of the Rayleigh equation (Equation 5.3) is integrated graph-
ically by plotting 1/(

 

x

 

D

 

 – 

 

x

 

B

 

) vs. 

 

x

 

B

 

. The area under the curve between the feed
composition (

 

x

 

F

 

) and the still composition (

 

x

 

B) now gives the value of the integral,
which is ln(B/F). The average composition of the distillate can be obtained from
the following equation:

(5.7)

Although Smoker and Rose presented the calculation method independent of
time, time can be introduced through the vapor boilup rate (V) of the reboiler.
The resulting equation for determining batch time is given by:

(5.8)

This operation policy is easy to implement and is commonly used.

Example 5.2

not satisfactory. Let us add four stages and make this a batch distillation column
operating under constant reflux of 1.82. Using the McCabe–Thiele graphical
method, find the distillate and still composition when 29.3% of the feed mixture
is distilled. What is the average distillation composition? If the feed is 133 mol
and the vapor boilup rate is 110 mol/hr, what is the total time required to complete
the distillation operation and what is the average distillate composition?

Solution
From Equation 5.3, we have:

For various values of xD, operating lines (Equation 5.6) are drawn to obtain the

B

values of xB vs. 1/(xD – xB) are plotted in Figure 5.3b, where the area under the
curve is equal to the right-hand side of the Rayleigh equation:
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x  values using the McCabe–Thiele graphical method (see Figure 5.3a). Then,

We have seen in Example 5.1 that the purity obtained by simple distillation is
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The operation is stopped when the integral is –0.3467, which is equivalent to
ln(B/F). From Figure 5.3b, xB,final is 0.4755, which satisfies the above integral.
The average distillate composition becomes:

Even though the bottom compositions are similar, the distillate composition of
batch distillation with multiple stages and reflux is significantly increased from
0.6480 to 0.9001. The time required for the distillation, as given by Equation 5.8,
is 0.999 hr. 

5.2.2.3 Variable Reflux Mode

In 1937, Bogart8 presented the first analysis of the variable reflux policy for a
binary system. The steps involved in calculating the variable reflux mode are
similar to those in the case of the constant reflux mode; however, for variable
reflux, the reflux ratio is varied instead of the distillate composition at each step.
Moreover, the Rayleigh equation, though valid for the variable reflux condition,
takes a simplified form. Because the distillate composition remains constant
(remember that we are considering binary systems here) throughout the operation,
the Rayleigh equation reduces to the following equation: 

FIGURE 5.3 (a) McCabe–Thiele method for plate-to-plate calculations, and (b) graphical
integration of the right-hand side of the Rayleigh equation.
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(5.9)

The second step is to establish the relation between R and xB using the
McCabe–Thiele graphical method. Several values of R are selected, operating
lines are drawn through the fixed point (xD, xD) with slope R/(R + 1), and steps
are drawn between the operating line and the equilibrium curve to obtain the
bottom composition (xB). This recursive scheme is repeated until the desired
stopping criterion is met, thus B and xB can be found at each value of the reflux
ratio. The time required for this operation at a given product purity is calculated
by plotting the quantity vs. xB in the follow-
ing equation and then finding the area under the curve:

(5.10)

The variable reflux operation policy is commonly used with a feedback control
strategy because the reflux ratio is constantly adjusted to keep the distillate
composition constant. Section 5.4.2 presents a detailed description of the control
strategy involved in this operating mode.

Example 5.3
Rework the problems in Example 5.2 for the variable reflux mode. For the various
iterations of R, use the following 10 reflux ratios: 0, 1.3343, 1.4057, 1.5091,
1.6234, 1.7498, 1.9283, 2.0902, 2.2718, and 2.5926.

Solution

composition is held constant at xD = xD,avg = 0.9001. The bottom composition can
be obtained from the McCabe–Thiele graphical method, while the distillate can
be obtained from the Rayleigh equation for the variable reflux condition (Equation
5.9):

Then the resulting xB and D are: 

R 0 1.3343 1.4057 1.5091 1.6234 1.7498 1.9283 2.0902 2.2718 2.5926
xB 0.6 0.59694 0.58757 0.57463 0.56119 0.54728 0.52926 0.51440 0.49920 0.47550
D 0 1.3421 5.2893 10.3663 15.2282 19.8725 25.3683 29.5152 33.4386 38.969
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Because the type of operation is variable reflux mode (Figure 5.4), the distillate
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The operation is stopped when the amount of distillate is greater than or equal
to 38.969 mol, when the bottom composition at this condition is 0.4755. The
time required for the distillation is given by Equation 5.10. By plotting the
quantity vs. xB, the area under the
curve between xB equal to 0.6 and 0.4755 is the batch time. The time required is
0.994 hours. 

5.2.2.4 Optimal Reflux Mode

The optimal reflux mode is a third mode of operation in which neither the distillate

mode is a reflux profile that optimizes the given indices of column performance
chosen as the objectives. The indices used in practice generally include the
minimum batch time, maximum distillate, or maximum profit functions. This
reflux mode is essentially a trade-off between the two operating modes and
is based on being able to yield the most profitable operation from optimal
performance. The calculation of this policy is a difficult task and relies on optimal
control theory. The batch distillation literature is rich in papers on this policy;
therefore, a separate section (Section 5.4.1) is dedicated to discussing the solution
procedures for this operating mode. Although the first optimal reflux policy was
discussed as early as 1963, practical implementation of this procedure has only
been possible recently because of the advent of computers.

Example 5.4
Rework the problems in Example 5.2 for the optimal reflux mode. Consider the
following reflux profiles for optimal batch operation. 

FIGURE 5.4 Graphical integration for batch time under the variable reflux mode.
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composition nor reflux is kept constant, as shown in Figure 5.5. This operating
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Solution
Because the operation is neither constant composition nor variable reflux, the
bottom compositions are calculated at each given reflux profile using the
McCabe–Thiele graphical method, resulting in: 

The distillate is calculated using the Rayleigh equation, in which the area under

D B B

Thus, we can see that the distillates are equal under the three types of operation.
The average distillate composition calculated using Equation 5.7 results in xD,avg

= 0.9001, which is exactly the same result as for the constant and variable reflux
modes. Batch time T required when neither the distillate composition nor reflux
is constant is found to be:

FIGURE 5.5 Three operating modes of batch rectification column.
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the curve of 1/(x  – x ) vs. x  (Figure 5.6) is equivalent to
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So, the time required is the area under the curve of (B/V)((R + 1)/(xD – xB)) vs.
xB, as shown in Figure 5.6. The value of T is found to be 0.992 hours, smaller
than for the constant and variable modes of operation. 

5.3 HIERARCHY OF MODELS

assumptions of negligible liquid holdup and ideal binary systems. Computers have
played an important role in relaxing these assumptions, especially the negligible
holdup assumption. Distefano9 analyzed the numerical differential equations for
multicomponent batch distillation in 1968 for the first time. The rigorous models of
batch distillation in current state-of-the-art computer packages are based on his
pioneering work; however, it is recognized that, due to the severe transients in batch
distillation, a hierarchy of models is necessary to capture the dynamics of this flexible
operation. This section presents the hierarchy of models ranging from the rigorous
model similar to the one presented by Distefano to the simplest shortcut model.

5.3.1 RIGOROUS MODEL

A rigorous model in batch distillation involves consideration of column dynamics
along with the reboiler and condenser dynamics. A detailed analysis of the

FIGURE 5.6 Graphical integration for Rayleigh equation (open circle) and batch time
(open triangle) for the optimal reflux model.
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As seen in Section 5.2, the earlier models of the batch rectifier were built on



Batch Distillation 121

characteristics of differential mass and energy balances associated with the com-
plete dynamics of a multicomponent batch distillation column was presented by
Distefano.9 He pointed out that the system of equations presented for batch
distillation is much more difficult to solve than that for continuous distillation
due to several factors. For example, in the case of batch distillation, plate holdup
is generally much smaller than reboiler holdup, while in continuous distillation
the ratio of reboiler holdup to plate holdup is not nearly as great. In addition, in
batch distillation severe transients can occur, unlike continuous distillation, where
variations are relatively small. Distefano’s work forms the basis for almost all of
the later work on rigorous modeling of batch distillation columns. 

Figure 5.7 represents a schematic of a batch distillation column, where the
holdup on each plate is responsible for the dynamics of each plate. For an arbitrary
plate j, the total mass, component, and energy balances yield the governing

the dynamic analysis of the batch column and the assumptions behind these
equations.

As the governing equations represent a generalized form of the batch recti-
fying column, treatment of an individual operating mode (i.e., constant reflux,
variable reflux, or optimal reflux) exploits the same governing equations but with
different specifications. Furthermore, the governing equations of the stripper,
middle vessel column, and multivessel columns can be similarly derived.

From the system of differential equations in Table 5.1, we can easily see that
the problem has no analytical solution, and we must resort to numerical solution
techniques. The governing differential equations of batch distillation often fall

FIGURE 5.7 Schematic of a batch distillation column.
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equations, summarized in Table 5.1. This table lists all the equations involved in
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TABLE 5.1
Complete Column Dynamics for a Rigorous Model2  

Assumptions
Negligible vapor holdup
Adiabatic operation
Theoretical plates
Constant molar holdup
Finite difference approximations for the enthalpy changes

Composition Calculations
Condenser and accumulator dynamics:

, i = 1, 2, …, n

Plate dynamics:

, i = 1, 2, …, n; j = 1, 2, …, N

Reboiler dynamics:

, i = 1, 2, …, n

Flow Rate Calculations
At the top of the column:

On the plates:

At the bottom of the column:
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into the category of stiff differential equations. The solution of stiff differential
equations contains a component that contributes very little to the solution but can
cause errors that accumulate over time, resulting in an incorrect solution. Most
recent batch distillation models10,11 use stiff numerical methods based on a back-
ward difference formula (BDF), and one of the well-known BDF techniques is
the Livermore Solver for ordinary differential equations (LSODE)12 method.

Because the computational intensity of the stiff algorithms is generally more
severe than for non-stiff algorithms, it is better to switch to non-stiff algorithms.
The quantifying measures, such as the stiffness ratio or computational stiffness,
both based on eigenvalue calculations, can be used to decide whether or not to
switch;2 however, eigenvalue calculations are computationally expensive and are
not normally used for large systems of differential equations. Further, it should
be noted that, for highly stiff systems, it is difficult to apply any numerical
integration method unless the system is transformed in some way to reduce the
stiffness of the system. This can happen in batch distillation of wide boiling
systems or for columns where the holdup inside the column is significantly
smaller than that of the still. The semirigorous model can be used to circumvent
this problem.

5.3.2 LOW HOLDUP SEMIRIGOROUS MODEL

For columns where the plate dynamics are significantly faster than the reboiler
dynamics (due to very small plate holdups or wide boiling components), the stiff

TABLE 5.1 (CONTINUED)
Complete Column Dynamics for a Rigorous Model2

Heat-Duty Calculations
Condenser duty:

Reboiler duty:

Thermodynamics Models
Equilibrium relations:

Enthalpy calculations:
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solution to this problem is to split the system into two levels: (1) the reboiler,
where the dynamics are slower, can be represented by differential equations; and
(2) the rest of the column can be assumed to be in the quasi-steady state. Thus,
the composition changes in the condenser and accumulator , the com-
position changes on plates , and the enthalpy changes in the condenser

t D t j

in a zero holdup model, so this approach can be used for simulating the semirig-
orous model of batch distillation. Bernot et al.13,14 developed and compared
semirigorous models of the batch rectifier and stripper for the behavior of mul-
ticomponent azeotropic distillation. Diwekar and coworkers2,11 developed the
software packages, BATCH-DIST and MultiBatchDS, in which a semirigorous
model is available for cases when the rigorous model fails to obtain solutions, as
can be seen in Example 5.5.

The holdup effects can be neglected in a number of cases where this model
approximates the column behavior accurately. This model provides a close
approximation of the Rayleigh equation, and for complex systems (e.g., azeotro-
pic systems) the synthesis procedures can be easily derived based on the simple

that this model involves an iterative solution of nonlinear plate-to-plate algebraic
equations, which can be computationally less efficient than the rigorous model.

Example 5.5
An equimolar mixture containing 100 mol of a four-component mixture having
relative volatilities of 2.0, 1.5, 1.0, and 0.5 is to be distilled in a batch distillation
column. The column has 10 theoretical plates with a holdup of 0.001 mol per
plate and a condenser holdup of 1 mol. The vapor boilup rate (V) of the reboiler
is 100 mol/hr. The column is operating under a constant reflux mode with a reflux
ratio equal to 5.0. Simulate a 1-hr operation of the column using the rigorous
model presented in Table 5.1. Repeat the simulation using the semirigorous
model. 

Solution

Figure 5.8b was obtained using the semirigorous model. The rigorous model
could not integrate the column because the step size became so small that round-
ing errors dominated the performance, thus switching to the semirigorous model
is required in this case.

5.3.3 SHORTCUT MODEL AND FEASIBILITY CONSIDERATIONS

a solution of several stiff differential equations. The computational intensity and
memory requirement of the problem increase with an increase in the number of
plates and components. The computational complexity associated with the rigor-
ous model does not allow us to derive global properties such as feasible regions

( )( )dx dtD
i /

( )( )dx dtj
i /
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Figure 5.8a shows the transient profiles obtained using the rigorous model, and

and on plates (δ I  and δ I ) in Table 5.1 can be assumed to be zero. This results

distillation residue curve maps (refer to Section 5.2 for details). Note, however,

As seen in Section 5.1, the rigorous model of batch distillation operation involves

integrator often fails to find a solution (see Example 5.4 in this section). The
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of operation, which are critical for optimization, optimal control, and synthesis
problems. Even if such information is available, the computational costs of
optimization, optimal control, or synthesis using the rigorous model are prohib-
itive. One way to deal with these problems associated with the rigorous model
is to develop simplified models such as the shortcut model and the collocation-
based model. These simplified models are abstractions of the rigorous model,
and their accuracy depends on the simplifying assumptions embedded within
them. The process of abstraction can be viewed as a trade-off between simplicity
and accuracy. The usefulness of abstracted models depends on the ease with
which they can be analyzed for global behaviors without compromising accuracy.
Moreover, the abstracted models are expected to be computationally simpler to
analyze.

The shortcut model of batch distillation proposed by Diwekar11 is based on
the assumption that the batch distillation column can be considered equivalent to
a continuous distillation column with the feed changing at any instant. Because
continuous distillation theory is well developed and tested, the shortcut method
of continuous distillation is modified for batch distillation, and the compositions
are updated using a finite-difference approximation for the material balance
(based on the Rayleigh equation). The other assumptions of the shortcut method
include constant molar overflow and negligible plate holdups. As described ear-
lier, the functional relationship between the distillate composition (xD) and the
bottom composition (xB) is crucial for the simulation, and the Fenske–Under-
wood–Gilliland (FUG) method is used for estimating this relation.

Shortcut methods have also been modified to incorporate holdup issues
using a compartmental modeling approach and extended to complex mixtures
containing binary and ternary azeotropes.15 Lotter and Diwekar16 applied a similar

FIGURE 5.8 Transient composition profiles for (a) rigorous model, and (b) semirigorous
model.
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shortcut approach to emerging batch columns, such as stripper and middle vessel
columns.

The shortcut model is very useful in feasibility analysis. In order to maintain
the feasibility of design, we must place certain constraints on the variables,
especially for the design variables such as the number of plates (N) and reflux
ratio (R). The shortcut model helps to identify these bounds on the design param-
eters. The bounds on the parameters depend on the operating modes. The feasible
region of operation has been identified using the short-cut model and is summa-
rized in Table 5.2. In this table, Rmin is the Underwood minimum reflux ratio,
which is different from RMIN. RMIN is defined as the value of R required to obtain
the distillate composition of the key component equal to the specified average
distillate composition at the initial conditions for the given N. Recently, Kim and
Diwekar17 defined new performance indices, such as the N-feasibility index and
the R-feasibility index, for analyzing feasible regions of various column config-
urations. These new indices can identify distinctive feasibility regions for various
configurations and provide useful guidelines for optimal column selection.

The shortcut model has been found to be extremely efficient and reasonably
accurate for nearly ideal mixtures and for columns with negligible holdup effects.
For further details, please refer to the book written by Diwekar.2 

5.3.4 COLLOCATION-BASED MODELS

The next simplified model in the simulation hierarchy is the reduced-order model
based on the orthogonal collocation approach. The collocation approach was first
proposed in the context of continuous staged separation processes by Cho and

TABLE 5.2
Feasible Region for Multicomponent Batch 
Distillation Columns2  

Variable Reflux Constant Reflux Optimal Reflux  

Final still composition:

Distillate composition:

Reflux ratio:

Rmin ≤ Rinitial ≤ Rmax RMIN ≤ R ≤ ∞ RMIN ≤ R ≤ ∞

Number of plates:

Nmin,f ≤ N Nmin ≤ N Nmin ≤ N

0 1 1≤ ≤∞x xB D,

( ) ( ) 0 1 1≤ ≤∞x xB D,

( ) ( ) 0 1 1≤ ≤∞x xB D,

( ) ( )

x xB D

( ) ( )1 1 1≤ ≤ x xB D

( ) ( )1 1 1≤ ≤ x xB D

( ) ( )1 1 1≤ ≤
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Joseph.18 The collocation approach to model reduction is based on approximating
the column stage variables by using polynomials rather than discrete functions
of stages; thus, it is widely used for packed batch column design. The orthogonal
collocation technique can change partial differential equations to ordinary differ-
ential equations (ODEs) or algebraic equations, and ODEs to a set of algebraic
equations. In the case of batch distillation, we encounter ordinary differential
equations, and the orthogonal collocation technique can be used to reduce this
system of ODEs into nonlinear algebraic equations.

Srivastava and Joseph19 developed the orthogonal collocation method of a
simplified packed batch column using the fourth-order polynomial. For a quasi-
steady-state batch distillation with total reflux, Aly et al.20 used the Galerkin
method as the weighting function over the finite elements. Even though the
Galerkin method is one of the best known approximation methods for weighted
residuals, this method is difficult to implement.

Note that the orthogonal collocation model can also be used to reduce the
order of optimization problems. It is not always advantageous to convert ordinary
differential equations to nonlinear algebraic equations. The converted large sys-
tems of algebraic equations are computationally time consuming. Instead of using
orthogonal collocation to reduce the ODEs to nonlinear algebraic equations, one
can use it to reduce the order of ODEs.21 This model is especially useful when
other simplified models cannot be used to describe the column (e.g., for highly
nonideal systems or systems for which constant molar flow assumptions cannot
be used). 

5.3.5 MODEL SELECTION GUIDELINES

So far several batch distillation simulation models with varying complexity have

among the hierarchy of batch distillation models. With these models as the basis,
numerous batch distillation tasks such as optimization and optimal control
(Section 5.4), emerging batch column configurations (Section 5.5), and complex
batch distillation systems (Section 5.5) have been developed.

5.4 OPTIMIZATION AND OPTIMAL CONTROL 
PROBLEMS

The previous sections concentrated on the design and simulation of batch dis-
tillation columns using a hierarchy of models. Optimal design and operation in
a batch distillation process are challenging decision-making problems that
involve several time-dependent and -independent decisions in the face of oper-
ating and thermodynamic constraints. Mathematical optimization theory makes
the decision-making process easier and more systematic. With the advent of
computers, it is possible to exploit these theories to the maximum extent,
provided that the problem is properly formulated in terms of the objective
functions and constraints and the suitable solution method from the optimization
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been presented. Figure 5.9 shows general guidelines to choosing the best one
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theory is identified. Optimization methods are also used in solving and imple-
menting control problems in batch distillation. This section presents design
optimization, optimal control, and closed-loop control problems.

Literature on the optimization of the batch column is focused primarily on
the solution of optimal control problems, including optimizing the indices of
performance such as maximum distillate, minimum time, and maximum profit;
however, literature on the optimal design of batch distillation for performing
specified operations using the constant reflux or variable reflux modes is very
limited. This section describes optimal control problems within the context of
performance indices and optimization techniques. Some recent articles
address the problem of design and optimal control policy together by combining
optimal control theory and numerical optimization methods. This approach for
simultaneous optimal design and operation is described later. Closed-loop control
of columns is presented at the end of this section.

5.4.1 OPTIMAL CONTROL PROBLEMS

This subsection is devoted to optimal control problems in batch distillation, which
have received considerable attention in the literature. In general, control refers
to a closed-loop system where the desired operating point is compared to an
actual operating point and a knowledge of the error is fed back to the system to
drive the actual operating point toward the desired one; however, the optimal
control problems we consider here do not fall under this definition of control.
Because the decision variables that will result in optimal performance are time
dependent, the control problems described here are referred to as optimal control
problems; thus, use of the control function here provides an open-loop control.
The dynamic nature of these decision variables makes these problems much more

FIGURE 5.9 Model selection guidelines for batch distillation simulation.
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difficult to solve as compared to normal optimization, where the decision variables
are scalar.

These problems are categorized by: (1) performance indices and (2) solution
methods. The following subsection discusses the performance indices for optimal
control problems (maximum distillate, minimum time, and maximum profit) and
is followed by a subsection on mathematical techniques used to solve optimal
control problems: calculus of variations, Pontryagin’s maximum principle,
dynamic programming, and nonlinear programming (NLP) techniques. The first
three techniques treat the decision variables as vectors, while the NLP approach
requires the variables to be transformed into scalars. For details about these
methods, please refer to Diwekar.22,23

5.4.1.1 Performance Indices for Optimal Control Problems

Optimal control problems can be classified as:

• Maximum distillate problem, where the amount of distillate of a spec-
ified concentration for a specified time is maximized.5,24–27 This prob-
lem can be represented as follows:

(5.11)

subject to the material and energy balances. Converse and Gross5 first
reported the maximum distillate problem for binary batch distillation,
which was solved using Pontryagin’s maximum principle, the dynamic
programming method, and the calculus of variations. Diwekar et al.24

extended this optimization model to multicomponent systems and used
the shortcut batch distillation model along with the maximum
principle to calculate the optimal reflux policy. Logsdon et al.25 used
the orthogonal collocation approach on finite elements and NLP opti-
mization techniques over the shortcut model, and they extended this
method to the rigorous batch distillation model,27 in which they con-
sidered the effect of column holdups on optimal control policy.

• Minimum time problem, where the batch time required to produce a
prescribed amount of distillate of a specified concentration is mini-
mized.22,28 Although there are several different formulations for the
minimum time problem, Diwekar22 derived the following formulations
to establish a unified theory for all the optimal control problems:

(5.12)

where t* is a dummy variable as a state variable.
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• Maximum profit problem, where a profit function for a specified con-
centration of distillate is maximized.25,29–31

Much of the recent research on optimal control problems can be classified
into this problem. Kerkhof and Vissers29 were the first to use the profit function
for maximization in batch distillation, and they solved the optimal control prob-
lem. They obtained the following simple objective function:

(5.13)

subject to purity constraints and column modeling equations.
Diwekar et al.24 used a different objective function to solve the profit maxi-

mization problem under the constant and variable reflux conditions. Logsdon et
al.25 formulated a new profit function and solved the differential algebraic opti-
mization problem for optimal design and operation. Li et al.30 developed a detailed
dynamic multifraction batch distillation model, discretized the model using the
orthogonal collocation method on finite elements, and finally solved the maximum
profit model using an NLP optimizer. Mujtaba and Macchietto31 considered a
rigorous reactive distillation system for the maximum conversion problem, which
can also be classified as the maximum profit problem. The detailed dynamic
system is then reduced by using polynomial curve-fitting techniques and solved
by using an NLP optimizer.

A variant of this objective function is to minimize the mean rate of energy
consumption when the market size for the product is fixed by the current demand.
The objective function is given by Furlonge et al.:32

(5.14)

s.t. xD,avg ≥ x*,

D ≥ D*,

where QR is the reboiler heat duty. They used this objective function for optimal
control of multivessel columns for the first time. Hasebe et al.33 also presented
the optimal operation policy based on energy consumption for the multivessel
column.
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5.4.1.2 Solution Techniques

To solve the optimal control problems, the following four solution techniques
have been used in the literature; of these, Pontryagin’s maximum principle and
nonlinear programming techniques are commonly used today:

• Calculus of variations — The theory of optimization began with the
calculus of variations, which is based on the vanishing of the first
variation of a functional (dJ = 0) according to the theorem of minimum
potential energy, which involves the definition of stationary values for
a function. This leads to the Euler equation and natural boundary
conditions.5

• Pontryagin’s maximum principle — The maximum principle was first
proposed in 1956 by Pontryagin.34 The objective function formulation
is represented as a linear function in terms of the final values of a state
vector and a vector of constants. Like the calculus of variations, this
method is only applicable to optimal control problems for fixed scalar
variables. The maximum principle necessitates repeated numerical
solutions of two-point boundary value problems, thereby making it
computationally expensive. Furthermore, it cannot handle bounds on
the control variables.

• Dynamic programming — The method of dynamic programming is
based on the principle of optimality, as stated by Bellaman.35 In short,
the principle of optimality states that the minimum value of a function
is a function of the initial state and the initial time. This method is best
suited for multistage processes; however, the application of dynamic
programming to a continuously operating system leads to a set of
nonlinear partial differential equations.

• NLP optimization techniques — NLP optimization techniques are the
numerical tools used by models involving nonlinear algebraic equa-
tions. Obviously, applying NLP techniques to optimal control problems
involves discretization of the control profile by applying either the
orthogonal collocation on finite elements,25,30,33 the control vector
parameterization approach,36,32 or the polynomial approximation.26

These discretization approaches add nonlinearities to the system as the
number of nonlinear equations increase; therefore, they require good
initializations and may result in suboptimal solutions. On the other
hand, the polynomial approximation methods depend on the crucial
decision of choosing the right type and order of polynomials for
approximating the control profile.

A new approach to optimal control problems in batch distillation, proposed
in a paper by Diwekar,22 combines the maximum principle and NLP techniques.
This algorithm reduces the dimensionality of the problem (caused by NLP tech-
niques) and avoids the solution of the two-point boundary value problems (caused
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by the maximum principle). Furthermore, it was shown that for batch distillation
problems, bounds could be imposed on the control vector by virtue of the nature
of the formulation.

5.4.2 CLOSED-LOOP CONTROL

The two traditional batch operation policies, constant reflux and variable reflux
policies, involve different control strategies. For the constant reflux policy, where
the distillate composition is continuously changing, the average distillate com-
position can only be known at the end of operation unless proper feedback from
the operation is obtained. The control of the average distillate composition is,
then, of an open-loop control nature; however, the variable reflux policy is inher-
ently a feedback operation because the reflux ratio is constantly adjusted to keep
the distillate composition constant. The purpose of designing a closed-loop con-
trol scheme is to reduce the sensitivity of the plant to external disturbances.
Because batch distillation begins with total reflux to obtain a steady state and the
distillate is withdrawn after that point, the reflux ratio and distillate composition
may oscillate if a controller gain is not properly selected. This is the reason why
the constant composition control proves to be very challenging. This subsection
describes recent research efforts on closed-loop control problems.

Quintero-Marmol et al.37 proposed and compared several methods for esti-
mating the online distillate composition by feedback control under constant reflux
operating mode in a batch rectifier. An extended Luenberger observer for tracking
the distillate composition profile proved to provide the best result.

Bosley and Edgar38 considered modeling, control, and optimization aspects
of batch rectification using nonlinear model predictive control (NMPC) and
implemented an optimal batch distillation policy that was determined a priori by
the offline optimization. NMPC can determine the set of control moves that will
yield the optimal trajectory and allow explicit constraints on inputs, outputs, and
plant states. It is known that NMPC is one of the best approaches for distillate
composition control; however, the control scheme is computationally intensive
because optimization problems are solved inside this control loop. This work was
further studied by Finefrock et al.,39 who studied nonideal binary batch distillation
under the variable reflux operating policy. Because the gain space can be changed
significantly after a switch to the production phase, they suggested a gain-sched-
uled proportional and integral (PI) controller based on NMPC if the instantaneous
distillate composition is known.

Besides NMPC, Barolo and Berto40 provided a framework for obtaining
composition control in batch distillation using a nonlinear internal model control
(NIMC) approach. NIMC can exactly linearize the system input-output map and
be easily tuned by using a single parameter for each component. The distillate
composition is estimated by the selected temperature measurements. They also
used an extended Luenberger observer for a composition estimator. Although this
approach can be reliable and easily implemented, the authors pointed out the
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problem of selecting the best temperature measurement locations and the prob-
lems with using the extended Luenberger observer for a batch column with a
large number of trays. For a tighter composition control, more research is nec-
essary to develop a robust and fast closed-loop control scheme.

Closed-loop control schemes have also been applied to new column config-
urations and complex batch systems. For the control of the middle vessel column,
Barolo et al.41 first proposed and examined several control schemes with or
without product recycling. They showed the experimental results of the proposed
control structures for dual composition control with or without impurity.
Farschman and Diwekar42 proposed dual-composition control in which the two
composition control loops can be decoupled if the instantaneous product compo-
sitions are known. The degree of interaction between the two composition control
loops can be assessed using the relative gain array technique.

Hasebe et al.43 proposed a single-loop cascade control system to control the
composition of each vessel in the multivessel column. The vessel holdup under
total reflux is the manipulated variable, and the reflux flow rate from each vessel
is, then, controlled by a simple PI controller. Skogestad et al.4 developed a simple
feedback control strategy in which the temperature at the intermediate vessel is
controlled by the reflux rates from the vessels, thereby adjusting the vessel
holdups indirectly. Further, Furlonge et al.32 compared different control schemes,
including optimal control problems, in terms of energy consumption.

Future work in closed-loop control problems can involve identifying the
proper temperature measurement locations, easy parameter tuning, and focusing
on tracing the optimal profiles, as well as on-spec products.

5.5 EMERGING BATCH COLUMNS, COMPLEX 
SYSTEMS, AND SYNTHESIS

In the previous sections, we described various aspects of batch distillation, includ-
ing the development of a hierarchy of models ranging from simplified to rigorous,
optimization, and optimal control of the batch distillation (rectification) operation.
This section presents discussion on alternative emerging column configurations
and thermodynamically or kinetically complicated batch distillation systems such
as azeotropic, extractive, and reactive distillations. In addition, this section
describes how these complex batch column configurations and complex systems
result in difficult batch distillation synthesis problems.

5.5.1 EMERGING BATCH COLUMNS

5.2e), and a multivessel column (Figure 5.2f) as emerging batch columns. These
column configurations and their advantages are described here.
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Figure 5.2 shows a batch stripper (Figure 5.2d), a middle vessel column (Figure
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5.5.1.1 Batch Stripper

Although the batch stripper, often called an inverted batch column and originally
proposed by Robinson and Gilliland,44 is not a true emerging batch column, it
has gained much attention in recent literature. In this column configuration, the
feed mixture is charged into the top reflux drum, and the products are withdrawn
at the bottom reboiler.

Bernot et al.14 developed a semirigorous model of the batch stripper for
multicomponent azeotropic distillation and showed that the batch stripper, com-
pared to the rectifier, is essential to break a minimum boiling point azeotrope.
Sørensen and Skogestad45 compared the batch stripper with the batch rectifier in
terms of batch time and proposed that the inverted column configuration is better
than the regular column for separations where the light component in the feed is
present in a small amount. They also reported that in some cases the stripper can
separate feed mixtures while the rectifier design is infeasible for that separation.
Kim and Diwekar,17 based on this shortcut model, derived more generalized
heuristics for column selection using various performance indices — namely,
product purity and yield, feasibility and flexibility, and thermodynamic efficiency.

Example 5.6
From Example 5.2, the bottom product composition of a heavy component (B)
of the batch rectifier is 0.5247. Repeat the simulation using a batch stripper when
the product throughput is the same (i.e., B = 38.969 mol), and compare the bottom
product compositions of the heavy component (B).

Solution
The reflux ratio of the batch rectifier in Example 5.2 should be converted to the
reboil ratio (RB) of the batch stripper. Because we assume a constant boilup rate
(V), the relationship between the reflux and reboil ratios is: 

So, the reboil ratio becomes 2.82, and the other design and operating conditions

which the composition of a heavy component (xB,B) is higher than that from the
batch rectifier. The average bottom product composition is 0.6819. Thus, if a
bottom product is a main concern, it would better to use a batch stripper to obtain
highly pure bottom product. For detailed comparisons of the batch rectifier and
stripper, please refer to the literature by Sørensen and Skogestad45 and Kim and
Diwekar.17 

5.5.1.2 Middle Vessel Column

This column configuration consists of a middle vessel between two sections of
the batch column. The feed is initially charged into the middle vessel, and the
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remain the same. The bottom composition profiles are shown in Figure 5.10, in
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products are simultaneously withdrawn from the top and the bottom of the
column. The middle vessel column can be an ideal configuration for ternary batch
systems. This column configuration has been known since the 1950s; however,
only recently has an analysis of this column configuration been published.
Davidyan et al.3 analyzed the dynamic behavior of the middle vessel column for
ideal binary and ternary and azeotropic ternary systems. They found additional
steady states that are stable or unstable singular points of a dynamic system
describing the column. They also introduced a new parameter (q′), which is the
ratio of the vapor boilup rate in the rectifying section to the vapor boilup rate in
the stripping section. Depending on the value of variable q′, the column shows
a qualitatively different behavior for a domain of the reflux and reboil ratio. Figure
5.11 shows the effect of q′ on the top and bottom product purities. For q′ = 1,

FIGURE 5.10 Bottom composition profiles of a batch stripper from Example 5.6.

FIGURE 5.11 The effect of q on the top and bottom product purities in the middle vessel
column.
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the distillate composition of the more volatile component increases with time,
and this is a favorable trend for the light key distillate; however, the bottom
composition of the least volatile component is decreasing. These trends are
opposite to those of batch rectification, for which the trends are similar to the
case of q′ = 10; therefore, the new degree of freedom (q′) is an important parameter
to be used in optimizing the operation. Meski and Morari46 extended their previous
work under the infinite separation and the minimum reflux conditions and sug-
gested that the middle vessel column always outperforms the rectifier and stripper
in terms of batch time. For a binary separation system, they also found that the
steady-state operation corresponding to q′ = 1 is the optimal control policy.

This column configuration is very flexible and effective; hence, one can, in
theory, simultaneously obtain very pure components in the top, bottom, and
middle vessel columns. For example, Safrit et al.47 investigated extractive distil-
lation in the middle vessel column and found that this column can recover all of
the pure distillate product from an azeotropic feed with a relatively small size of
reboiler, while a rectifier alone would require a still pot of infinite size.

5.5.1.3 Multivessel Column

Similar to a middle vessel column is the multivessel column. Hasebe et al.43

presented a heat-integrated, multieffect batch distillation system (MEBDS) as an
alternative to continuous distillation (Figure 5.12). The feed was initially distrib-
uted among all the middle vessels and operated in total reflux mode. They
proposed a composition control system in which the vessel holdups are manip-
ulated by level controllers. They concluded that this new emerging column con-
figuration can have better separation performance than continuous distillation for
systems having a larger number of products. Hasebe et al.48 published an optimal
operation policy for this column using variable holdup modes. They optimized

FIGURE 5.12 Multiple-effect batch distillation system. (From Hasebe, S. et al., Compar-
ison of the Separation Performances of a Multieffect Batch Distillation System and a
Continuous Distillation System, preprints of IFAC Symposium on Dynamics and Control
of Chemical Reactors, Distillation Columns, and Batch Processes (DYCORD ’95), Hels-
ingor, Denmark, 1995, pp. 249–254. With permission.)
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the liquid flow rates in order to minimize the batch time and concluded that the
varying holdup mode resulted in up to 43% more distillate than that of the constant
holdup mode. Recently, Hasebe et al.33 optimized the holdup of each vessel as a
function of time for the total reflux multivessel system. When they compared the
optimal reflux mode with the constant reflux and variable reflux modes, they
found that the performance index, defined as the amount of products per batch
per total batch time, for a variable reflux ternary system was approximately 18
to 38% greater.

Skogestad et al.4 reported a new column configuration they referred to as a
multivessel column. This column is operated under total reflux conditions. They
showed that the steady-state compositions in the intermediate vessels could be
maintained regardless of the initial feed composition by controlling the liquid
rate from the middle vessel so the temperature of the tray just below the middle
vessel remained constant. This operation policy can be the ideal operation policy
of batch distillation, especially for the middle vessel and multivessel columns.
The total reflux mode is commonly used for the multivessel column4 because
multiple products can be accumulated in each vessel according to their relative
volatilities. As a variant of this operating mode, the cyclic operation mode has
also been studied. Some literature can be found on the cyclic operation policy,
which is essentially a variant of the total reflux condition. Recently, Sørensen49

presented a comprehensive study on optimal operation of the cyclic operating
mode of the batch rectifier, stripper, and middle vessel columns. The computa-
tional results and experiments showed a significant savings in batch time for some
separations.

Furlonge et al.32 extended their previous study to optimal control problems
and developed more detailed rigorous equations with dynamic energy balance
equations, liquid and vapor holdups, and dry and wet head losses on each tray.
They compared various operating modes in terms of mean energy consumption
rate and found that the optimal initial feed distribution greatly improves the
column performance, resulting in an energy consumption rate half that of the
rectifier.

5.5.2 COMPLEX BATCH DISTILLATION SYSTEMS

Thermodynamically and kinetically complex systems such as azeotropic, extrac-
tive, and reactive systems pose additional bottlenecks in the design and operation
of batch columns. The operational flexibility offered by batch distillation, along
with new emerging designs, can provide promising alternatives for circumventing
the bottlenecks. The following sections describe the methods for analyzing these
complex systems. These methods also provide heuristics for the synthesis of these
columns, especially in terms of the different cuts obtained in a single column or
performance comparison of the complex columns.
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138 Batch Processes

5.5.2.1 Azeotropic Batch Distillation

Azeotropic distillation is an important and widely used separation technique as
a large number of azeotropic mixtures are of great industrial importance. Despite
their importance, azeotropic distillation techniques remain poorly understood
from a design standpoint because of the complex thermodynamic behavior of the
system. Theoretical studies on azeotropic distillation have mainly centered around
methods for predicting the vapor–liquid equilibrium data from liquid solution
models and their application to distillation design; however, only during the past
two decades has there been a concerted effort to understand the nature of the
composition region boundaries. Doherty and coworkers13,14 in their pioneering
works proposed several new concepts in azeotropic distillation. They established
the use of ternary diagrams and residue curve maps in the design and synthesis
of azeotropic continuous distillation columns. In batch distillation, they outlined
a synthesis procedure based on the residue curve maps.

The residue curve map graphs the liquid composition paths that are solutions
to the following set of ordinary differential equations:

(5.15)

where n is the number of components in the system, and the independent variable,
warped time (ξ), is a monotonically increasing quantity related to real time. One
can see that Equation 5.15 is one form of the Rayleigh equation described earlier.
The residue curve map occupies a significant place in the conceptual design stage
of column sequencing in continuous distillation and fractions (cuts) sequencing
in batch distillation.13,14,50

Despite the advances in the thermodynamics for predicting azeotropic mix-
ture, feasible distillation boundaries, and sequence of cuts, the azeotropic batch
distillation system is still incipient in terms of design, optimization, and optimal
control. The design problems of these complex systems are described in Section
5.5.3.

Example 5.7
A residue curve map of the propylamine–acetonitrile (ACN)–water system52 are

the lightest component to the heaviest component. Find the batch distillation
regions and define the product cuts for each region.

Solution
Because the curve from the propylamine apex to the ACN–water azeotrope
distinguishes two different product paths, this system has two distillation regions.
For the left distillation region, the product sequence is propylamine, ACN–water
azeotrope, and water. For the right region, the product sequence is propylamine,
ACN–water azeotrope, and ACN. This example shows that conventional

dx

d
x y i … ni

i iξ
= − = , , , − ,1 2 1
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given in Figure 5.13, in which the curves show liquid composition profiles from
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distillation cannot obtain pure water and pure ACN cuts at the same time due to
the distillation barrier; therefore, this system requires a mass separating agent to
cross over this barrier, resulting in a novel batch distillation synthesis problem.

5.5.2.2 Extractive Batch Distillation

Extractive batch distillation can provide advantages of both batch distillation and
extractive distillation; thus, this process can be very useful for separation and
recovery of waste solvent streams that generally form multicomponent azeo-
tropes. However, most of the recent research efforts on this kind of distillation
have been limited to feasibility analysis. Safrit et al.47 and Safrit and Westerberg51

investigated batch extractive distillation in the middle vessel column. They
showed that the extractive process is comprised of two steps (operations 2 and
3) and requires a much smaller still pot size. They also identified feasible and
infeasible regions and showed that, by varying column conditions such as the
product rate, reflux ratio, and reboil ratio, one can steer the middle vessel com-
position to avoid an infeasible region. 

a middle vessel column, recently developed by Kim,52 in order to separate ace-
tonitrile from an aqueous mixture. Fraction 1 is a total reflux and total reboil
condition for startup without entrainer (E) feeding. The entrainer is fed to the
bottom section of the middle vessel column in fraction 2, where the entrainer can

FIGURE 5.13 A residue curve map of the propylamine–acetonitrile–water system for
Example 5.7.
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Figure 5.14 shows operational fractions of batch extractive distillation using
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increase relative volatility and separate highly pure water as a bottom product.
In this fraction, the middle vessel column operates as a stripper. Fraction 3, where
entrainer feeding stops, recovers the entrainer as a top product and a waste cut
as a bottom product. Fraction 4 separates the entrainer and ACN as top and bottom
products, respectively. This example shows the usefulness of batch extractive
distillation using a middle vessel column. This process can provide flexibility in
selecting a mass separating agent (entrainer) over batch azeotropic distillation
and in obtaining proper product sequences and can exhibit seamless batch distil-
lation operation between fractions. Detailed advantages of this process are
explained later.

5.5.2.3 Reactive Batch Distillation

Although reactive distillation was acknowledged as a unit operation as early as
in the 1920s, it has gained its research interest as an excellent alternative to both
reaction and separation since the 1980s. For example, most of the new commercial
processes of methyl-tert-butyl ether (MTBE, an anti-knocking agent) are based
on continuous reactive distillation technologies. The analysis of a reactive batch
distillation model in a staged column was first published by Cuille and Reklaitis.53

Using a stiff integrator for the differential and algebraic equations, they presented
a numerical solution technique for the esterification of 1-propanol and acetic acid.
Wajge et al.54 developed a new solution technique based on the orthogonal
collocation method and the finite-element method for the reactive batch distilla-
tion of a packed column. The differential contactor model of a packed column,
originally designed by Hitch and Rousseau,55 was then reduced to low-order

FIGURE 5.14 Operational fractions of batch extractive distillation in a middle vessel
column.
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polynomials with the desired accuracy. They compared the results with those
from the finite difference method and global collocation method for nonreactive
packed-bed batch distillation systems and showed that their approach was more
efficient. Wajge and Reklaitis56 extended their previous work to the optimal
campaign structure for reactive batch distillation, which can offer reasonably
sharp separations between successive cuts and reduce the amount of waste off-
cuts. To obtain the optimal reflux policies or profiles for the maximum distillate
or minimum time problem, multiperiod reflux optimization can be applied.
Macchietto and Mujtaba57 showed that, for the same production rate, the waste
generation can be significantly reduced under the optimal campaign structure.

An efficient optimization approach for reactive batch distillation using poly-
nomial curve fitting techniques was presented by Mujtaba and Macchietto.31 After
finding the optimal solution of the maximum conversion problem, polynomial
curve-fitting techniques were applied over these solutions, resulting in a nonlinear
algebraic maximum profit problem that can be efficiently solved by a standard
NLP technique. Four parameters in the profit function (maximum conversion,
optimum distillate, optimum reflux ratio, and total reboiler heat load) were then
represented by polynomials in terms of batch time. This algebraic representation
of the optimal solution can be used for online optimization of batch distillation.

A dynamic rate-based model for packed-bed batch distillation was recently
presented in which a solid catalyst was used first in the reactive batch distillation
modeling.58 The pilot-scale experiments were conducted with strong anion-
exchange resins. The results were compared with the experimental data and with
results from its counterpart, the equilibrium-based model. The rate-based model
provides more accuracy, much higher physical significance, and more predict-
ability of the experimental data even though the formulation of the rate-based
model is complicated.

5.5.3 BATCH DISTILLATION SYNTHESIS

The complexity of batch distillation design and operation is also reflected in the
batch distillation synthesis problem. In continuous distillation, optimal column
sequencing is the main focus of synthesis research. Several past reviews are
available on this subject.59,60 Unlike continuous distillation synthesis, the area of
batch distillation synthesis is complicated by its transient nature. Decisions such
as cut selection, operating mode, configuration type, and column sequencing enter
into the synthesis problem. For complex systems such as azeotropic, extractive,
and reactive distillation, identifying the distillation boundaries and steering
toward feasible and optimal regions add further complications to the problem;
however, as seen in the previous section, theoretical and geometric analyses can
point toward optimal synthesis solutions in this area.13,14,50

Example 5.8
For the residue curve map of the propylamine–acetonitrile–water system given
in Example 5.7, find the necessary batch distillation cuts to separate all three pure

DK3017_C005.fm  Page 141  Friday, August 5, 2005  1:26 PM

© 2006 by Taylor & Francis Group, LLC



142 Batch Processes

components if the initial feed (F0) is (0.58, 0.20, 0.22). Discuss which column
configuration is best for this separation.52

Solution
Because the initial feed is located in the left distillation region, draw a line from
a stable node (H2O apex) through the feed point to the distillation boundary. The
top product (D1) is on the distillation barrier. Draw a line from an unstable node
(propylamine apex) through D1 (i.e., now F2) to the ACN–water boundary line,
which will be B2. Now there are only two components in the system, thus the
top and bottom product cuts are ACN–water azeotrope and ACN, respectively.
The product cuts are summarized in Table 5.3.

If a batch rectifier is used, shutdown and setup time is required before cut 2
because the top product from cut 1 is the feed to the bottom reboiler in the next
cut. Similarly, if a batch stripper is used, shutdown and setup time is required
before cut 3. Because a middle vessel column performs both rectifying and
stripping operations, a middle vessel column configuration is the optimal column
configuration. The operational fractions or cuts of this batch synthesis problem

State-of-the-art techniques used in the solution of synthesis problems include:
(a) a heuristic approach, which relies on intuition and engineering knowledge;
(b) a physical-insight approach, which is based on exploiting basic physical
principles; and (c) an optimization approach. In this section, two common
approaches, heuristics and optimization, are discussed.

The recent literature in batch distillation has been devoted to comparing
emerging column configurations with the conventional one, thereby obtaining
heuristics for optimal column configuration, optimal design, and optimal operat-
ing conditions.17,43,45,46,61 In these studies, parameters such as product purity, batch
time, or total cost were evaluated to compare the performance of column config-
urations. Chiotti and Iribarren61 compared the rectifier with the stripper in terms
of annual cost and product purity. They noted that the rectifier is better for the
more volatile component products while it is more economical to obtain less
volatile component products using the stripper. Meski and Morari46 compared
three column configurations in terms of the batch time under fixed product purity
and infinite number of plates. They observed that the middle vessel column always

TABLE 5.3
Product Cuts for Example 5.8 

Cut No. Feed Bottom Product Cut Top Product Cut

1 F1 = F0 B1 = pure water D1 = propylamine–ACN
2 F2 = D1 B2 = ACN–water D2 = pure propylamine
3 F3 = B2 B3 = pure ACN D3 = ACN–water azeotrope
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are shown in Figure 5.3.  
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had the shortest batch time, and the rectifier had the next shortest time. Sørensen
and Skogestad45 studied two competing column configurations, rectifier and strip-
per, in the context of minimum optimal operating time and also described the
dynamic behavior of these columns. They concluded that the stripper is the
preferred column configuration when a small amount of the more volatile com-
ponent is in the feed and that the rectifier is better when the feed has a high
amount of the more volatile component. Although several studies support the
same heuristics, some studies present contradictions among the suggested heu-
ristics. For example, the batch time studies of Meski and Morari46 and Sørensen
and Skogestad45 give conflicting results with respect to feed composition. This
is due to the limited ranges of parameters and systems considered, as well as the
complexity and difficulty of the problem of column selection.

In order to elicit comprehensive heuristics, the analysis must cover a wider
range of column configurations, operation policies, and design variables, and
various performance indices must be included. Kim and Diwekar17 extended the
column configuration problem using four performance indices: product purity,
yield, design feasibility and flexibility, and thermodynamic efficiency. It is gen-
erally observed that the rectifier is a promising column configuration for the more
volatile component product and that the stripper is better in the opposite case.
Feasibility studies based on the minimum number of plates and minimum reflux
ratio addressed the flexibility of such a high-purity configuration for changing
operating conditions. It was found that the rectifier and the stripper have distinc-
tive feasibility regions in terms of the feed composition. Thermodynamic effi-
ciency indicates how close a process or system is to its ultimate performance and
also suggests whether or not the process or system can be improved. The rectifier
can also be a promising column configuration in terms of thermodynamic effi-
ciency, but in some conditions higher efficiencies of the stripper or the middle
vessel column can be observed. Furthermore, for the middle vessel column, the
thermodynamic efficiency is greatly affected by an added degree of freedom (q′).
This systematic and parametric study by Kim and Diwekar17 concluded that the
trade-offs between performance indices should be considered within a multiob-
jective framework.

5.5.4 COMPUTER-AIDED DESIGN SOFTWARE

It is difficult to analyze batch distillation without using computers due to the two
reasons stated before: (1) the process is time varying, so one has to resort to
complex numerical integration techniques and different simulation models
for obtaining the transients; and (b) this ever-changing process also provides
flexibility in operating and configuring the column in numerous ways. Based on
the current state of the art in batch distillation techniques and computer simulation

it. Several commercial software packages are available for simulations, optimi-

Bdist-SimOPT (Batch Process Technologies), BatchSim (Simulation Sciences),
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technology, Table 5.4 identifies the required functionality and the rational behind

zations, and optimal controls of batch distillation (see Table 5.5). These include
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BatchFrac (Aspen Technology, based on Boston et al.10), and MultiBatchDS
(Batch Process Research Company). Bdist-SimOPT and MultiBatchDS are
derived from the academic package BATCHDIST.11 Most of these packages,
except MultiBatchDS, are usually limited to conventional systems as they were
developed in early or late 1980s. The educational version of MultiBatchDS can

5.6 SUMMARY

This chapter presented a complete review of the batch distillation literature,
beginning from the first theoretical analysis to the current state of the art in
computer-aided design and optimization methods. The new advances in batch
distillation include novel column configurations, optimal designs, optimal oper-
ation policies, and new methods of analysis. These new advances can increase
the possibility of using batch distillation profitably for a wide variety of separa-
tions, but they also present a bewildering array of problems regarding the selection
of proper configurations, the correct operating mode, and optimal design param-
eters. Thus, we will certainly see future researchers working on various aspects
of design, analysis, and synthesis of batch distillation, some of which are outlined
below: 

TABLE 5.4
Batch Distillation Software Requirements2 

Features Why

Windows User-friendly state-of-the-art input/output interface
Databank Ability to generate data from structural information
Operations Constant reflux

Variable reflux
Fixed equation optimal
Optimal reflux

Yield improvement due to operational flexibility; 
systematic optimization/optimal control methods

Models Shortcut
Semirigorous
Design feasibility
Optimization

Hierarchy of models for numerical stability, design 
feasibility, and advanced system designs

Options Reactive distillation
Three-phase distillation
Uncertainty analysis

Advanced feature

Configurations Semibatch
Recycle waste cut
Rectifier
Stripper
Middle vessel column

Emerging designs provide promising directions for 
effective designs to obtain purer products
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• A more extensive analysis for each column configuration must be
carried out. For example, the effect of q′ on the performance of the
middle vessel column has not been fully investigated. For the multi-
vessel column, no general guidelines or heuristics exist for column
holdups and operating modes because of the additional degrees of
freedom.

• Azeotropic, extractive, and reactive distillations and off-cut recycling
operations have been studied extensively in recent years, but they are
in the developing stage. For instance, for continuous reactive distilla-
tion, solid catalysts are commonly used, but only a few applications
of solid catalysts in batch reactive distillation exist in theory and
practice.

• Comprehensive heuristics for optimal design and synthesis should be
derived. Several heuristics and trade-offs between heuristics can be
found, but they are still limited to the systems considered.

• Batch processes often encounter feed composition variations and other
operational uncertainties. Consideration of uncertainties at various
stages of design and operation can provide useful and cost-effective
solutions to the batch processing industries.

TABLE 5.5
Batch Distillation Software Comparison2 

Features BATCHSIM BatchFrac MultiBatchDS

Windows Yes No Yes
Databank SIMSCI Aspen Plus Cranium/Others
Operations Constant reflux Yes Yes Yes

Variable reflux Yes (limited) Yes (limited) Yes
Fixed equation optimal No No Yes
Optimal reflux No No Yes
Shortcut No No Yes

Models Semirigorous No No Yes
Reduced order No No Yes
Rigorous Yes Yes Yes
Design feasibility No No Yes
Optimization No No Yes

Options Reactive distillation No Yes (limited) Yes (limited)
Three-phase distillation No Yes Yes
Uncertainty analysis No No Yes
Semibatch No No Yes
Recycle waste-cut No No Yes

Configurations Rectifier Yes Yes Yes
Stripper No No Yes
Middle vessel No No Yes
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• An important research area in this field is batch distillation synthesis.
Based on future advances in batch distillation, batch distillation synthesis
from a superstructure can lead to the most promising and flexible column
configuration with the appropriate operation mode and conditions.

NOTATION

α relative volatility
B amount of bottom residue (mol)
dB/dt bottom product flow rate or change of bottom product (mol/hr)
D amount of distillate (mol)
dD/dt distillate rate (mol/hr)
E entrainer feed rate (mol/hr)
F amount of feed (mol)
Hj molar holdup on plate j (mol)
H0,HD condenser holdup (mol)
ID enthalpy of the liquid in the condenser (J/mol)
Ij enthalpy of the liquid stream leaving plate j (J/mol)
Jj enthalpy of the vapor stream leaving plate j (J/mol)
Lj liquid stream leaving plate j (mol/hr)
L0 liquid reflux at the top of the column (mol/hr)
n number of components
N number of plates
q′ ratio of the top vapor flow rate to the bottom vapor flow rate
QR reboiler heat duty
R reflux ratio (L/D)
Rt reflux ratio as a function of time
T batch time (hr)
Vj vapor stream leaving plate j (mol/hr)
x liquid-phase mole fraction
xD liquid-phase mole fraction of the distillate
xD,avg average distillate mole fraction
xF liquid-phase mole fraction of the feed
y vapor-phase mole fraction
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6.1 INTRODUCTION

 

Many chemical manufacturing processes involve solid particles, either as feeds
or products or as internal process enhancers such as catalysts. These processes
span a range of industries including pharmaceuticals, pigments, agricultural
chemicals, and foods, as well as polymers. Solution crystallization, where a
solvent (or a mixed solvent) with one or more solutes is involved, is a critical
operation in solids processing because it can strongly affect the characteristics
of a solid product. The crystallization step can perform several functions in a
process, including separation or purification, as well as particle formation. 

Crystallization is a key operation because it affects both product composition
and morphology, which often determine product quality and process operability.
The product specifications usually include the production rate of solids, required
purity levels, crystal size distribution (CSD), and morphology. Process operability
often depends on characteristics such as the flowability of a solid, which is largely
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controlled by the crystal shape. The challenge is to operate the crystallizer so
crystals with the desired attributes will be produced. 

The crystallizer unit can be operated as a batch, semibatch, or continuous
process. One of the primary differences between batch and continuous crystal-
lizers is that both temperature and supersaturation cannot be held constant simul-
taneously during batch operation, but this can be done with a continuous crys-
tallizer when the unit reaches steady-state operation. Batch crystallization is often
used in industry for low-volume, high-value-added specialty chemicals such as
pharmaceuticals. 

The purpose of this chapter is to discuss batch crystallization from solution.
The first sections of the chapter provide a basis for the later sections. Fundamental
concepts such as solubility and supersaturation are discussed in Section 6.2 and
crystallization kinetics are discussed in Section 6.3. This review provides a
background for the design models in Section 6.4 and the design and modeling
decisions presented in Section 6.5. Section 6.6 introduces some of the practical
concerns in instrumentation of a batch crystallizer. Section 6.7 introduces a
general methodology for batch crystallizer design, and Section 6.8 gives examples
of how to apply the principles presented in this chapter. Concluding remarks are
given in Section 6.9. 

 

6.2 FUNDAMENTAL CONCEPTS

 

A simplified sketch of a batch unit is given in Figure 6.1. It is usually a jacketed
vessel with a stirrer, and it can contain internal structures such as baffles and a
draft tube. The jacket controls the temperature, and the internal structures facilitate
mixing. The initial feed is often a liquid, although it can contain solids for seeding.
The initial liquid composition is known, as is the particle size distribution (PSD)
and composition of the seeds. The operating temperature and pressure, as well
as the stirring speed, are operating parameters that can be controlled during
operation. In order to understand what is occurring in a crystallizer, it is first
necessary to understand the basic phenomena that influence crystallization, such
as solid–liquid equilibria; for example, material will not crystallize unless the

 

FIGURE 6.1

 

Simplified diagram of a batch crystallizer.
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solution is supersaturated. Therefore, it is first necessary to know the process
conditions under which crystals can form. 

 

6.2.1 S

 

OLUBILITY

 

 

 

The solubility is defined as the maximum amount of solute that will remain
dissolved in a solution under specified equilibrium conditions. The solubility is
often expressed as the quantity of solute per quantity of solution (e.g., g solute
per 100 g solution, where the solution includes the solute as well as the solvent)
or as the quantity of solute per quantity of solvent (e.g., g solute per 100 g
solvent). Sometimes, the quantities are expressed in terms of moles or volume,
but mass is more commonly used. In the case where the crystal is a hydrate, the
solubility specifies whether the data are for the anhydrous material or for the
hydrate. Because solubility is a function of temperature, it is often reported over
a temperature range. If data are not available in the literature, the solubility can
be estimated or measured. 

Literature data can be found in a number of locations, including technical
articles on specific systems, solubility handbooks (such as the one by Seidell

 

1

 

),
and more general-purpose handbooks.

 

2,3

 

 Some data are also available in books
on crystallization.

 

4,5

 

 The solubility can also be estimated from thermodynamics.
These estimations are based on the phase equilibrium concept that the chemical
potential of the solute in the solid form is equal to the chemical potential of the
solute in solution. This may be written as:
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i,solid
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(6.1)

where 

 

f

 

i

 

,

 

solid
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) in the solid, and 
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 is the
fugacity of pure solute 
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 in a subcooled liquid state.

 

6

 

The simplest estimation method is to assume that the solute and solvent form
an ideal solution. In this case, the solubility can be estimated from the van’t Hoff
equation:

 

4,6

 

(6.2)

where 

 

x

 

i

 

 is the solubility given as a mole fraction, 

 

R

 

 is the ideal gas law constant,
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 is the molar enthalpy of fusion for the solute, 

 

T

 

m,i

 

 is the melting point of
solute 
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, and 

 

T

 

 is the temperature of interest. For this equation, absolute temper-
atures must be used. Because the van’t Hoff equation only uses data for the solute,
it does not consider the nature of the solvent. 

For nonideal liquid solutions, the activity coefficient is not equal to one.
Walas
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 showed that for phase equilibria we have:
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(6.3)

where 

 

γ

 

i

 

 is the activity coefficient of solute 

 

i

 

. The activity coefficient can be
calculated from existing methods for calculating the activity coefficient in a liquid
solution. Because no one method is applicable to all systems, it is necessary to
choose a method appropriate to the system under consideration. A review of these
methods

 

7

 

 is not limited to but includes the Scatchard–Hildebrand theory for
nonpolar solutions and the UNIFAC group contribution method for nonelectrolyte
solutions. 

Both of the previous equations assume that the solid is a pure solid; however,
this is not always the case. For a solid solution, the solubility calculations must
be corrected to include the solid-phase activity coefficient 

 

γ

 

i,solid

 

 and the compo-
sition in the solid phase, 

 

x

 

i,solid

 

:

(6.4)

where the subscript “solid” indicates the solid phase. The solid-phase activity
coefficient may be estimated for nonpolar solutes and solvents with a modified
Scatchard–Hildebrand theory.

 

7

 

 As with liquids, no single method is applicable to
all systems. All of the solubility equations given account for the temperature
dependence of the solubility; however, they are only valid over a temperature
range where the heat of fusion is constant. 

Solubility data have also been fit to various empirical expressions, including:

(6.5)

where is the solubility of component 

 

i

 

; are constants for
component 

 

i

 

; and 

 

T

 

 is the temperature.

 

8

 

 These equations are convenient in that
they may be easily coded in a computer program. 

In order to get a phase diagram, we must have solubility information, which
can come from literature data, calculations, or experiments. Although calculations
can be used for the initial estimates, they should be checked against experimental
data. Impurities in the solution can have a strong effect on the solubility. Exper-
iments can be performed at an early stage to determine whether or not the
impurities have a significant effect on the solubility. 
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6.2.2 P

 

HASE

 

 D

 

IAGRAM

 

A phase diagram is one method for showing the feasible region of operation of
a crystallizer. With this diagram, one can immediately eliminate some process
operating conditions that are not feasible. This is demonstrated for a binary system
with a binary eutectic diagram and with a ternary phase diagram. 

 

6.2.2.1 Eutectic Diagram

 

In the binary eutectic diagram shown in Figure 6.2, the solubility is plotted as
temperature vs. composition for components A and B. This is for a simple eutectic
system that has perfect immiscibility of solid A and solid B. This diagram may
be constructed from experimental data or from the equations given for solubility.
The general procedure for constructing such a diagram is to plot the pure com-
ponent melting points, 

 

T

 

m,A

 

 and 

 

T

 

m,B

 

, to then plot the liquidus curves using one
of the solubility equations given above, and then to plot the eutectic point where
the two solubility curves cross. The eutectic point may also be calculated using
the solubility equations given above and the concept that the mole fractions add
to unity at the eutectic point. For the ideal system case, the eutectic point is
determined by finding the temperature where the following is true: 

(6.6)

For other cases, substitute the appropriate expressions for the mole fractions. The
solidus line is the line drawn at the eutectic temperature. 

 

FIGURE 6.2

 

Eutectic diagram.
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The eutectic diagram indicates what happens when a liquid of a given com-
position is cooled. At point 1, the mixture of components A and B is in the liquid
phase with no solids. At point 2, solid component B starts coming out of solution.
As the solution is cooled, more of component B solidifies. As B solidifies, it is
removed from the liquid solution. This causes the composition of the liquid to
change in such a way that it follows the composition of the liquidus. This is
shown at point 3, where the overall composition is given by point 3, the solid
composition is given by 3

 

sol

 

, and the liquid composition is given by 3

 

liq

 

. At the
eutectic temperature, the remainder of the material crystallizes at the same com-
position as the liquid. From a design viewpoint, the eutectic diagram shows that
to remove pure component B it is necessary for the initial solution concentration
to be between that of the eutectic composition (

 

x

 

E

 

) and that of pure component

 

B

 

 (

 

x

 

B

 

 = 1). A similar argument can be made for component A where the starting
composition must be between that for pure A and the eutectic composition. Other
types of eutectic diagrams often exhibit more complex phase behavior; however,

 

6.2.2.2 Ternary Diagram

 

Let us now consider the phase diagram in Figure 6.3, which shows the solubility
of solutes A and B in solvent S at a fixed temperature. The point C

 

SA

 

 represents
the solubility of A in S at the given temperature, while the solubility of B in S
is represented by C

 

SB

 

. The liquidus curves are the dark lines between the two
solubilities. The intersection of the two liquidus curves is the double saturation
point for A and B in solvent S. The region between the liquidus and 100% S will
not contain any solids at the given temperature. Tie lines are shown as dashed
lines. 

The ternary phase diagram provides design information with regard to what
separations are possible. If the goal is to take pure A out of solution, the crystal-
lizer must be operated at the given temperature at a composition shown in the

 

FIGURE 6.3

 

Isothermal ternary diagram for two solutes A and B and a solvent S.

A B

S
Liquid

Phase

Only 

Solid A +

Solution 
Solid B +

Solution 

Solid A & B

+ Solution

CSB
CSA

Double

Saturation

Point  

 

DK3017_book.fm  Page 157  Monday, July 11, 2005  7:54 AM

© 2006 by Taylor & Francis Group, LLC

the simple eutectic diagram shown in Figure 6.2 represents many systems. 
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region marked as “Solid A + Solution.” This region is bounded by the liquidus,
the line between S and A, and a line between pure A and the double saturation
point. Similarly, to remove pure B the crystallizer must be operated in the region
between the liquidus, the line between S and B, and a straight line between pure
B and the double saturation point. Operating below the given temperature in the
triangular region marked “Solid A + Solid B + Solution” will produce a mixture
of solid A and B. 

 

6.2.3 S

 

UPERSATURATION

 

 

 

Supersaturation generally indicates that the solution concentration is higher than
the solubility. Although it depends on the chemical potential of the solute, it is
usually expressed in terms of concentration. One example is the driving force

 

∆

 

C

 

, which is defined as:

 

∆

 

C

 

 = 

 

C

 

 – 

 

C

 

sat

 

(6.7)

where 

 

C

 

 is the concentration, and 

 

C

 

sat

 

 is the concentration in the liquid at
saturation at a given temperature and pressure. A second equation expresses the
supersaturation as a ratio:

Supersaturation = 

 

S

 

 = 

 

C

 

/

 

C

 

sat

 

 

 

(6.8)

A third expression combines the above two expressions as follows:

 (6.9)

This last expression is sometimes referred to as the 

 

relative supersaturation

 

.

 

4,9

 

Because various expressions are used, it is crucial to know which expression was
used in any reported literature data. For example, although the supersaturation is
dimensionless in both Equations 6.8 and 6.9, it has different values. Mistaking
the supersaturation calculated from Equation 6.8 as the one calculated from
Equation 6.9 would give different conditions. 

 

6.2.4 M

 

ETASTABLE

 

 Z

 

ONE

 

 W

 

IDTH

 

When cooling a solution, the maximum supersaturation reached before the
material begins to solidify is the metastable zone limit, which is shown graphically

Two curves are shown: the solubility curve and the metastable limit. The region
in between these two curves is the metastable zone. To the right of the solubility
curve, everything is in solution. If a solution of fixed composition is cooled, it is
possible that it could begin to form solid particles once the solubility temperature
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is reached; however, the solution may be subcooled well into the metastable zone
before particles form. Nuclei may start forming at any point in the metastable
zone. When the solution has cooled to the metastable limit, the solute must come
out of solution as a solid. The liquid cannot be cooled beyond the metastable
limit without forming solids. The metastable zone width (MSZW) varies depend-
ing on the system being studied. It is usually quite narrow for small ionic crystals,
such as NaCl, but can be much wider for organic molecules, such as citric acid.
Also, the actual MSZW achieved depends on the cooling rate being used.

 

10

 

 In
general, the MSZW increases with the cooling rate. 

 

6.2.5 C

 

RYSTAL

 

 S

 

TRUCTURE

 

 

 

AND
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RYSTAL

 

 S

 

HAPE

 

 

 

Crystals are characterized by their internal structure and external shape. Their
internal structure is determined by an ordered arrangement of ions (e.g., NaCl),
atoms (e.g., the carbon in diamond), or molecules (e.g., organic molecules such
as adipic acid) referred to as the 

 

crystal lattice

 

. Each of these lattices can be
described by unit cells that are described by the angles between the major axes
and the lengths of the major axes. These are shown schematically in Figure 6.5.

 

FIGURE 6.4

 

Metastable zone width.

 

FIGURE 6.5

 

Elementary cell with lattice parameters.
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The seven main categories of unit cells are cubic (regular), tetragonal, orthorhom-
bic, triclinic, monoclinic, hexagonal, and rhombohedral. Bravais classified crys-
tals into 14 different lattice systems, which can be organized into these seven
main categories and as shown in Table 6.1.

 

4

 

 
While the external shape is influenced by the crystal lattice, it is also influ-

enced by other factors such as the solvent properties, impurities, and operating
conditions. If crystal shape is controlled by thermodynamics, the crystal must be
grown under conditions very close to saturation conditions; that is, the super-
saturation must be very low during crystal growth. This is rather unlikely during
batch operation. It is much more common in industrial crystallization for crystal
shape to be controlled by kinetics.

 

11

 

Experiments have shown that crystals grown in different solvents have dif-
ferent morphologies. This happens because the faces of a crystal may have
different growth rates. The relative facial growth rates of a crystal may vary under
different operating conditions. Although two crystals may have the same basic

is a cube, and the third crystal is needle shaped. The relative lengths of the sides
are quite different for each of these three cases. This difference in morphology
has been reported in various experimental studies.

 

12,13

 

 The effect of kinetics
on crystal shape in batch crystallizers has been specifically discussed in the
literature.

 

14

 

TABLE 6.1
Crystal Lattices

 

Category Bravais Lattice
Primary
Lengths

Axis
Angles

 

Cubic Cubic

 

a

 

 = 

 

b

 

 = 

 

c

 

 

 

α = β = γ = 90°
Body-centered cubic
Face-centered cubic

Tetragonal Primary tetragonal a = b ≠ c α = β = γ = 90°
Body-centered tetragonal

Orthorhombic (rhombic) Simple orthorhombic a ≠ b ≠ c α = β = γ = 90°
Body-centered orthorhombic
Base-centered orthorhombic
Face-centered orthorhombic 

Triclinic Triclinic parallelepiped a ≠ b ≠ c α ≠ β ≠ γ
Monoclinic Monoclinic parallelepiped a ≠ b ≠ c α = γ = 90° ≠ β

Base-centered monoclinic
Hexagonal Hexagonal prism a = b ≠ c α = β =  90°

γ = 120°
Rhombohedral (trigonal) Trigonal rhombohedron a = b = c α = β = γ ≠ 90°
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lattice, they may have different proportions. An example of this is shown in Figure
6.6 for a cubic lattice where the first crystal is plate shaped, the second crystal
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6.2.6 POLYMORPHISM 

Polymorphs are formed when a material crystallizes into different forms; that is,
the chemical formulas of the crystals are identical, but their internal structures
are different. One of the best known examples is carbon, which can crystallize
into graphite or diamond. Graphite has a hexagonal structure, and diamond has
a cubic structure. The number of polymorphs is not limited to two and depends
on the material. For example, carbon has other structural forms, such as buck-
minsterfullerene. In addition, many of the triacylglycerols (glycerin fatty acid
esters) exhibit three polymorphs, denoted α, β′, and β.15 Controlling the poly-
morphic form is crucial as the polymorphs may have very different properties;
for example, polymorphs may have different densities, different solubilities at
the same temperature, or even different crystal habits.9 One example is the
hardness of carbon where graphite is a soft material that is usually opaque, while
diamond is a very hard material that is often clear or translucent. 

Polymorphs are not limited to carbon. In general, many long-chain molecules
exhibit polymorphism. For example, the amino acids L-glutamic acid and L-
histidine both exhibit two polymorphs.16 For both acids, polymorphs of the same
compound have different solubilities at a given temperature. Although both poly-
morphs of L-glutamic acid have an orthorhombic lattice, the crystals are quite
different due to the lattice spacing. The metastable α crystal has a flat plate shape,
but the stable β crystals are acicular or needle shaped. For L-histidine, the stable
A form is orthorhombic while the metastable B form is monoclinic. 

Other materials that exhibit polymorphs are fats and lipids.15 These are impor-
tant because they are common in food, cosmetics, and pharmaceuticals and
because they determine the product quality of materials with fat crystals, such as
chocolate and margarine. For example, cocoa butter, the main fat in chocolate,
has six polymorphs denoted by the roman numerals I through VI.17,18 These forms
are numbered in order of their ascending melting points (17.3, 23.3, 25.5, 27.5,
33.8, and 36.3˚C). Although form VI is the most stable form, form V is the one
most desired for food products. 

One concern with polymorphs is that some forms are not stable. The stable
forms do not change with time, but the metastable forms may change to another
polymorph. Sometimes this change is very slow. Frequently the metastable poly-
morph has a higher supersaturation at a given temperature than the stable poly-
morph. This causes the metastable polymorph to come out of solution first which

FIGURE 6.6 Regular crystals: plate, cube, and needle.
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is of great concern in the pharmaceutical industry, where a metastable form can
be manufactured but can change to a stable form before it is used, thus changing
the bioavailability. An example of this is ritonavir, a drug for AIDS. The drug
was already in production when a new form appeared in the manufacturing of
plants.19 This new polymorphic form of ritonavir had different solubility proper-
ties. For pharmaceuticals, it is critical to control the crystal form because the
bioavailability of the compound depends on the crystal form.20

Because the different polymorphs are different phases, they can be repre-
sented on phase diagrams. In general, the phase diagrams indicate which poly-
morph is the stable form at a given temperature and pressure. Other polymorphs
may appear under the same conditions, but they are metastable under those
conditions. The exception to this is when one stable polymorph form transitions
to another stable polymorph form at a given temperature. At the transition tem-
perature, two stable polymorphs may exist. 

6.2.7 ENANTIOMORPHS

Enantiomorphs describe two unsymmetric molecules where one is a mirror image
of the other one. Although many of these enantiomorphous crystals are optically
active, not all of them are.4 The ones that are optically active are referred to as
being chiral. These crystals can rotate a plane of polarized light to the right or
left and are denoted as either a D-form or an L-form. Alternatively, the D- and
L-forms are sometimes denoted as R and S, or as + and –. This is very common
with biologically produced materials such as amino acids. A racemic mixture
contains both forms of the material in equal amounts, making the mixture opti-
cally inactive. Crystallization may sometimes be used to separate optical
isomers.20

6.3 CRYSTALLIZATION KINETICS

While thermodynamics gives information on the maximum amount of material
that will crystallize as a solid, it does not give the rate at which the solids are
produced. Crystallization kinetics are needed to provide design information such
as the production rate of crystals, the crystal size distribution, and the crystal
shape. The evolution of particle size and shape is governed by the following
mechanisms: growth, nucleation, agglomeration, and breakage. Each one of these
mechanisms is discussed separately. 

6.3.1 GROWTH 

Particle growth refers to a particle increasing in size due to the addition of material
from solution. This growth rate is often mass transfer controlled. A variety of
models have been developed to model crystal growth. One of the first models
was the McCabe ∆L law:8,21 

DK3017_book.fm  Page 162  Monday, July 11, 2005  7:54 AM

© 2006 by Taylor & Francis Group, LLC



Batch Crystallization 163

(6.10)

where GL(L) is the length-based growth rate defined as dL/dt, L is the represen-
tative particle length, and G0 is constant with respect to particle size. This law
assumes that the growth rate is independent of particle length. The parameter G0

is often a function of temperature and supersaturation, as sometimes represented
by

(6.11)

 (6.12) 

where  is the solubility of i, Ci is the concentration of i, kG is a constant at
a given temperature, and AG is a constant. 

Later researchers22–24 determined that the size-independent assumption was
not always true. A list of some possible growth functions is given in Table 6.2,
where L is the characteristic particle length and v is the particle volume. The
size-dependent functions account for the fact that different diameter particles
grow at different rates. The table also shows growth functions on a volume basis25

as GV(v), where the growth rate is defined as dv/dt and v is the particle volume.
These variables may also be volume independent or volume dependent. 

Typical values of growth rates for selected materials are available from
experimental studies. A review by Garside and Shah26 give data obtained from
continuous crystallizers. Because the basic growth kinetics are the same for both
continuous and batch crystallizers, these data should be similar for batch pro-
cesses. The data range from 0.18 to 13.8 µm/min depending on the system and
the operating conditions. Given that the growth rates span a range of 2 orders of
magnitude, it is clear that a single default value cannot be used for all cases. 

TABLE 6.2
Growth Functions

Description Function Ref.

Size independent GL(L) = G0 McCabe21

Size dependent GL(L) = G0Lα Bransom22

GL(L) = G0(1 + γL) Canning and Randolph23

GL(L) = G0(1 + γL)α Abegg et al.24

Volume independent GV(v) = G1 Ramabhadran et al.25

Volume dependent GV(v) = G1vα Ramabhadran et al.25
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Mersmann et al.27 provide a discussion of the fundamental mechanisms of
crystal growth at the microscopic level. They note that, while a number of steps
in the growth process can be rate limiting, most growth rates in industrial practice
are limited by bulk diffusion and surface integration. A theoretical approach has
been taken for estimating the mean crystal growth rate of a single solute in a
solvent.27,28 This approach considers whether heat transfer, surface integration, or
bulk diffusion is the limiting step in particle growth. Mersmann et al.28 determined
that the theoretical growth rate (Gt) is based on:

 (6.13)

where Gh is the heat-transfer-limited growth rate, Gdif is the bulk-diffusion-limited
growth rate, and Gsurf is the surface-integration-limited growth rate. Furthermore,
because surface integration can occur by several mechanisms, the term Gsurf is
defined as:

Gsurf = GBCF + GB+S + GPN (6.14)

where GBCF accounts for growth due to the Burton, Cabrera, and Frank mecha-
nism; GB+S accounts for growth due to the birth and spread mechanism, and GPN

accounts for growth due to the polynuclear mechanism. Previous research29 has
shown that size-dependent growth rates can be explained by size-dependent
surface integration kinetics. 

6.3.2 NUCLEATION 

Nucleation refers to the formation of solid particles from solution; more specif-
ically, solute molecules can form small clusters. Below a critical size, it is possible
for the clusters to grow or to decrease in size. Above a critical size, it is more
likely that the cluster of molecules will grow. This critical size is the minimum
size for a nucleus. Nucleation is characterized by both primary and secondary
nucleation. The key difference is that primary nucleation occurs in the liquid
spontaneously even if no solids are present, but secondary nucleation occurs due
to the presence of a solid interface. The rates are generally combined as follows:

(6.15)

where B0 is the nucleation rate. Secondary nucleation often depends on the magma
density (MT) and growth. A common empirical relation for this is:

G
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(6.16)

where 

(6.17)

For primary nucleation, 

(6.18)

where 

(6.19)

As is shown, nucleation is a function of supersaturation, temperature, and magma
density. 

The secondary nucleation rate (B0) is sometimes represented by:

(6.20) 

where KR is a constant that is a function of temperature, hydrodynamics, and
impurity concentration; NI is the impeller speed in rpm; MT is the magma density
or the mass of solids per unit volume of slurry; GL is the length-based growth
rate; and h, i, and j are exponents. The constants depend on the system being
studied. In empirical expressions, the exponents on some of the factors may be
equal to zero for some cases. 

Empirical data for nucleation have been summarized for various systems over
a range of operating conditions using Equation 6.20.26 Much like the growth rates,
nucleation rates can span several orders of magnitude, with potassium chloride
having nucleation rates of approximately 2.5 × 1024 no. L–1s–1 and urea having
nucleation rates of approximately 3.5 × 10–10 no. L–1s–1. Unlike growth rates,
nucleation rates span a much wider range of values. Clearly, data are needed to
model nucleation effects in a crystallizer.

Mersmann et al.28 provided an alternative approach, where coefficients for
nucleation are estimated based on physical models. These equations are for
activated primary nucleation, secondary nucleation excluding attrition, and sec-
ondary nucleation, including attrition. If experimental data are not available, these
equations may be used to estimate nucleation rates; however, these equations
require physical property data such as interfacial tension between the crystal and
the mother liquor as well as the contact angle. 
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6.3.3 AGGLOMERATION 

Particle agglomeration is often neglected, although it is significant for some
systems. Agglomeration considers two particles colliding and sticking together
to form a larger particle. It is typically modeled by using an agglomeration kernel
that predicts the probability of two particles sticking together. The kernel can be
a function of the sizes of the two particles colliding. A size-independent kernel
is given by:

a(v,w) = a0 (6.21)

where a(v,w) is the agglomeration kernel, v and w are particle volumes, and a0

is a constant. 
Studies have been performed to test the effect of supersaturation and agitation

rate on agglomeration. For calcium oxalate monohydrate (COM),30 the agglom-
eration rate increased with increasing supersaturation, or, in this case, correlated
more accurately with the free oxalate ion concentration. In these COM experi-
ments, the agglomeration rate decreased with increasing agitation rate; therefore,
it is necessary to take into account both supersaturation and the agitation rate
when modeling agglomeration. 

Although the size-independent kernel works well for some systems, many
systems require a size-dependent kernel. One of the more commonly known forms
is the one by Golovin:31

a(v,w) = a0(v + w) (6.22) 

where v and w are particle volumes, and a0 is a constant for a given supersaturation

where u and v are particle volumes. Other listings of agglomeration kernels are
available.28,43,44 Many of these forms indicate that agglomeration is more likely for
larger particles than for smaller particles. The parameter a0 is a constant only with
respect to particle size; it is frequently a function of the temperature, fluid viscosity,
shear rate, average fluid velocity, and rate of energy dissipation per unit mass. 

6.3.4 BREAKAGE AND ATTRITION

Although often neglected,45 particle breakage can occur in stirred vessels such
as crystallizers. Larger particles may produce smaller fragments due to breakage
or attrition. In fact, attrition is frequently a mechanism for secondary nucle-
ation.46–48 Although many studies have been performed on continuous crystalliz-
ers, breakage and attrition may occur in any stirred crystallizer including batch
units. In breakage and attrition, the particle that is broken is referred to as the
parent particle and the particles formed from the broken parent particle are
referred to as child particles. There are two primary factors for modeling breakage:
the specific rate of breakage and the breakage distribution function. 
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The specific rate of breakage gives the rate at which the particles of a given
size break. That is, it gives the average rate as the fraction of particles that break
in a given time. It is typically expressed as a function of the particle size because
larger particles usually have a higher breakage rate than smaller particles. The
specific rate of breakage is commonly expressed as:

S(v) = Scva (6.23)

where S(v) is the specific rate of breakage for a particle of volume v, Sc is a
constant, and α is the breakage rate exponent. Not all particles will exhibit
breakage under a given set of conditions. Typically, attrition does not occur until
a particle is larger than a minimum size.45 

When a parent particle breaks, it forms a distribution of smaller particles.
This distribution is referred to as the breakage distribution function. This distri-
bution function can be expressed on either a mass or a number basis. Suppose v
is the volume of the child particle and w is the volume of the parent particle. The
mass-based breakage distribution function bM(v,w) indicates the mass fraction of
particles of volume v formed by a particle of volume w breaking. The number-
based breakage distribution function b(v,w) indicates the number of particles of
volume v formed by a particle of volume w breaking. The number-based breakage
distribution function can take many possible functional forms. Selected number-

particle volumes, and Lmin and Lmax are minimum and maximum particle lengths. 

TABLE 6.3
Agglomeration Kernels

Description Kernel Ref.

Turbulent diffusion a0(u + v) Golovin31

Brownian motion a0 Ramabhadran et al.;25 Scott32

a0(u1/3 + v1/3 ) (u -1/3 + v -1/3 ) von Smoluchowski33

a0(u1/3 + v1/3 )2 (u -1 + v -1)1/2 Friedlander34

Shear a0(u1/3 + v1/3) 3 von Smoluchowski33

a0(u1/3 + v1/3)7/3 Shiloh et al.;35 Tobin et al.36

Gravitational settling a0(u1/3 + v1/3)2 | u1/3 – v1/3 | Berry37

Thompson38

a0(u1/3 + v1/3)2 | u2/3 – v2/3 | Schumann; 39 Drake40

Turbulent flow a0(u1/3 + v1/3 )2 Kruis and Kusters41

Kinetic theory Thompson38

Shear and diffusion a0(u1/3 + v1/3) + a1 Melis et al.42
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based breakage distribution functions are shown in Table 6.4, where u and v are
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6.3.5 COMMENTS ON SIZE ENLARGEMENT

The two primary mechanisms for size enlargement are growth and agglomeration.
In addition, two possible growth mechanisms are size-dependent growth (SDG) and
growth rate dispersion (GRD). The size-dependent growth model is based on the
assumption that the growth rate varies with the particle size as was shown with some

of the same size have a distribution of growth rates.58,59 The many studies that have
been performed on GRD have been briefly reviewed by other researchers.58,59

TABLE 6.4
Breakage Distribution Functions

Description Breakage Distribution Function Ref.

Uniform 2u/v2 Hill and Ng49

Parabola Hill and Ng49

Milling Austin et al.50

Broadbent and Calcott51

Shoji et al.52

Theoretical 1/3v(u/v)2/3 Reid53

n(u/v)n-1/v Randolph and Ranjan54

Pandya and Spielman55

Gahn and Mersmann56

Fly Ash Formation (2u/v2)(2n + 1)(2u/v – 1)2n Peterson et al.57

Peterson et al.57
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of the models in Table 6.2. Growth rate dispersion, however, assumes that crystals
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Because both growth and agglomeration cause an increase in particle size, it can be
difficult to determine which mechanism is causing the increase in particle size. A
systematic study performed to discriminate between these mechanisms58 provides
an example for a potassium sulfate/water system. In this study, it was possible to
distinguish between SDG, GRD, and agglomeration. 

6.4 DESIGN MODELS

6.4.1 PARTICLE SIZE DISTRIBUTIONS AND POPULATION 
BALANCES

6.4.1.1 Particle Size Distributions

Particle size distributions (PSDs) can be represented in several forms. One com-
mon method is to use the cumulative distribution N(L), where L is the particle
diameter and N(L) is the number of particles of size L or smaller that are in a
unit volume of slurry. A typical distribution is shown in Figure 6.7, where the
distribution is normalized. As shown, the cumulative distribution approaches a
limiting value. 

Another typical variable for describing the PSD is the number density, n(L),
which is also called the population density. It is defined as:

(6.24)

and has units of number/volume/length, or no./(m3µm). A typical plot of this is

density is a continuous function that changes with time, and it is sometimes
written as n(L,t). The number density can also be written on a volume basis where

FIGURE 6.7 Normalized cumulative number distribution function.
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shown in Figure 6.8 for normalized values. Often used in calculations, the number
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N(v) is the cumulative distribution of the number of particles of volume v or
smaller in a unit volume of slurry. The corresponding number density is:

(6.25)

The population density on a volume basis has units of number/volume/particle
volume or no./(m3µm3).

6.4.1.2 Population Balance Equations

Population balance equations (PBEs) are a convenient method for following the
changes in particle size due to the mechanisms of growth, nucleation, agglom-
eration, and breakage. These equations are commonly written in terms of the
number density function. The advantage of PBEs is that they are flexible in that
the user can choose which mechanisms to include in the model. Much of the
early framework for PBEs was developed by Hulburt and Katz,60 while Randolph
and Larson61 developed the method for particulate systems. On a volume basis,
the PBE may be written as:

(6.26)

FIGURE 6.8 Normalized population density.
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The factors in this equation are the coalescence kernel for collisions between
particles of volume v and w, a(v,w); the number-based breakage distribution
function, b(v,w); the volume-based growth rate, Gv(v); the volume-based popula-
tion density, n(v); the number-based specific rate of breakage, S(v); time t; and
particle volumes v and w. These factors in the PBE are the same as those described
in Section 6.3. Although the population density, n(v), is a function of time as well
as particle size, time is not explicitly listed. 

The first two terms on the right-hand side of the PBE account for agglomer-
ation. The first of these two terms accounts for a particle of volume w combining
with a particle of volume v – w to create a particle of volume v. The second
agglomeration term accounts for a particle of volume v combining with a particle
of volume w to form a particle of volume v + w. The first term accounts for the
birth of particles into the size range v to v + δv, while the second term accounts
for the death or disappearance of particles from the size range v to v + δv. The
last two terms are birth and death terms accounting for particle breakage and
attrition. The first term accounts for a particle of volume v produced when a
particle of volume w is broken. The second term accounts for a particle of volume
v disappearing from the size range when it is broken into smaller particles. 

One might notice that Equation 6.26 does not have a separate term for
nucleation. In fact, B0 does not directly appear in the PBE. Nucleation is applied
as a boundary condition for n(0); that is, there is a boundary condition of n(0,t)
= B0 where t is the time. Although the nuclei are not of zero size, they are
sufficiently small compared to the size of the crystals that this is a good approx-
imation. One may also set initial conditions that give an initial size distribution. 

The term with the growth rate accounts for both birth and death in a size
interval due to particle growth. Particles are born into the size interval when
smaller particles grow into the size range, while particle disappear from the
interval when they grow larger than the size range. 

Similarly, the PBE is often expressed on a length basis. For the length basis,
the volumes v and w are replaced by the particle lengths L and λ. The other
functions such as the coalescence kernel, number-based breakage function, and
specific rate of breakage are the same. However, the growth rate is the length-
based growth rate of dL/dt. 

(6.27)
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 In the length-based birth term for agglomeration, the agglomeration kernel is a
function of (L3 – λ3)1/3 instead of being a function of L – λ. This accounts for the
fact that the volumes of two particles will add up to the combined volume of the
two particles, whereas this may or may not be true for the representative particle
lengths. 

6.4.1.3 Solution of Population Balance Equations (PBEs)

The main difficulty with PBEs is solving them. The degree of difficulty depends
on which mechanisms are included and on the functional forms of the mecha-
nisms. For example, if agglomeration and breakage can be neglected, the PBE
becomes a partial differential equation; however, if either agglomeration or break-
age is included, the PBE becomes a partial integro–differential equation. Many
of these concerns are discussed by Ramkrishna.62 Analytical solutions have been
developed for some special cases, such as fragmentation, for a few functional
forms.63 While most cases do not have analytical solutions, a variety of techniques
can be used to obtain solutions. These solution techniques include successive
approximation, Laplace transforms, the method of moments, orthogonal colloca-
tion, similarity solutions,57 Monte Carlo simulation methods, and discretization
techniques.62,64–71 More recently, other researchers have used wavelets to solve
PBEs with growth, nucleation, and agglomeration.72 Many of these techniques
have been applied to crystallization or to mechanisms used in crystallization.
Analytical solutions have been developed for special cases with specified initial
distributions and limited functional forms for the mechanisms of growth, agglom-
eration, or a combination of the two;32,73 however, the difficulty is that an analyt-
ical solution may not exist for the specific functional form that the real system
exhibits. For this reason, it is often necessary to use numerical techniques such
as the ones described above. 

6.4.2 MASS BALANCE: DESUPERSATURATION AND POPULATION 
BALANCES 

A batch crystallizer is always a dynamic process until crystallization has ended;
therefore, if supersaturation is induced, the solution will stay supersaturated until
saturation is reached. When the crystals begin to form, they remove the solute
from the solution. This process is referred to as desupersaturation. Because
desupersaturation changes with time, it must be modeled in a batch process. In
order to model crystallization, it is necessary to consider the mass balance
between the solute in the liquid and in the solid. To model this, several parameters
such as liquid density and magma density must be considered. 

6.4.2.1 Magma Density

Magma density is defined as the mass of solids per unit volume of slurry. It can
be calculated from
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(6.28)

where φv is a shape factor relating L3 to v. In practice, integration is between zero
and the maximum expected particle size. The magma density accounts for the
total production of solids in the crystallizer.

6.4.2.2 Liquid Density

For the case where the change in the liquid density is negligible, the volume of
the slurry in the batch crystallizer can be modeled as a constant. However, in
some cases the liquid density changes as the solute comes out of solution. In this
case the change in liquid volume must be modeled. Solid density is input as a
parameter. However liquid density can change due to composition or temperature
changes. Many of the correlations are empirical. For a single solute in a solvent,
the density of the saturated solution may be given by a formula of the form

ρL,i = ρ1,i + ρ2,iT (6.29)

where ρ1,i and ρ2,i are density constants for solute i in a given solvent, and T is
the temperature.8 Other work has shown that a plot of density vs. concentration
is continuous across the saturation point.74,75 According to some research,75 Equa-
tion 6.29 is valid even in supersaturated regions. A second option75 is to express
the density as a function of supersaturation:

(6.30)

where σ is the supersaturation, ρL is the density of the liquid (mass/unit volume),
and ρ3 and ρ4 are constants for a given system at a given temperature. 

6.4.2.3 Liquid Concentrations

These have the same units as density. Because one component is crystallizing
out of solution, the solution composition changes. For noncrystallizing compo-
nents, the concentration is given by one of the following, depending on the chosen
definition of concentration:

Ci = 100 Fin,i/Fin,solvent (6.31a)

Ci = 100 Fin,i/FT (6.31b)

Ci = Fin,i/VL (6.31c)
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where Fin,i is the mass of component i in the feed liquid, Fin,solvent is the mass of
solvent in the feed liquid, FT is the total mass of the liquid, and VL is the total
volume of the liquid phase. The feed liquid is the liquid initially charged to the
batch crystallizer. Equations 6.31a–c give the concentration of the noncrystalliz-
ing component in units of g i per 100 g solvent, g i per 100 g solution, and mass
i per unit volume of solution, respectively. For the crystallizing component, the
concentration is given by:

Ci = 100 (Fin,i – Msol)/Fin,solvent (6.32a)

Ci = 100 (Fin,i – Msol)/FT (6.32b)

Ci = (Fin,i – Msol)/VL (6.32c)

where Msol is the total mass of the solid formed. Equations 6.32a–c give the
concentration of the crystallizing component in units of g i per 100 g solvent, g
i per 100 g solution, and mass i per unit volume of solution, respectively. Other
definitions are possible such as mole fractions or molarity. 

The mass of solids (Msol) can be determined from the magma density:

Msol = MTVT (6.33)

where VT is the total volume of slurry in the crystallizer. Clearly, if more than
one component is crystallizing, Equations 6.32a–c would have to be modified;
however, for a simple crystallizer we can assume that only one component is
crystallizing. These equations would also need to be modified if the crystallizer
is operated in semibatch mode. 

6.4.3 PARAMETER ESTIMATION 

A primary problem in the modeling of crystallizers is obtaining the data, a
problem referred to as the inverse problem. Instead of using the kinetic parameters
to predict the results, the data from an experiment are used to determine the
kinetic parameters. Because both agglomeration and growth increase the particle
size and because both nucleation and attrition produce small particles, it can be
difficult to distinguish between mechanisms. To separate the effects of different
mechanisms, the problem is often divided into the various mechanisms, such as
the inverse breakage problem, the inverse agglomeration problem, and the inverse
growth and nucleation problem.62 For each of the mechanisms, it is common to
propose a functional form for the mechanism, to use the proposed form to model
a system, and to compare the simulation results with experimental results. In
many cases, optimization techniques are used to determine the parameters. Each
mechanism is discussed in more detail below. 
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6.4.3.1 Growth and Nucleation

Because growth and nucleation are two of the most influential mechanisms in
crystallization and because agglomeration and breakage are negligible in many
cases, much of the work in crystallization has focused on growth and nucleation.
Several techniques are used to obtain the kinetic parameters. Primarily, the exper-
imental equipment is either a batch or a continuous crystallizer. The advantage
of the continuous crystallizer is that a data point is obtained at steady state at a
given temperature and supersaturation, and the analysis is relatively straightfor-
ward. The disadvantages are the time required due to the fact that a separate
experiment is run for each data point and many tests are required to obtain the
kinetics as a function of a variable, the difficulty of running the experiments, and
the amount of material required to perform this large number of tests.76 The batch
crystallizer has the advantage that more data can be obtained from a single test,
but it has the disadvantage that the calculations are more difficult as the super-
saturation changes with time during the experiment. 

Many experimenters have proposed methods for obtaining data from batch
crystallizers.76–82 Most of the work presented assumes a functional form for the
particle growth and fits data to the form. Recent work83 discusses an approach
where the functional form is determined during the solution of the inverse prob-
lem. A unique method for measuring growth kinetics has been proposed84 where
a very small sample is analyzed using differential scanning calorimetry. For this
case, growth kinetics are obtained from the desupersaturation curve. An advantage
of this method is that growth kinetics can be determined over a wide range of
temperatures and pressures using a very small sample. 

6.4.3.2 Agglomeration

Other techniques must be used to determine agglomeration kinetics. Several
studies were performed with calcium oxalate monohydrate (COM)30,43,85 to deter-
mine agglomeration kinetics. In these studies, an agglomeration kernel was cho-
sen for a simulation and the simulation results were compared against experi-
mental results. A more rigorous method for determining agglomeration kinetics
using the self-similar concept is given by Ramkrishna.62

6.4.3.3 Breakage and Attrition

The breakage equation assumes that only the mechanism of breakage is signifi-
cant. Work has been done where simulations were performed with empirical
expressions and compared against experimental results to determine which empir-
ical breakage distribution function best fit the data.86 Later work used a nonlinear
parameter estimation technique to simultaneously estimate parameters for nucle-
ation and attrition.45 Ramkrishna62 discusses the use of self-similarity concepts
in solving for the breakage parameters. Mersmann87 provides a method for esti-
mating particle attrition based on first principles. 
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6.4.4 MIXING 

One reason for so much discussion about mixing is that it is desirable to keep
the particles suspended. If the particles are not suspended, they are not fully
exposed to the solution. A second reason to be concerned about mixing is that
both concentration and temperature gradients can exist in a batch vessel. These
gradients allow crystallization to occur under different conditions in the vessel.
Many models are simplified in that they assume uniform mixing. To determine
if particles are adequately suspended, Zwietering88 developed an empirical cor-
relation to determine the condition where all of the particles are suspended. This
correlation does not guarantee homogeneity of the suspension, but it does guar-
antee that none of the particles will be resting on the bottom of the vessel. The
agitation rate to keep the particles just suspended (Njs) can be estimated from:

(6.34)

where DT is the tank diameter, DI is the stirrer diameter, ρs and ρL are the solid
and liquid densities, K1 and K2 are constants depending on the impeller, g is the
acceleration due to gravity, ν is the kinematic viscosity, L is the particle diameter,
and Ms is the mass percent of solids in the slurry. This correlation is often used
to calculate a minimum mixing speed. In practice, the agitator is often run at a
higher speed. 

Another indicator of mixing in a stirred tank is the Reynold’s number for
mixing, which is often used to determine whether the flow in the stirred tank is
laminar or turbulent. It is written as:

 (6.35)

where NRe is the impeller Reynold’s number, NI is the rotational speed of the
impeller in revolution per unit time, DI is the impeller diameter, ρL is the fluid
density, and µ is the fluid viscosity. Turbulent flow occurs when NRe > 10,000,
and NRe < 10 for laminar flow. 

Other correlations for mixing are reviewed by Mersmann.89 These correlations
depend on the vessel internals. For example, agitator speed depends on whether
or not a draft tube is used, on the impeller type, and on the geometric ratios such
as the ratio of the impeller diameter to the vessel diameter. The minimum time
required for macromixing is usually only a few seconds for turbulent flow but
can be much larger in the transition and laminar flow regions. Other correlations
on the mixing of slurries as well as concerns specific to crystallization are given
in the Handbook of Industrial Mixing.90
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Perfect mixing rarely occurs in industrial practice,90–91 and heuristics for
scaling up crystallization processes rarely work well; therefore, another approach
must be taken that includes the hydrodynamics as well as the thermodynamics
and kinetics. Regarding modeling, a variety of approaches have been taken. Some
researchers have modeled crystallizers by coupling models for crystallization in
a uniformly mixed cell with computational fluid dynamics (CFD) codes.92 CFD
uses numerical techniques to solve fluid flow equations. In general, CFD models
the geometry of a processing vessel by dividing the operating space into smaller
cells. One difficulty has been determining how many cells are needed in modeling
the crystallizer. Other researchers91,93 have used compartmental models to separate
the hydrodynamics from the kinetics. With compartmental models, the main idea
is that certain sections of the crystallizer can each be adequately represented as
a well-mixed crystallizer. In each of these regions or compartments, the temper-
ature and supersaturation gradients are negligible. In general, the compartmental
models consist of a small number of compartments on the order of three to five
compartments, whereas CFD divides the crystallizer into many more cells. In
both the CFD and compartmental modeling approaches, the real crystallizer is
modeled as a network of ideally mixed crystallizers where the flow patterns
between the ideal units may be determined by CFD or by other rules. While many
of these models were used for continuous crystallizers, they are also applicable
to batch crystallizers. 

6.5 DESIGN AND MODELING DECISIONS

6.5.1 METHODS FOR INDUCING SUPERSATURATION 

For crystallization to occur, there must be a driving force. This is commonly
represented as supersaturation, which can be induced by a variety of methods
including cooling, evaporation, addition of a separating agent, or reaction. Each
method has advantages and disadvantages. 

6.5.1.1 Cooling

In the cooling method, the solution temperature is cooled below the saturation
temperature for the solution. This procedure is easy to implement, but it is difficult
to model due to the simultaneous changes in temperature and supersaturation. It
is primarily used when the solubility increases significantly with temperature;89

for example, because the effect of temperature on the solubility of sodium chloride
in water is slight, cooling crystallization is usually not used for this system.
Cooling crystallizers are often designed to run so the supersaturation remains
almost constant. One operational problem with extensive cooling is that the
crystallizer can have scaling at the cooling interface. 
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6.5.1.2 Evaporation

A second method is to concentrate the solution by evaporating the solvent. This
can be done at a fixed temperature by heating the solution to its boiling point.
This is often used for systems where the solubility is not a strong function of
temperature (e.g., sodium chloride in water). The boiling point is sometimes
lowered by operating the system under a vacuum. This method has the advantage
that the temperature stays relatively constant, but it is more difficult to implement
than cooling. One difficulty with evaporation is that the solution is usually more
concentrated and hence more supersaturated at the evaporation surface. This can
cause scaling across the liquid surface. 

6.5.1.3 Separating Agent

A third method for inducing crystallization is adding a separating agent to change
the solubility. Frequently an agent is added to reduce the solubility of the solute.
This can be done by salting out, drowning out, or changing the pH of the solution.
A salting-out agent is a solid that will dissolve when added to the system and move
the composition of the solution into a region where the desired compound is less
soluble and will crystallize out. Drowning out refers to the addition of a miscible
liquid nonsolvent that reduces the solubility of the solute; for example, if a solute
is soluble in water and sparingly soluble in an organic solvent, an organic solvent
may be added to an aqueous solution to cause drowning out. Biological compounds
such as amino acids often have a solubility that depends on the pH of the solution;
therefore, adding an acid or a base changes the pH and the solubility. This separating
agent method has the advantage that it can be operated at a constant temperature.
Basically this method is operated in a semibatch mode. 

6.5.1.4 Reactive Crystallization

Reactive crystallization can also be operated in semibatch mode at constant
temperature. This is achieved by having one reactant in the vessel and adding a
second reactant during operation. Depending on the solubility of the product
formed by the reaction, the supersaturation can sometimes be controlled by the
rate of addition of the second reactant. If the reaction product is insoluble, it will
precipitate immediately. This may form amorphous materials as well as crystals.
Clearly, this is only used in cases where there is a reaction. One example of
reactive crystallization is the formation of calcium carbonate by mixing solutions
of sodium carbonate and calcium chloride. Reactive crystallization has additional
complexities due to the fact that the reaction kinetics must be considered in
addition to the crystallization kinetics and due to the mixing of the reactants. In
reactive systems, it is necessary to consider the relative time scales due to mac-
romixing, mesomixing, micromixing, crystallization, and reaction. If reaction and
crystallization are slow compared to mixing, the hydrodynamics may not be a
major concern and the vessel may behave much like a well-mixed vessel;
however, if reaction and crystallization are fast compared to mixing, then the
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hydrodynamics has a strong impact on crystallizer operation. The primary concern
is that the reactions may primarily occur in the region where the second reactant
is added and that this region will have high supersaturation. This would give very
different results from a system where the reactant is uniformly mixed and the
supersaturation is uniform in the vessel. The effect of mixing has been experi-
mentally studied for the crystallization of benzoic acid where hydrochloric acid
and sodium benzoate are the reactants.94 This work also reviews the effects of
the agitation rate and the feed rate on the mean crystal size in semibatch processes.
Other work performed with calcium oxalate monohydrate showed the effects of
micromixing on precipitation;95 it was determined that the feed point location
had a stronger influence than the stirring speed on micromixing. 

6.5.2 CONTROL OF SUPERSATURATION

Control of supersaturation is critical to controlling product quality in batch crys-
tallizers (e.g., particle size distribution, shape, and purity). A problem with batch
crystallizers is that the product often does not have the desired properties, largely
due to control of the supersaturation. Much of crystallization is controlled by the
interaction between the mechanisms. It is well known that a sudden increase in
supersaturation will cause a very large number of nuclei to form. If the nucleation
rate is very high compared to the growth rate, many nuclei will form but they
will grow very little. For two cases, the same quantity of solids can be formed,
but the one with the greater number of nuclei will have smaller particles. This
will produce many fine particles, which is not desirable.96

Another concern is that for a batch crystallizer a sudden drop in temperature
will cause a temperature gradient at the cooling interface. When this interface is
much cooler than the bulk solution temperature, the solute will crystallize out
primarily at the interface and cause scaling. This scaling can cause significant
operating problems. A third difficulty is the purity of the final product. Sometimes
pockets of solvent are trapped inside the crystal being formed. This pocket is
referred to as an inclusion. The quantity of solvent and impurities entrapped inside
the crystal depend on crystal growth history. It has been shown that inclusions
become more likely as the growth rate increases;4 therefore, it is necessary to
control the supersaturation to lower the growth rate and reduce the crystal impu-
rities. The crystal shape is also influenced by the growth rate. As previously
discussed in Section 6.2.4, the facial growth rates are a function of the super-
saturation, and changes in supersaturation may affect the relative facial growth
rates; therefore, the final crystal shape depends on the characteristics of the system
and the supersaturation. 

6.5.2.1 Cooling Curves

One of the earlier methods suggested for controlling supersaturation in a batch
cooling crystallizer is to control the cooling curve. Mullin and Nyvlt96 predicted
an optimal cooling curve and tested it experimentally against uncontrolled
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cooling. Their results showed significant improvement in the crystal quality and
an increase in the crystal size. The main goal of the cooling curve is to induce
supersaturation to allow some nuclei to form and then to control cooling so that
the original nuclei grow. Other researchers have recommended keeping the driving
force (∆C) constant. The concept is shown graphically in Figure 6.9. The cooling
curve remains close to the solubility curve during operation and holds the driving
force constant. Other researchers have studied the cooling curve problem from
the view of optimization and process control. They compare natural cooling with
linear cooling and optimal cooling. The key concept is how to define optimal
cooling. Rawlings et al.97 discuss the goals and results of cooling curve research.
Such goals can include producing the largest particle size, producing a large mean
particle size with a narrow CSD, or any other goal based on average particle size
and CSD width. The general result is that optimal cooling can produce larger
crystals than natural cooling or linear cooling. 

6.5.2.2 Evaporation and Addition of Antisolvents

The concept of controlling evaporation and adding antisolvents is similar to the
concept for controlled cooling. The heat supplied to the crystallizer can be
adjusted to control the rate of evaporation. As with cooling, evaporation is con-
trolled so a small number of nuclei are formed and allowed to grow. Evaporative
crystallization is a semibatch operation as the solvent is being removed during
operation. The goal of adding antisolvents is to control the supersaturation;
therefore, not all of the antisolvent is added at once. Some antisolvent is added
to induce nucleation, then the remainder is slowly added to control both growth
and nucleation. 

6.5.3 EFFECT OF SEEDING

Seeding is another method of controlling supersaturation. It is commonly com-
bined with one of the three methods for inducing supersaturation. Seeds are added

FIGURE 6.9 Cooling curve on a concentration–temperature plot.
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to batch crystallizers to maintain consistency from batch to batch. If they are
added too early when the system is subsaturated, the seeds can dissolve. If they
are added too late, nucleation may have started. It is generally desirable to add
seeds when the system becomes saturated. Seeds are often added to start second-
ary nucleation at a desired time in the process. In systems that have large meta-
stable zone widths, nucleation may not occur until the solution is highly super-
saturated. In this case, once nucleation starts desupersaturation occurs very rapidly
and allows for little crystal growth. By seeding, the seed crystals are allowed to
grow at lower supersaturation levels. A second problem in systems with large
metastable zone widths is that without seeding a significant amount of variation
can occur from batch to batch with regard to when nucleation actually starts. This
does not allow for the consistent production of crystals with the desired properties. 

For reproducible batches, it is necessary to add seeds of a given composition
with a narrow size distribution. Often, the seeds must be rinsed to remove the
fine crystals. Another concern is the location of the addition. Dropping in dry
crystals from the top of the vessel may cause some particles to form a layer at
the slurry interface; therefore, it is often better to add the seed crystals in a slurry
near the stirrer. 

The major concerns regarding seeding are determining the quantity of seeds
to be added and the size distribution of the seeds. Although studies have been
performed with seeds and models have been developed for seeded batch crystal-
lizers,98 no general guidelines exist as to seed quantity and characteristics.
Researchers have noted that, although much study has been performed on con-
trolled cooling, work in the area of seeding is negligible.99,100 Bohlin and
Rasmuson99 concluded that the product weight mean size could increase or
decrease as a result of seeding; therefore, seeding should be done carefully. In a
recent review of seeding and optimization of seeding,100 the authors pointed out
that seeding depends on the objective — for example, whether the objective is
to produce the largest mean crystal size or largest number average crystal size. 

6.5.4 OTHER CONSIDERATIONS

In designing a batch process, other considerations include the optimum operating
temperature range. This is largely determined by the solubility. Operating at very
low temperatures is often expensive due to the cost of refrigeration. Also, in some
cases the stable polymorph is formed more easily at higher temperatures than at
lower temperatures. An upper temperature limit can exist, as well; for example,
some biological materials decompose at higher temperatures. These are just some
of the concerns that should be addressed when designing a system. 

6.6 INSTRUMENTATION 

To control the process, it is necessary to measure solution properties such as
temperature, concentration, and supersaturation, as well as solid properties such
as the crystal size distribution. Some of the difficulty in controlling crystallizers
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can be attributed to limitations in sensor technology.101–103 Another challenge is
measuring the concentration (or supersaturation) and CSD. 

6.6.1 CRYSTAL SIZE ANALYSIS

Traditionally, crystal size measurement has been performed offline. The earliest
techniques included sieving; however, this is a very time-consuming process.
Later techniques included Coulter counters, which often required dilution of the
sample before measurement could take place. Newer techniques include Fraun-
hofer and laser diffraction methods. One limitation of the offline methods is that
a sample must be taken and processed before it can be analyzed. The crystals
cannot be left in the mother liquor for any significant period of time. If the
temperature changes, the crystals could either dissolve or grow, producing a size
distribution different from that in the crystallizer. Even if the sample was held at
the desired temperature in the mother liquor, aging could change the CSD.
Another difficulty is that samples have to be taken in such a way that they are
representative and their withdrawal does not affect crystallizer operation, thus
limiting the number of samples that can be taken during an experiment. For this
reason, efforts are being made to develop online sensors. Some of these sensors
have flow cells where the crystallizer contents are pumped through the measure-
ment device (e.g., light-scattering techniques, image analysis under a micro-
scope).102

Techniques that have sensors installed in situ include the Lasentec focused-
beam reflectance measurement (FBRM) and particle vision measurement (PVM)
systems,103 as well as the ORM 2D system.104 The FBRM system measures chord
lengths as crystals flow in front of the probe window. With the FBRM system,
it is necessary to account for the fact that the chord lengths do not necessarily
represent the particle diameters but are chords measured across particles. The
PVM system is an image analysis system that takes pictures of microscopic
particles as they flow in front of the probe window. These techniques have
advantages and disadvantages. The in situ techniques eliminate the need to send
crystals outside of the crystallizer, which prevents the slurry from varying from
the vessel temperature; however, microscopes can give better quality images than
the PVM system.102 One of the more novel and promising techniques is the use
of ultrasonic attenuation spectroscopy.105,106 One advantage of this technique is
that it can measure dense slurries; in theory, it can measure particles in the size
range of 0.01 to 1000 µm.

6.6.2 CONCENTRATION MEASUREMENT

A variety of techniques have been used to measure concentration, including
refractometry,107 densitometry,108 conductivity,109 calorimetry,80,101,110 and attenu-
ated total reflection–Fourier transform infrared (ATR–FTIR) spectros-
copy.103,111,112 In choosing a method, it is necessary to consider the types of
systems to which the technique can be applied; for example, densitometry is
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primarily used for one solute in a single solvent. The goal of measuring concen-
tration is to obtain supersaturation information. Usually the concentration is
measured and compared with the solubility to obtain the supersaturation. A novel
approach has been developed to measure the supersaturation directly;113 although
not yet tested in an industrial environment, the new sensor showed promising
results in a laboratory batch vessel. 

6.6.3 POLYMORPH CHARACTERIZATION

Traditionally, analytical tools for polymorph analysis were offline. This has
changed in recent years due to the use of a Raman spectroscopy analyzer inter-
faced with an immersion probe. This probe can be used in situ in a suspension
of solids and liquids. This approach has been used in both academic114,115 and
industrial research.116 The advantage of this method is that it can be used to
monitor polymorphic transformations online.

6.7 GENERAL METHODOLOGY

The challenge in designing a batch crystallizer is to design a system that will
produce the desired quantity of crystals with the desired characteristics. Due to
the many concerns that must be addressed, it is necessary to have a methodology
for designing a batch crystallization process. One of the main concerns is deter-
mining the operating parameters that will produce the desired product. Crystal-

initial information, determining physical properties, determining crystallization
kinetics, modeling, experiments, and final design. Some of these steps may occur
in parallel. Although this is not an exhaustive list of all the possible steps, it does
provide a general guideline for developing a design. 

6.7.1 STEP 1: INFORMATION

The first step is to gather any available information on the system and crystalli-
zation. This includes product specifications, such as production rate, purity
requirements, polymorphic form (if applicable), CSD constraints, and shape
requirements; physical properties of the system, such as solid–liquid equilibrium
data, melting points, viscosity, metastable zone width, and decomposition tem-
perature (if applicable); crystallization kinetic data, such as parameters and func-
tional forms for nucleation, growth, agglomeration, and breakage; and any process
constraints such as temperature operating ranges for the equipment. 

6.7.2 STEP 2: PHYSICAL PROPERTY AND CRYSTALLIZATION 
KINETICS DATA

The second step is to obtain any missing data, whether physical property data
or crystallization kinetic data. For systems that may exhibit polymorphs, it is
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necessary to determine the number of possible polymorphs and the one that will
be stable under the desired conditions. If solid–liquid equilibrium (SLE) data do
not exist, they must be obtained as they determine the possible operating condi-
tions of the crystallizer. It is necessary to have SLE data to determine the con-
ditions under which crystallization kinetics data are required. This information
is fed into the crystallization kinetics block. Crystallization kinetics data are often
unavailable and must be determined experimentally. Part of the purpose of this
step is to determine which mechanisms are important. For example, agglomera-
tion may be significant for some systems and negligible for other systems. Typ-
ically, this information is required over a range of temperatures and super-
saturation levels. Also, kinetics determines the size and operation time for the
crystallizer.

6.7.3 STEP 3: MODELING AND VALIDATION EXPERIMENTS

The third major step is to use the data for modeling and validation experiments.
Without modeling, many unnecessary data collection experiments might be per-
formed, and some experiments that are necessary might not be done. Without
these experiments, the modeling cannot be validated. As noted by Gerstlauer et
al.,117 the challenge is to integrate both microscopic and macroscopic behavior

FIGURE 6.10 General methodology for batch crystallization design.
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into the model. For modeling, it is necessary to divide the slurry into two phases:
a continuous liquid phase and a dispersed solid phase. The dispersed solid phase
is modeled using the PBEs described in Section 6.4.1 and the crystallization
kinetics described in Section 6.3, and the liquid phase is modeled and connected
to the solid-phase behavior as described in Section 6.4.2. Other details may be
added to the model as necessary. 

Modeling and simulation are used to determine the sensitivity of the system
to different variables. Simulations can be performed to determine which parts of
the underlying physics are critical. This, in turn, can determine how accurate the
data must be. If necessary, more crystallization experiments can be performed to
obtain better data. This transfer of information is indicated by the bidirectional
arrows between the second and third steps, indicating that although modeling
requires data from step 2 it can also determine whether or not more fundamental
data are needed, thus sending the procedure back to step 2. 

Another major task in this step is the model validation experiments. Although
the models may indicate optimum operating conditions, it is necessary to test
such findings in an actual vessel. If the experiments produce significantly different
results from the model, it is necessary to correct the model. Without modeling,
design would be done by a trial-and-error approach. The purpose of modeling is
to give direction to the experiments and reduce the overall number of experiments. 

6.7.4 STEP 4: FINAL DESIGN

The final design is based on the results of the previous steps. It specifies all of
the operating conditions during operation including changes in temperature and
the addition of seeds. In the final design additional items are specified including
the instrumentation needed for process monitoring and control.

The advantage of this design methodology is that it combines theory with
modeling and experiments. Therefore, if changes need to be made in the future,
there is a basis for knowing how the crystallizer operating conditions should be
adjusted. 

6.8 CASE STUDIES

Actual cases vary widely in scale and span a range of industries. A few case
studies are given here to illustrate concepts given earlier. 

6.8.1 POPULATION BALANCE EQUATION SOLUTIONS

Section 6.4.1.3 briefly discusses the solution of PBEs. This is not a trivial task,
and researchers should be careful when solving these partial integro–differential
equations. One concern with these solutions is whether or not they can simulta-
neously predict changes in both number and mass. Typically, crystallization is
concerned with the number density of particles; however, due to the requirement
that there must be a mass balance for a model, changes in mass must be considered
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as well. For several mechanisms, either mass or number will be constant and the
other one will change; for example, if growth is the only mechanism occurring,
then the number of particles will remain the same and the mass will increase. If
breakage is the only mechanism occurring, the total particle mass remains con-
stant and the total number of particles increases. The total mass of particles also
remains constant when agglomeration is the only active mechanism but agglom-
eration causes a reduction in the total number of particles. Frequently, the simpler
solution techniques will accurately model both mass and number simultaneously. 

To illustrate this, consider a simple system that only has agglomeration
occurring at a fixed agglomeration rate. Suppose this system has size-dependent
agglomeration of the form given in Equation 6.22. Several methods could be used
to find a solution for this system. One of these is the conventional discretized
equation, which is a discretized version of the continuous equation. Rather than
having a continuous number distribution, particle size is divided into discretized
size intervals where Ni indicates the number of particles in interval i. Similarly,
there is a discretized agglomeration kernel, aj,i–j. The conventional discretized
agglomeration equation has the form:68

(6.36)

The equivalent discretized expression of Equation 6.22 is given as:

(6.37)

where  is the average volume in interval i and is usually defined as i = (vi +
vi-1)/2. These equations are expected to work best for equal volume intervals. For
equal volume intervals, the first interval ranges from zero to a chosen value of
v1, and any subsequent volume interval i ranges in volume from (i – 1)v1 to iv1;
therefore, each volume range has the same width. The concern with this approach
is its accuracy. 

An alternative discretized equation for equal intervals68 is given as:

(6.38)

where Equation 6.37 is used for the discretized agglomeration kernel. To illustrate
the difference between Equations 6.36 and 6.38, consider the case where particles
in intervals i – j and j agglomerate with each other. Whereas the conventional
discretized equation assumes that all of the particles formed will fall into interval
i, Equation 6.38 accounts for the reality that they may fall into intervals i and i – 1.
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To test various solution methods it is necessary to use a case for which an
analytical solution exists. One such analytical solution is given by Gelbard and
Seinfeld73 for the case where there is an initial distribution of:

(6.39)

where N0 denotes the total particle count of the PSD and ν0 denotes the PSD
initial mean volume. The analytical solution for this initial distribution and the
linear kernel given in Equation 6.22 is:

(6.40)

where ṽ = v/υ0, τ1 = N0υ0a0t, T = 1 – exp(–τ1), and I1 is the modified Bessel
function of the first order. 

In this set of simulations, equal size intervals are used. The discretized number
Ni is in units of number per liter. The agglomeration kernel is of the form given
in Equation 6.22 with the agglomeration constant a0 set to 3 × 10–16 L/number/min.
The initial size distribution is determined using Equation 6.39, where ν0 is 4000
µm, the solid density is 3.217g/cm3, and N0 is set so the initial solid mass is 100
g/L of slurry. For comparison purposes, two sets of simulations are performed.

in the legend. 
The analytical solution is used to test the accuracy of the two discretized

equations. As expected, all methods predicted a decrease in the number of par-
ticles formed. This is shown in Figure 6.11a, where it is clear that all of the
methods do well in predicting the decrease in the number of particles. For the
mass, there should be mass conservation; that is, the total mass of solids does
not change. This is true for the analytical solution and for Equation 6.38; however,
the conventional discretized equation does not conserve mass, as shown in Figure
6.11b. The error for the conventional discretized equation depends on the size of
the intervals. In general, there is less error with smaller intervals, as expected,
but the total number of size intervals increases, which can significantly increase
the computer processing time. For the case where the equal interval is 1000 µm3,
the number of size intervals used was 250, which yielded a maximum volume of
250,000 µm3. If these were spherical particles, the maximum diameter would be
78.2 µm. Using this number of intervals for such a small size range is prohibitive.
For the case where the interval size was 500 µm3, 500 size intervals were used
so the maximum particle size was the same.  
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Each set has a different size for the equal interval. The results are shown in Figure
6.11a and b, where the equation used and volume of each equal interval is denoted
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6.8.2 BAYER ALUMINA PROCESS

The Bayer alumina process is a large-scale operation. In this process, aluminum
is leached out of the bauxite ore using a hot NaOH solution. A key step in the
process is the recovery of alumina trihydroxide, Al(OH)3, through crystallization.
Because much of the sodium from the leaching step remains in solution, this
system is primarily a ternary Al2O3·Na2O·H2O system. Although this is a com-
modity chemical, the crystallization step is usually run in the batch mode. 

Step 1
The first step in the design of the process is to gather information. Before studying
the crystallization kinetics, it is first necessary to determine the solubility.

(a)

(b)

FIGURE 6.11 Comparison of solution techniques with analytical solution for a linear
agglomeration kernel and equal volume intervals: (a) change in particle number with time;
(b) change in total mass with time.
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Previous research118 has shown that the solubility of aluminum trihydroxide in
NaOH solutions can be represented by a semiempirical correlation:

(6.41)

where T is the temperature (in degrees C), and CN is the NaOH concentration (in
g Na2O per L). 

The crystallization kinetics of this ternary system has been studied by several
researchers.119–121 Both the nucleation and growth rates affect the design of the
system. It has been noted119–120 that this system is very stable in that the homo-
geneous nucleation occurring under industrial operating conditions is negligible;
therefore, the crystallizer must be seeded for economical operation. A second
concern is the growth rate. For cases with temperatures varying from 45 to 95˚C
and varying supersaturation, the growth rates range up to 4.5 µm/hr, or 0.075
µm/min.119 Due to the low growth rate, high residence times of 35 hr or greater
are needed. Because the high residence times require a prohibitively large vessel
for a continuous process, a batch process is commonly used. 

The second item in the information-gathering step is the goal of the process.
The goals are to achieve a high rate of alumina recovery to improve process
economics and to maintain a particle size distribution that does not cause oper-
ational problems; that is, fine particles must be avoided because they commonly
cause operating problems in units downstream of the crystallizer. The designer
needs to be aware that it may be difficult to meet both constraints simultaneously,
particularly given the low growth rate of the particles. In this process, the crys-
tallizer effluent is sent to classifiers. The classifiers remove a chosen size range
of the smaller particles to use as crystallizer seed. It is not sufficient for avoiding
fines; it is essential to produce crystals for both seed and product. 

Step 2
Because some literature data are available for this project, experiments are not
necessary to obtain basic data; however, experiments can be done at this stage
to verify the literature data, if desired. This is particularly useful when the
experiments have been performed with pure laboratory chemicals, because actual
systems have impurities that can significantly affect parameters such as the
solubility or crystal growth rate.

Step 3
The next step is to use the data in a model. For example, in this case, Misra and
White119 give the growth rate as:

(6.42)
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where G is the growth rate (in µm/hr), CA( ) is the concentration (solubility)
of Al2O3 (in g/L of solution), R is the ideal gas constant (in cal/mol·K), and T is
the temperature (in K). The nucleation rate is also required. It should be noted
that one should be selective here since Misra and White present the following
four models: 

B0 = 2.13 × 107 (6.43)

(6.44)

(6.45)

B0 = 0 for t < 2 hours (6.46)

= 3.1 × 107 for t > 2 hours

where B0 is the number of nuclei per hour per milliliter of solution, and s is the
crystal surface area per unit volume of slurry (in cm2/mL). Two models that do
not work well are Equations 6.43 and 6.46. As noted by Misra and White,119 it
is unrealistic to have a nucleation rate that does not depend on the supersaturation.
This is further illustrated by simulation. In the plant, the batch crystallizers have
residence times ranging from 35 to 75 hours.119 If constant nucleation rates are
used in the modeling, a crystallizer reaches its equilibrium concentration well
before 35 hr. At a typical operating temperature of 60˚C, the slurry reaches
equilibrium in less than 2 hr if Equation 6.43 is used with Equation 6.42 for a
seed charge of 100 g seeds per L. 

A simulation was performed for the case where the growth rate was as defined
in Equation 6.42. For the nucleation rate, Equation 6.45 was used as it has a
dependence on both supersaturation and the crystal surface area; however, because
of the high initial supersaturation, Equation 6.45 was modified so the nucleation
rate was zero at less than 2 hr and was modeled by Equation 6.45 after 2 hours

trations and the operating temperature are within the range for industrial crystal-
lizers.119 An impurity of Fe2O3Na2O is included because iron is often leached out
of the ore by the hot NaOH and it is usually present in the crystallizer feed. The
seed concentration was varied in these simulations from laboratory conditions of
10 g seed per L to industrial conditions of 100 g seed per L. Similar to previous
work, the seeds are mainly made up of crystals smaller than 8 µm. 

seed per L. For comparison purposes, the PSD of the original seeds is shown. In
this plot, the original seeds are shown as a solid line, and the simulation results
are plotted as symbols in the center of each particle diameter range. In this plot,
the size distribution is shown as the number fraction of particles over a given
size range. Four simulations were performed. Two of the simulations are for 10

C A
sat

B C CA A
sat0 4 21 0 10= × −. ( )

B C C sA A
sat0 2 22 6 10= × −. ( )
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of residence time. Other operating data are given in Table 6.5. The feed concen-

Results from these simulations are shown in Figure 6.12 for 10 and 100 g



Batch Crystallization 191

g seeds per L (open symbols) and two simulations are for 100 g seeds per L
(closed symbols). Two of the simulations (denoted by circles) use Equation 6.45
as written for nucleation; however, it was noticed that this equation predicts very
high rates of nucleation initially. Therefore Equation 6.45 was modified so the
nucleation rate was set to zero for times less than 2 hr (denoted by squares). 

TABLE 6.5
Simulation Operating Data for Alumina Crystallizer

Feed concentrations
Al2O3Na2O 209 g/L
NaOH 26.4 g/L
H2O 899 g/L
Fe2O3Na2O 30 g/L

Operating temperature 60˚C
Residence time 35 hours
Crystallization kinetics

Growth (µm/hr)

Nucleation 
(number/hr/mL) , t > 2 hr

B0 = 0, t < 2 hr
Seed 

Concentration 10 g seed per L
Seed size distribution 
(mass %) 

80% < 8 µm

8 µm < 20% <15 µm

FIGURE 6.12 Comparison of seed size distribution with size distribution after 35 hours. 
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As expected, the number fraction of particles in the larger size ranges increased
with time for all cases. More specifically, the number fraction of particles in the
first size range decreased and the number fraction of particles in the second size
range increased substantially. If an average growth rate of 1 µm/hr were assumed,
one would expect to have crystals approximately 35 µm in diameter after 35 hours
of operation; however, because the growth rate is a function of the supersaturation,
it changes significantly during crystallizer operation. Therefore, although the pro-
cess starts out with a higher growth rate, the growth rate decreases with desuper-
saturation and the actual average growth rate is lower. This is true for all cases. An
inspection of the graph shows the effect of seeding on this operation. In general,
adding more seeds produced a larger fraction of larger particles. In the third size
interval, the number of crystals for the case of 100 g seeds per L is over 10 times
more than for the case where 10 g seeds per L were used. 

Step 4
The final design decisions are made in this step. Because nucleation is usually
quite low initially in these crystallizers, the model that initially sets the nucleation
rate to zero is probably more accurate. For this case, initial seeding with 100 g
seeds per L produces about twice as many particles per liter as seeding with 10
g seeds per L. If more crystals are desired per unit volume, then 100 g seeds per
L should be used. The PSDs for the two seeding cases are very similar; however,
the lower amount of seeding yields slightly larger crystals. It should be noted
that this decision is based on the models described earlier. As noted in Section
6.5.3., seeding must be done very carefully. The initial PSD, the quantity of seeds,
and the crystallization kinetics for the system all affect the results. Every effort
should be made to verify these models. If the models are incorrect, the predictions
will also be incorrect. 

6.8.3 L-GLUTAMIC ACID

L-Glutamic acid is of interest because it is an amino acid and because it has two
polymorphic forms: the metastable α form and the stable β form. While both
forms are orthorhombic, they have different lattice spacings and are easily dis-
tinguishable by their visual appearance. The α form is a flat plate, while the β
form is acicular or needle shaped. L-Glutamic acid is produced by fermentation
and purified downstream by crystallization. Crystallization is a key step since it
determines which polymorph is produced. 

Step 1
In the information gathering step, it is necessary to determine what is known
about the two polymorphs. In general the solubility of the metastable form is
higher than that of stable form. This is also true for L-glutamic acid over the

16,122 Also, literature data exist regarding
the processing conditions for both polymorphs. Experiments performed at various
supersaturation rates at a fixed temperature indicate that supersaturation has a
negligible effect on the percentage of α crystals formed; however, the temperature
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has a strong effect.122 The α form is predominant at lower temperatures.16,122,123

Specifically, over 95% of the material formed at or below 25˚C is the α form,
while at 50˚C less than 40% of the material is of the α form. The other parameter
that has a large effect on the selection of polymorph form is the cooling rate.
Other experiments were conducted to determine the effect of the cooling rate by
cooling a solution from 50 to 15˚C. At cooling rates of 0.4˚C/min and higher,
the α form was prevalent, whereas the β form was prevalent at slow cooling rates
of 0.1˚C/min.106

The existing information sets limits on the operating supersaturation. At large
initial supersaturations, the material starts nucleating before the solution reaches
the desired operating temperature; however, at low initial supersaturation, the
nucleation induction time is long after reaching the desired operating tempera-
ture.16 The desired product for this example is the stable form (β) of L-glutamic
acid. Although most companies prefer the α form because of its handling prop-
erties, the desired product for this particular application is the stable form. In
fact, it is typically available commercially in the stable form.106 The other spec-
ification is the length of the major axis. In this case, particles 550 µm in length
are desired. Because the process will produce a PSD and not a single particle
size, the goal is to find operating conditions where the largest number fraction
of particles is near 550 µm for the major axis length. 

Step 2
To obtain the stable form of L-glutamic acid, the literature indicates that it is
better to operate at higher temperatures and lower cooling rates; therefore, it is
necessary to perform experiments under the conditions under which the crystal-
lizer is expected to operate. All of the existing data for crystal growth of the β
crystal is at 25˚C.124–125 Although some literature data are available for the L-
glutamic acid/water system, it is advisable to run some tests to verify the growth

FIGURE 6.13 Solubility of α and β forms of L-glutamic acid as a function of temperature.
(From Kitamura, M., J. Crys. Growth, 96, 541–546, 1989 and Kitamura, M., J. Crys.
Growth, 237–239, 2205–2214, 2004. With permission.)
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rates in this system and to verify the proportion of α to β crystals under various
conditions. Preliminary tests were performed on L-glutamic acid by creating a
saturated solution at 69˚C, slowly cooling the solution at 0.1˚C/min to 63˚C, and
then holding the temperature at 63˚C.125 No visible nuclei were noted before the
solution cooled to 63˚C, and after reaching the final temperature the induction
time was about 13 minutes. Crystal samples taken at different residence times
were analyzed under a microscope to determine the length of the major axis. In
general, a close approximation is made with the expression:

Gmax(µm/min) = 0.28(C – Csat)1.4 (6.47)

where Gmax is the growth rate of the major axis and the concentrations are in g/L.
This expression is similar to a form obtained at 25˚C.124 It is apparent that the
fine particles disappear as the holding time is increased.106,125 This may be due
to the fact that, when crystals are present, the material coming out of solution
tends to grow on existing particles rather than nucleate. It appears that the
nucleation rate decreases rapidly with supersaturation. The experimental data at
63˚C are approximated using the following nucleation model:

B0(number/L/min) = 5.6 × 10–18 (C – Csat)28 (6.48)

In these experiments, the aspect ratio averaged around 10 and was not influenced
by supersaturation in this region. 

Step 3
The next step is to decide how to operate the crystallizer. Because data are
available at 63˚C, this is the temperature used in the modeling. The model uses
an induction time of 13 minutes with the nucleation rate given by Equation 6.48
after 13 minutes and the growth rate given in Equation 6.47. Agglomeration and
breakage are assumed to be negligible. A second consideration is the particle
volume. Because the crystal is known to have a needle shape, it may be approx-
imated in modeling as a rectangular parallelepiped. The model uses the major
axis in the population balance equations and the aspect ratio to determine the
crystal volume. The model is solved using discretized PBEs and coupling them
with a mass balance. 

Step 4
To make the final decision, a graph is made of the average major axis length as

residence time in the crystallizer after cooling to 63˚C. The representative major
axis length is defined as the length that has the largest number fraction of particles.
The graph illustrates that the representative major axis length is not a linear
function with respect to residence time; therefore, it is necessary to have enough
points to construct a curve. Based on the simulation results, the crystallizer should
be operated for a residence time of 63 minutes. 
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6.9 CONCLUDING REMARKS 

Batch crystallization plays an important role in the chemical industry. It is par-
ticularly important to the pharmaceutical industry where over 90% of the phar-
maceutical products contain particles and many of these particles are in crystalline
form.126 Shekunov and York126 discuss the difficulties in crystallizing a pharma-
ceutical product with the desired properties. This is not limited to the pharma-
ceutical industry, but also applies to other specialty chemicals such as food and
agrichemicals.103,112,127 Despite the requirements for crystal product control across
a range of industries, there is still much that is not yet known about designing
batch crystallizers to produce the desired product. For example, it would be useful
to have a better understanding of seeding, nucleation, and the effects of impurities
on solubility and kinetics; however, it is still possible to improve the design of
batch crystallizers with what is currently known. 

NOTATION

a0 agglomeration constant
a(L,λ) agglomeration kernel for collisions between particles of diam-

eter L and λ (no min/m3)–1

a(v,w) coalescence kernel for collisions between particles of volume
v and w (no µm3 min/µm3/µm3)–1

AG constant for calculation of Gk 
An1, An2 constants in nucleation rate calculations
b(L,λ) number-based breakage function (number/number)
b(v,w) number-based breakage function (number/number)
bM(v,w) mass-based breakage function (number/number)
B0 nucleation rate (number/min)
Bk1, Bk2 nucleation rate factors

FIGURE 6.14 Representative major axis length as a function of crystallizer residence
time. 
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Bi, Bj, Bj2 nucleation rate constants
Ci concentration of component i (e.g., g/100 g solvent or g/L

solution)
constants for calculation solubility
saturated concentration (solubility) at temperature T (e.g..
g/100 g solvent or g/L solution)

DI impeller diameter
E constant for calculation of Gk 
En1, En2 constants in nucleation rate calculations
ESi eutectic composition between components S and i (e.g., g/100

g solvent or g/L solution)
Fin,i mass of component i in feed liquid (kg)
FT total mass of feed liquid (kg)
g acceleration due to gravity 
GL(L) length based growth rate (dL/dt, µm/min)
Gk, Gn constants in growth equations
G0 growth factor
Gv(v) volume based growth rate (dv/dt, µm3/min)
kG constant in growth rate equation
KR constant in nucleation rate equation
K1, K2 constants in Zwietering correlation
L particle length (µm)
Lmin, Lmax minimum and maximum particle sizes (µm)
Mi,L mass of i in the liquid (kg)
ML, Msol mass of liquid, mass of solid (kg)
Ms mass percent solid of solids in the slurry
MT magma density (kg/m3)
n(L) number-based density function (number/m3µm); this is actu-

ally a function of time: n(L,t)
n(v) volume-based population density (number/m3/µm3)
N(L) cumulative number-based distribution function per unit slurry

volume, written as a function of particle length (number/m3)
N(v) cumulative number-based distribution function per unit slurry

volume, written as a function of particle volume (number/m3)
NRe impeller Reynold’s number
NI rotational speed of the impeller (rpm)
Njs impeller speed to keep solids just suspended (rpm)
R ideal gas law constant
S supersaturation expressed as a ratio
S(L) number-based specific rate of breakage using particle length

(min–1)
S(v) number -based specific rate of breakage using particle volume

(min–1)
t time (min)
T temperature (˚C) 

C C Ci
sat

i
sat

i
sat

1 2 3, , ,, ,
C Ti

sat ( )
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Tm,i melting temperature of component i (˚C) 
u, v, w particle volume (µm3)
VL volume of liquid in slurry (m3)
xi mole fraction of component i

Greek
γi liquid phase activity coefficient
∆C supersaturation, driving force (e.g., g/100 g solvent or g/L

solution)
∆Hm,i heat of crystallization of component i
λ particle length (µm)
µ fluid viscosity
ν kinematic viscosity
ρL, ρs liquid and solid densities (kg/m3)
ρi density factor for component i (kg/m3)
φv shape factor 

Subscripts
i component i
L liquid
primary primary nucleation
secondary secondary nucleation
solid solid

Superscripts
Bi, Bj, Bj2 nucleation expression exponents
h, j, i nucleation expression constants
n exponent
sat saturated
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7.1 INTRODUCTION

 

Industrial crystallization is widely used to form a crystalline product from a
dissolved state. The two most common motivations to choose crystallization as
a unit operation are: 

• To recover a particulate form of a substance (e.g., so it can be packaged
as a flowable powder) 

• To purify the substance, commonly via multiple recrystallizations 

Integral to a crystallization process is the solid–liquid separation step that

flow diagram for a chemical product identifying crystallization as well as
upstream and downstream unit operations. Crystallization is an important unit
operation in such a process chain as it is the primary stage of the product particle
formation. Thus, the particle size distribution, purity, and yield are largely deter-
mined by the performance of the crystallizer. Although the crystallizer has a major
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impact on the product properties and quality, the slurry and crystal properties
(size, density, habit) greatly influence the investment required in the downstream
unit operations — particularly filtration/centrifugation and the dryer. 

The interplay between crystallizer performance and solid–liquid separation
devices often substantially affects the capital investment and operating costs of
such a process. Unless holding tanks are available, batch crystallization processes
require separation equipment that can process the entire crystallizer slurry at a
higher rate than would be required for continuous crystallizers of the same
production rate. This is because crystallizer tank emptying must be completed as
quickly as possible to allow cleaning and turnaround for the next crystallizer
batch; hence, solid–liquid separation capacity can present a bottleneck in turn-
around time. Further, the filter or centrifuge usually will be sitting idle during
the majority of the crystallization batch, so it is highly desirable to maximize the
separability of a slurry product entering the solid–liquid separations device. It is
important to adequately size the solid–liquid separation equipment, bearing in
mind that the cost of these devices is typically not insignificant.

Given the integral nature of solid–liquid separation to crystallization and
precipitation processes, this chapter addresses practical aspects of developing
batch crystallization processes and supporting solid–liquid separations (batch or
continuous). This chapter is intended to be a guide for laboratory and pilot testing,
as well as for scale-up. Several other texts address crystallization in more detail
and are recommended for further information, including Mullin,
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 Myerson,

 

2

 

Mersmann,

 

3

 

 Tavare,

 

4

 

 Davey and Garside,

 

5

 

 and Perry et al.
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FIGURE 7.1

 

Process flow diagram identifying the typical configuration of a crystallizer
for a chemical product.
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7.2 FUNDAMENTALS

7.2.1 C

 

RYSTALLIZATION

 

The crystal lattice configuration enables a tight packing of molecules and rejects
many foreign materials as impurities if they do not fit into the lattice. To fit into
the lattice requires meeting chemical, steric, and free energy criteria; hence, the
crystal lattice is a highly purified and concentrated solid phase. The crystalline
state enables uniform physical and chemical properties of a solid product. Some
key properties include melting point, solubility and rate of dissolution, surface
chemistry, mechanical strength, optical properties, and stability at various humid-
ities and temperatures. 

The crystals of many chemical substances exhibit polymorphism, which is
when the same chemical structure can pack into more than one lattice structure.
Each polymorph may exhibit different physical and chemical properties. This can
be an advantage (e.g., to enable a higher solubility or a higher melting point for
the same chemical substance), but it can also be a major concern for scale-up
and manufacturing as far as ensuring that a processes reliably produces only the
desired polymorph. 

 

7.2.1.1 Mass Transfer

 

Crystallization is a mass transfer unit operation and can be analyzed using these
principles.

 

7

 

 Material initially exists in a dissolved state and transfers to a solid
phase via deposition onto the growing faces of a solid crystal. Chemical potential
drives this mass transfer. In practice, however, supersaturation is the driving force
used to describe crystallization mass transfer. Supersaturation is calculated from
the solute concentration (

 

c

 

) in the solution of the crystallizing species and its
solubility concentration (

 

c

 

*) at the same conditions of temperature, pressure,
solvent composition, and impurity levels. Supersaturation can be expressed as
follows:

Absolute supersaturation

 

c

 

 – 

 

c

 

*
Relative supersaturation (

 

c

 

 – 

 

c

 

*)/

 

c

 

*
Supersaturation ratio

 

c

 

/

 

c

 

*

Process engineering studies primarily use absolute or relative supersaturation,
while thermodynamics studies tend to use the logarithm of the supersaturation
ratio. For industrial purposes, the decision is arbitrary, but the absolute super-
saturation form is marginally less affected by poorer solubility data. Because
supersaturation can be calculated from measurements of solute and solubility
concentrations, it is a practical way to determine the driving force of crystalliza-
tion mass transfer.

Crystallization includes two different processes:

• Nucleation
• Crystal growth
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Nucleation is the birth process for creating the solid-phase lattice, while
crystal growth is the bulk of the mass transfer from solution to solid. Precipitation
processes are quite similar to crystallization, although the solid phase lacks the
ordered lattice configuration. Precipitation processes nucleate solids but they do
not grow through molecules locking into a lattice; instead, they grow by random
deposition and agglomeration. So, precipitation processes are typically nucleation
dominated, while crystallization processes include both nucleation and growth
processes in particle formation. The term 

 

precipitation

 

 is often used loosely to
refer to the process of recovering solids from solution. The development of
precipitation processes shares a number of aspects with crystallization develop-
ment, particularly in terms of scale-up approach, vessel design, and solid–liquid
separations. Scale-up of crystallization processes tends to have additional impor-
tance with regard to heat transfer and slurry mixing, while for precipitation
processes the distribution of reacting feed streams tends to be a more dominating
scale-up parameter.

Crystal growth kinetics is commonly correlated by a power law as:

 

G

 

 = 

 

k

 

G

 

·

 

σ

 

n

 

where 

 

G

 

 is the growth rate (

 

∝

 

m/hr), 

 

k

 

G

 

 is the growth rate constant, and 

 

σ

 

 is the
supersaturation. The units of the growth constant depend on the units of solubility
and whether absolute or relative supersaturation is used. The exponent (

 

n

 

) is the
growth order, which is dimensionless. The growth order can be an indicator of
the mechanism of crystal growth. Where 

 

n

 

 = 1, the rate of crystal growth is
generally controlled by diffusion transport of the solute through the boundary
layers to the growing face. Where the growth order is 

 

n

 

 > 1, the rate of crystal
growth is usually controlled by surface integration kinetics, which is the orien-
tating and docking of molecules into the correct configuration at the growing face
of the lattice. 

The overall crystallization rate is often mistakenly construed as the crystal
growth rate. The overall crystallization rate is the rate of solute concentration
decrease with time; that is, 

(7.1)

where 

 

R

 

 is the overall rate of crystallization, 

 

c

 

 is the solute concentration, and 

 

t

 

is time. The crystal growth rate is a different quantity, being defined as the change
in size of a crystal with time:

(7.2)

R dc
dt

= −

G dL
dt

=

 

DK3017_C007.fm  Page 209  Friday, August 5, 2005  1:29 PM

© 2006 by Taylor & Francis Group, LLC



 

210

 

Batch Processes

 

where 

 

L

 

 is the crystal size. The overall rate of crystallization can be predicted
by using a population balance and a material balance together. This has been
described in detail by Randolph and Larson.

 

8

 

 The population balance is a means
of accounting for the change in the number and size distribution of crystals in a
population through the processes of nucleation (birth), dissolution (death),
growth, agglomeration, and breakage (attrition). The overall rate of crystallization
is a compilation of the effects of each aforementioned term; therefore, the overall
rate of crystallization is not necessarily indicative of the crystal growth rate.
Furthermore, the rate of mass transfer of solute from solution to the crystal phase
is dependent on the interfacial area. So, the rate of crystallization can be manip-
ulated through seeding, nucleation, and crystal growth.

 

7.2.1.2 Nucleation in Industrial Crystallizers

 

In an industrial or typical lab batch crystallization process, two nucleation mech-
anisms can occur:

• Primary heterogeneous nucleation
• Secondary nucleation 

Typically primary heterogeneous nucleation is the mechanism that initiates
crystallization for an unseeded batch crystallization process. This is where super-
saturation is high enough for molecules to cluster into a critical nucleus and
change phase from dissolved to a solid crystal. Practically speaking, homoge-
neous primary nucleation is not directly relevant to industrial crystallization and
need not be investigated during process development. 

Secondary nucleation is defined as the birth of new crystals in the presence
of other crystals. After birth of the first crystal through primary heterogeneous
nucleation, by definition secondary nucleation is the only type of nucleation for
the remainder of the batch. Collisions of crystals with other crystals, the type of
internal surface of the vessel or the impeller, or fluid shear forces acting on a
crystal surface all can lead to small solid fragments or molecular clusters sepa-
rating from the parent crystal. Where supersaturation is great enough, these
fragments repair and grow as mature crystals, a process referred to as 

 

contact
nucleation

 

. Additionally, where the supersaturation in a slurry exceeds the
metastable zone width, spontaneous nucleation will occur via the heterogeneous
primary nucleation mechanism. Because nucleation in a batch crystallizer often
includes simultaneous molecular clustering and collision mechanisms, the more
effective correlations of nucleation in a batch crystallizer include terms for super-
saturation, crystal content, and agitation intensity. Many correlation equations
have been proposed. Perry et al.

 

6

 

 provided a summary of the numerous nucleation
equations that have been reported. Equation 7.3 is an example of a commonly
used nucleation equation relevant to batch crystallization:

 

DK3017_C007.fm  Page 210  Friday, August 5, 2005  1:29 PM

© 2006 by Taylor & Francis Group, LLC



 

Crystallization and Associated Solid–Liquid Separations

 

211

 

(7.3)

where 

 

B

 

 is nucleation rate (number per unit volume per unit time), 

 

k

 

N

 

 is the
nucleation constant, 

 

σ

 

 is the supersaturation (absolute or relative), 

 

M

 

T

 

 is the crystal
content of the slurry, and 

 

N

 

 is an agitation parameter (such as power input per
volume or tip speed). The exponents 

 

j

 

, 

 

k

 

, and 

 

l

 

 indicate the relative dependence
of each parameter on the overall nucleation rate. Systems that more readily
nucleate in response to increasing supersaturation have a higher 

 

j

 

 exponent.
Systems with more fragile crystals are typically more susceptible to collision
nucleation mechanisms; these systems often exhibit both higher values of 

 

k

 

 and 

 

l

 

.
For batch crystallizers that are not well controlled, an initially high rate of

primary nucleation occurs which decreases with time as supersaturation is
depleted. Simultaneously, the secondary nucleation rate increases over time due
to the increasing crystal content and particle collision frequency. The potential
for these two parameters to induce batch-to-batch variability is important to
understand for scale-up and setting process parameters. By contrast, continuous
crystallizers ideally operate at steady state and are generally self-stabilizing. In
this case, the secondary nucleation mechanism predominates. 

 

7.2.1.3 Phase Diagram and Nucleation Thresholds

 

When studying the crystallization behavior of a compound, it is useful to assemble
a phase diagram showing the equilibrium solubility as a function of the relevant
parameters, such as temperature, antisolvent concentration, pH, and salt concen-
tration. On the same graph, nucleation thresholds can be drawn in to indicate
nucleation kinetic behaviors that are time-dependent, nonequilibrium properties. 

Many systems exhibit a useful metastable zone; this represents the supersat-
urated region, where no significant nucleation will occur within the time frame
of the batch process. At supersaturations above the metastable zone, secondary
nucleation will readily occur. This process is also referred to as 

 

contact nucleation

 

,
as it is where new crystals form only in the presence of other crystals. At
supersaturations greater still, heterogeneous primary nucleation occurs within the

appear. High measurement scatter is usually seen in such data due to the difficulty
in making accurate assessments of when nucleation occurred and due to the
stochastic nature of the nucleation processes. The data are commonly processed
by fitting the data with a smooth curve having the shape of the solubility curve.
Doing so establishes the nucleation threshold. The existence of metastability is
due to the Gibbs–Thompson effect. In this instance, very fine fragments of crystals
may have a higher solubility than larger crystals; hence, the fate of a crystal
fragment has a probabilistic component. Depending on its size and the extent of
supersaturation in the solution around it, the crystal fragment may dissolve com-
pletely or remain and grow. 

B k M Nn
j

T
k l= ⋅ ⋅ ⋅σ
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The trajectory of a crystallization batch can be charted on a phase diagram
with nucleation thresholds to indicate the path taken as a function of batch process

batch crystallization.
Accurate measurement of nucleation rates is not a trivial task in batch crys-

tallization. Further, batch-to-batch variability in nucleation behavior often occurs
due to one parameter being highly sensitive and difficult to control precisely
between batches. Nucleation thresholds provide a very useful compromise, as
they bound the regions where the differing nucleation regimes occur. Using
solubility data and nucleation thresholds as boundaries is a useful way to rapidly
establish the set points for a batch crystallization process and improve batch-to-
batch consistency.

 

7.2.1.4 Self-Nucleating or Seeding Batch Crystallization

 

Nucleation is the most difficult phenomenon to control during batch crystalliza-
tion. It is known to be the most common cause of batch-to-batch variability in
crystal size distribution and the performance of solid–liquid separation devices.
The preferred method of avoiding the complications of poorly controlled nucle-
ation is to perform seeding. To be effective, seed crystals must be added when
the supersaturated solution is in the metastable zone. The crystallizer must

 

FIGURE 7.2

 

Solubility phase diagram with nucleation thresholds overlaid (secondary
and heterogeneous primary).
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be controlled so it remains inside the metastable zone to avoid nucleation or
dissolution. 

Where seeding is carried out correctly, the accurately known number, mass,
and surface area of seed crystals allows control of the final crystal size distribution.
For the desirable case of no significant nucleation, the number of crystals in the
product slurry is equal to the number of crystals in the seed charge. The surface
area of the seed initially defines the available area for mass transfer (which
controls the batch time), and the mass of the seed crystals is simply a function
of number and the mass mean size of the seed. Controlling a seeded batch
crystallizer properly is the best way to minimize batch-to-batch variability and
ensure reliable performance of downstream operations (filtration/centrifugation,
drying, milling, and packaging). 

 

7.2.1.5 Measurement of Solubility Data

 

Solubility data are measured by equilibrating a crystallization liquor at a given
temperature with an excess of the crystal phase for which data are being generated.
The equilibration time depends on the kinetics, the surface area, and whether
equilibration is being performed by dissolution or by crystallization. Most studies
perform equilibration by dissolution over 12- to 24-hour time frames, but this is
not always sufficient time. If precise data are being generated, equilibration by
crystallization should be carried out over a period of weeks to months. For each
case, samples of equilibrated slurry are filtered and the dissolved content of the
filtrate is measured by an appropriate method, such as high-performance liquid
chromatography (HPLC), ultraviolet (UV)/vis spectrophotometry, gravimetric or

 

FIGURE 7.3

 

Trajectory of three example batch crystallizations across the phase diagram:
(i) self-nucleating, cooling; (ii) self-nucleating, isothermal; and (iii) seeded isothermal.
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conductivity analyses, measurement of the refractive index, or other means. More
information on the measurement of solubility from crystallizing and dissolving
systems can be found in Dalziel et al.

 

9

 

7.2.1.6 Measurement of Nucleation Thresholds

 

Several techniques have been reported to measure the nucleation thresholds and
thus the metastable zone width. Automated lab reactors, with online turbidity or
particle sizing devices can be used to rapidly develop data. Less sophisticated
techniques can be just as effective. Cherdrungsi et al.

 

10

 

 reported a simple tech-
nique where supersaturated liquor is sealed in a sample jar and agitated at constant
temperature in a shaker bath. The time period for visual observation of nucleation
(observation of crystals or cloud) is plotted for various supersaturations. This
procedure is repeated over a range of temperatures and concentrations. These
experiments are performed in the absence of seed for the heterogeneous primary
nucleation threshold and in the presence of a few large seed crystals for the
secondary nucleation threshold. The metastable zone is determined by the extent
of supersaturation that can exist without nucleation over the time period of the
batch crystallization process.

 

7.2.1 S

 

OLID

 

/L

 

IQUID

 

 S

 

EPARATION

 

Batch processing is commonly encountered in solid/liquid separation. In the
batchwise operation mode, the individual solid/liquid separation steps are not
synchronized with each other and are independently controllable. A semicontin-
uous operation mode can be achieved by having several machines operating at
staged batch times. For filtration, these individual steps are cake formation, cake
washing, and cake dewatering. For sedimentation, the steps would involve the
sedimentation and sludge discharge steps. Different driving forces and mecha-
nisms are used to achieve solid/liquid separations. The main mechanisms used
are sedimentation (by gravity or centrifugal field) and filtration (using a pressure
difference generated by pumps, gas pressure, vacuum, centrifugal field, or com-
binations thereof). The various mechanisms are described in the following
sections.

 

7.2.2 S

 

EDIMENTATION

 

Sedimentation processes are based on the gravitational forces acting on the
particles to be separated; therefore, a density difference between the solid particles
and the fluid is required. The sedimentation velocity of a sphere is described by
Stokes’ law:

(7.4)v
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The settling time can be accelerated by reducing the viscosity (

 

η

 

) or increasing
the density difference (

 

ρ

 

s

 

, solids density; 

 

ρ

 

fl

 

, fluid density) or particle size (

 

x

 

).
The gravitational force (

 

g

 

) can be increased by using centrifuges. To describe the
increase of gravitational force in the centrifuge equipment, the term 

 

g-force

 

 or

 

relative centrifugal force

 

 (RCF) is commonly used. In European literature, the
term 

 

C-value

 

 or 

 

Z-value

 

 is often encountered for the same relationship described
in Equation (7.5), where 

 

r 

 

is the centrifuge radius and 

 

ω

 

 is the angular velocity:

(7.5)

Stokes’ law is valid for single spheres sedimenting in a Newtonian fluid. Settling
behavior of suspensions containing higher solids concentrations have been inves-
tigated in the past and are documented in the literature. An equation used primarily
to describe the sedimentation velocities as a function of particle concentration
was derived by Richardson and Zaki.

 

11

 

 The exponent is a function of the Reynolds
number, and for laminar conditions the value of 4.65 (as shown in Equation 7.6)
can be used:

(7.6)

In this empirical relationship, 

 

v

 

Stokes

 

 is the unhindered settling velocity according
to Stokes’ law, and 

 

C

 

v

 

 is the particle volume concentration.
More recent research in this area has been directed toward a better under-

standing of settling and consolidation of fine particle suspensions and of poly-
disperse particle systems.

 

12

 

 It is important to understand the fundamentals of
sedimentation and their implication for proper testing and evaluation of sedimen-
tation behavior, as described later in this chapter. Especially when dealing with
fine particle suspensions, the physicochemical interactions become more impor-
tant and effects such as agglomeration and flocculation can significantly influence
the outcome of sedimentation. Good knowledge and control of the process con-
ditions boundaries (pH, temperature, shear, ionic strength, upstream impurities
or additives) are crucial for the successful design of a sedimentation approach.

 

7.2.2.1 Filtration

 

Filtration is the separation of a fluid/solids mixture involving the passage of most
of the fluid through a porous barrier (filter medium), which retains most of the
solid particulates contained in the mixture. This definition given by Perry

 

6

 

 dis-
tinguishes the term 

 

filtration

 

 from the second unit operation in solid/liquid sep-
aration processes: 

 

sedimentation

 

. Whereas in sedimentation a density difference
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between solids and fluid is mandatory, filtration is driven by hydrostatic head
(gravity), by pressure applied upstream or reduced pressure (vacuum) applied
downstream of the filter medium, or by centrifugal force across the filter medium.
Filtration can be classified into two major categories:

•

 

Clarifying or depth filtration

 

, when the solids are withheld or trapped
completely within or on the filter medium; retention can be accom-
plished by various mechanisms (mechanically, electrostatically)

•

 

Cake filtration

 

, when the layer of particles deposited on the filter
medium acts as a filtering medium

 

7.2.2.1.1 Filter Media

 

Filter media function in several capacities to provide a clear filtrate. They can
act as absolute filter media, where the pore size is designed to prevent any particles
of a given size to pass the filter media. Such filter media are commonly used as
guard filters or police filters. They can be located prior to the equipment to prevent
coarse particles from plugging up nozzles, fouling filters, or having other negative
impacts on the process. Guard filters can also be used downstream of filtration
equipment to catch any particles that might have passed the main solid/liquid
separation step. Filter media for deep filtration purposes are, in general, designed
with a larger pore size than the particles to be retained. The filter medium in this
case serves as a starting point for the cake formation (explained later). Various
materials for filter media are used, the most common being nylon, polyethylene,
and polypropylene. Metal wire meshes are also used in certain filter media or
support media. The filter media material, the type of weave, and the surface finish
are of importance for the such filter media properties as initial flow rate, retention
efficiency, filter cake release, blinding resistance, and strength. Useful reviews
on filter media types and the associated retention mechanisms can be found in
Rushton and Griffiths.13

7.2.2.1.2 Depth Filtration
For depth filtration, the particles are retained within the filter media. The main
application areas include water treatment and purification, in the beverage indus-
try, and removal of particulates from solvents and polymer solutions. Depending
on application and required volumes to be filtered, deep filters are built in a
variety of configurations from large, slow-filtering sand filters (filtration velocities
around 1 m/day) to small, rapid-filtering (1 m/hr) cartridge filters intended for
single use. The particle retention efficiency in deep filters is a function of the
transport mechanism of the particles to the filter media and the adhesion proba-
bility when the particle reach the surface. The transport mechanisms encountered
in depth filtration are (1) direct interception, (2) sedimentation, and (3) diffusion.
For a particle to be retained in the filter matrix it has to adhere permanently to
the surface. The exact calculation of this adhesion probability is not straightfor-
ward for real filtering systems. Adhesion probability is highly dependent on
particle charge and size as well as on the surface properties of the filter media.
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The measurement of these properties is necessary for the proper selection and
design of deep filters.

7.2.2.1.3 Surface Filtration
The term surface filtration is used when the particles are preferably retained at
the surface of the filter medium. The different modes of surface filtration include
sieve filtration, cross-flow filtration, and cake filtration. Sieve filtration refers to
the removal of particles from a suspension with a low solids concentration,
without the real formation of a filter cake. At a preset pressure loss, the filter
media are exchanged or regenerated by backflushing or other cleaning mecha-
nisms. In cross-flow filtration, the suspension flows parallel to the filter medium
to avoid deposition of particles on the filter medium. The clear permeate is forced
through the filter medium by the applied transmembrane pressure difference. The
concentrate is discharged from the cross-flow apparatus in a highly concentrated
but still pumpable form. For cross-flow operations, membranes are typically used
as the filter media. Depending on the desired particle (or molecule) cut size, the
membrane filtration technologies are classified as microfiltration, ultrafiltration,
and nanofiltration/reverse osmosis. Because these technologies are commonly
used as continuous processes they will not be described further here. A good
reference for membrane filtration can be found in Ho and Sirkar.14 

Cake Filtration
In cake filtration, the layer of particles on the filter medium acts as a filter medium.
The main parameters in cake filtration are shown schematically in Figure 7.4. In
cake filtration, a first layer of particles is formed by bridging mechanisms, where
multiple particles arch over the filter medium opening. The pore size of the filter
medium (filter cloth) can therefore be significantly larger than the smallest particle

FIGURE 7.4 Parameters in cake filtration: pressure difference, ∆p = p1 – p2; volumetric
flow rate, ·V; dynamic viscosity, η; fluid density, ρfl; filter cake height, hC; filter cake
resistance, RC; filter area, A. (From Friedmann, T., in Institute of Food Science: Laboratory
of Food Process Engineering, ETH Zürich, Zurich, 1999. With permission.)
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Fluid:  η, ρfl

Filter cake: RC = f (ε, dp, ...)

A
V
·

DK3017_C007.fm  Page 217  Friday, August 5, 2005  1:29 PM

© 2006 by Taylor & Francis Group, LLC



218 Batch Processes

size in the suspension to be separated. Filter cloth selection and the solids
concentration of the suspension are determining parameters for the initiation of
filter cake buildup. Selection of the appropriate filter media is discussed in Section
7.3.7.2. Due to the initial bridging mechanism, the first filtrate may still contain
an increased amount of solids. After a first layer has built up, the filter cake itself
acts as a filter medium, and the filtrate runs clear. During filtration, the cake
height (hC) increases due to deposition of solids at the filter cake surface. An
increase of hC consequently changes the filtrate flow rate and pressure difference
as the filtration proceeds. If all particles are deposited and pure liquid flows
through the filter cake, the volumetric flow rate can be assumed to be constant
for a given pressure difference. These basic relationships for flow through porous
media were already described by Darcy in the 19th century.15 He also found that
the volumetric flow rate (Q) was inversely proportional to the height of the packed
bed. Darcy’s law is given in Equation 7.7, where A is the filter area, ∆p is the
pressure drop across the filter cake, η is the fluid viscosity, and k is the specific
cake permeability:

(7.7)

The permeability (k) can also be expressed as the reciprocal of the filter cake
resistance (rC) as introduced in Equation 7.8:

(7.8)

The overall resistance consists of the cake resistance (rC) and the filter medium
resistance (RM):

(7.9)

The Darcy equation holds for the following assumptions:

• Laminar flow conditions
• Homogeneous suspension, no segregation
• Newtonian fluid properties
• Filter cake properties are constant (incompressible filter cake)

Whereas laminar flow conditions are practically always met in filtration
processes, fluid behavior is often of a non-Newtonian nature. A certain degree of
compressibility is found in almost every filter cake.

Q
A p k

hC

∝ ⋅ ⋅
⋅
∆

η

k
rC

= 1

R r h RC C M= ⋅ +
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Assuming that filter cake resistance increases linearly with cake height
(incompressible filter cake) and that the suspension concentration remains con-
stant during filtration time, the cake height (hC) is proportional to the filtrate
volume (V):

(7.10)

where κ is a proportionality constant that can be determined from a mass balance.
For the assumptions stated before, the cake buildup rate can then be expressed as:

(7.11)

A useful method to determine the specific cake resistance (rC) and medium
resistance (RM) from filtration experiments is the t/V = f(V) method. The filtrate
flow is measured during cake formation, and t/V is plotted over the filtrate
volume (V) as showed schematically in Figure 7.5. The evaluation of cake and
filter medium resistance is done by using the cake formation equation with a
special arrangement of the parameters, as shown in Equation 7.12. The offset
(a) and slope (b) can be evaluated from the data graph and used to determine
rC and RM: 

(7.12)

Determining permeability and its relation to the physical characteristics of
the porous medium has been the aim of many researchers. The main parameters

FIGURE 7.5 Schematic diagram of t/V over V diagram for determination of filter cake
resistance and filter medium resistance.
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220 Batch Processes

found in empirical permeability models are the void volume fraction (εv; porosity)
and particle or pore size. Some often-cited permeability functions are given in
Table 7.1. The equations given in Table 7.1 hold for packed beds of rigid particles;
however, as mentioned before, most filter cakes exhibit more or less compressible
behavior. 

Filter Cake Structure and Compressibility
Pressure has several effects on cake filtration. The desired effect of a proportional
increase of filtrate flow rate with an increase in pressure drop across the cake is
found only for rigid particles forming an incompressible filter cake. From exper-
imental data, it is known that flow rate increases only slightly for compressible
filter cakes, such as flocculent or other deformable precipitates. Some materials
even have a critical pressure above which a further pressure increase results in
an actual decrease of flow rate.

The deformation mechanisms of packed beds are shown schematically in

deformed irreversibly by rearrangement or disrupture of the particles. An elastic
deformation of the particles leads to a reversible deformation of the packed bed.
After release of the compressive load, the packed bed regains its initial structure.
Particles of fibrous shape can bend under a load leading to a reversible (elastic)
deformation as well.

Ruth16 and Grace17 developed a compression–permeability cell (CP cell) for
studying the properties of compressible filter cakes. They found that the average
cake resistance ( ) can be described empirically by a power-law function, where
the exponent n is a measure of compressibility:

(7.15)

TABLE 7.1
Permeability Functions for Flow Through a Packed Bed of Particles

Ref.  Permeability Model

Rumpf and Gupte 
(1971)

, where dp is the particle diameter, and εv is the 

porosity

7.1

Carman and Kozeny 
(1938)

, where K is the Kozeny constant (values 

from 4 to 5 are reported in the literature); εv is the porosity, and 

Sv is the specific surface area

7.2

k
dp v=

⋅2 5 5

5 6

ε .

.

k
K S

v

v v

=
⋅ ⋅ −

ε

ε

3

2 21( )
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n
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Here, pc is the compressive pressure, and α′ and n are empirical parameters
determined from flow experiments; α0 can be regarded as an initial (unstressed)
cake resistance. The CP cell is described in the lab equipment section.

Considerable work on filtration with compressible filter cakes has been done
by Tiller and coworkers. Tiller and Huang18 proposed the following relationship
for the local filter cake resistance (αx) across the filter cake:

(7.16)

(7.17)

where n is again the cake compressibility, varying from 0 for rigid, incompressible
cakes to 1.0 for highly compressible cakes. They assumed that αx approaches a
limiting value αi at some low pressure pi.

Many authors have followed these general approaches with various modifi-
cations. Absolute values of the compressibility constants may vary depending on
the equipment used to measure compressibility. This makes it difficult to compare
data from different experiments.19

7.2.2.2 Filtration in Centrifugal Field

Filter centrifuges are used for separation of solid–liquid systems and the ensuing
washing and dewatering of the filter cake. Centrifugal acceleration is used as the
driving force to separate solids from liquids. In contrast to pressure filtration,
cake buildup is accomplished by sedimentation of the suspended particles. The
remaining fluid passes through this filter cake, where separation of the finer

FIGURE 7.6 Deformation mechanisms of packed beds; from an initial state the packed
bed can deform irreversibly (plastic) by rearrangement (a) or disrupture (b), or reversibly
(elastic) (c). (From Friedmann, T., in Institute of Food Science: Laboratory of Food Process
Engineering, ETH Zürich, Zurich, 1999. With permission.)

(a) (b) (c)

Rearrangement Disrupture Elastic deformation

Irreversible Reversible

α αx c
n

c ip p p= ⋅ >0 ,

α αx i c ip p= <,

DK3017_C007.fm  Page 221  Friday, August 5, 2005  1:29 PM

© 2006 by Taylor & Francis Group, LLC



222 Batch Processes

particles still in suspension takes place. Dewatering can be more economic in
filter centrifuges than in pressure filters due to the rapidly increasing amount of
compressed air necessary (in pressure filtration) to reduce residual moisture after
gas breaks through the filter cake. Unfortunately, the same centrifugal acceleration
also leads to an enhanced compaction of the filter cake. Consequences of filter
cake compression have been mentioned before. An alternative is the combination
of pressure and centrifugal filtration, as found in the concept of hyperbaric
centrifugation (explained later). Contributions to the literature regarding centrif-
ugal filtration have been made by, for example, Stahl,20 Leung,21 Rushton et al.,22

Zeitsch,23 and Mayer.24 The summary below is based primarily on these reviews.
In centrifugal filtration, the area for flow and driving force increase with radial
distance form the centrifuge axis. The permeability and filtrate flow rates through
a filter cake can therefore deviate significantly from filtration of the same material
under normal conditions (no centrifugation).

7.2.2.2.1 Dewatering
During the cake filtration and washing process, the entire void volume is filled
with fluid; it is completely saturated. Desaturation of a filter cake takes place in
the last process step: dewatering. Final residual moisture depends on the material
and process parameters. To understand desaturation mechanisms, the different
fluid (moisture) components have to be defined. Figure 7.7 shows the various
fluid components of a filter cake according to Batel.25

Saturation (S) of a filter cake is defined as the ratio of fluid filled volume (Vfl)
to the total void volume (Vv) of the filter cake:

(7.18)

FIGURE 7.7 Fluid sources in a filter cake: (A) free moisture (bulk and surface), (B)
capillary moisture, (C) pendular moisture, and (D) inherent/bound moisture. (Adapted from
Batel, W., Chemie Ingenieur Technik, 28(5), 343–349, 1956.)
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The equilibrium saturation that can be attained by centrifugal desaturation is
given by the force balance of capillary and centrifugal forces. Mersmann proposed
a desaturation model characterized by the dimensionless Bond number, which is
the ratio of centrifugal force to capillary force.26 With hydraulic diameter dH,
surface tension σi, and contact angle δ, the capillary force (Fcap) becomes:

(7.19)

Considering the dimensionless relative centrifugal force (C) defined previously
and the height of the fluid capillary (hcap) in the filter cake, the centrifugal force
FZ becomes:

(7.20)

Hence, the Bond number (Bo1) for the bulk (free) fluid component is defined as:

(7.21)

After desaturation of the bulk fluid, the pendular fluid remains at the particle
contact points. The centrifugal force on such a pendular fluid element is assumed
to be proportional to the hydraulic diameter (dH) to the third power, as given in
Equation 7.21:

(17.22)

A second Bond number (Bo2) for the pendular fluid component is therefore
defined as:

(17.23)

Desaturation of filter cakes is usually represented in so-called Bond diagrams,
where equilibrium saturation S is plotted as a function of Bo1 or Bo2. A typical

shows four stages of desaturation. At very low Bond numbers, the filter cake is
completely saturated (S = 1). At a particular Bond number (increased C value),
the capillary entrance pressure of the filter cake is overcome, and desaturation of
the packed bed begins. Bulk or free fluid is dewatered at this stage. Because
centrifugal force is proportional to capillary height in this domain, desaturation
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Bond diagram according to Mersmann is shown in Figure 7.8. The Bond diagram
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depends on the filter cake height. Capillary rise (hcap) is further reduced with
increasing Bond number until the so-called Bond plateau is reached (Bo2  1). The
bulk fluid is drained at this point, but the centrifugal force is not sufficient to
dewater pendular moisture. Extensive studies have shown that an increase in C
value of nearly a decade is necessary to dewater the pendular fluid component
in the filter cake.24,26

7.2.2.3 Washing

Washing the separated solids can be performed at various stages of the process,
and the washing mechanisms can be differentiated as displacement and diffusion
washing. During the displacement washing phase, the original mother liquor is
displaced from the filter cake pores by the wash liquid. Ideally, all the mother
liquor would be displaced by the wash liquid; however, this situation is almost
never encountered in real systems. By increasing the viscosity of the wash liquid
above the viscosity of the mother liquor, the displacement efficiency can be
improved. After breakthrough of the wash liquid through the filter cake, diffusion
primarily governs the additional washing. High wash ratios (wash liquid/mother
liquor) are necessary to reduce the remaining mother liquor in the cake. It is not
recommended to run the washing much longer than after breakthrough; if addi-
tional purity is required, a reslurrying step of the cake with wash liquid is
commonly applied. Reslurrying can easily be accomplished in Nutsche-type (or
Rosenmund) filters, but new developments also allow reslurry washing in filter
centrifuges (e.g., Heinkel inverting filter centrifuges). It is important to consider
the washing procedure during the selection and design phase of the solid–liquid
separation equipment, as the flowrates and dewatering performance can change

FIGURE 7.8 Bond-diagram. Equilibrium saturation S is plotted as a function of Bo2 (pen-
dular fluid component); with increasing filter cake height (hC) desaturation of the bulk (free)
fluid occurs at lower Bo2 values. Desaturation of pendular moisture is independent of hC.
(Adapted from Mersmann, A., Verfahrenstechnik, 6(6), 203–206, 1972.)
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significantly after removal of the mother liquor due to new surface interactions
and possible rearrangement of the filter cake.

7.2.2.4 Influence of Particle Size and Shape on Solid–Liquid 
Separation

It is well known that particle size and particle shape strongly influence the filtering
and sedimenting behavior in the following separation step. Especially with bio-
logical products, the compressibility of the materials can further deteriorate the
separation performance. Recent advances in correlating filter cake properties with
particle collective characteristics (particle size distribution, particle shape, specific
surface) are given by Sorrentino.27 It is crucial to have a good understanding of
the particulate system and to consider particle size and shape in the development
of solid–liquid separation processes. Particle morphology changes are not always
obvious and can occur by many means (pH, temperature, shear intensity, residence
time in mixing tank). For industrial processes, variations in particle size, shape,
or propensity for agglomeration can lead to major upsets in the downstream
processes after crystallization or precipitation. Drying and bulk handling pro-
cesses can also be affected. Laboratory-scale experiments are important and
currently cannot be replaced by computational modeling alone. The laboratory-
scale tests described in the following section are excellent tools for evaluating
critical parameters for the selection, design, and optimization of batch or contin-
uous solid–liquid separation equipment.

7.3 LAB TESTING

The selection of crystallization as the unit operation of choice must be tested at
laboratory scale to avoid wasted capital investment. That is, the performance,
product quality, yield, and likely processing costs must be evaluated with respect
to alternate separation technologies. Further, basic crystallization process data
are required to guide the scale-up, design, and operation of the industrial process. 

7.3.1 CRYSTALLIZATION SOLVENT

A suitable solvent must be chosen for the crystallization. Solvent selection is
determined either by convenience (e.g., the solvent that the crude material is
supplied in) or by necessity after choosing from a range of possible solvents.
Even from the earliest stage of development, it is recommended to choose solvents
for scale-up that offer the greatest:

• Safety (e.g., flammability, toxicity, reactivity)
• Ease of regeneration or disposal
• Availability at the intended site of production 
• Acceptability of traces in the final product
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In the food industry, water is the primary solvent (e.g., for crystallization of
sucrose, dextrose, lactose, sodium chloride). Some alcohols are occasionally used
(e.g., for fructose crystallization in aqueous ethanol). Hydrophobic compounds
such as flavor extracts, waxes, and oils are often processed with hydrocarbon or
other organic solvents (e.g., cyclohexane). In the fine chemical, pharmaceutical,
and agrochemical industries, a broader range of organic solvents is used for batch
crystallization. Examples of widely used solvent classes include alcohols, hydro-
carbons, esters, and chlorinated organics, among others. 

The solubility in the chosen solvent determines much of the operational
constraints. For example, temperature-dependent solubility suggests that cooling
may be an appropriate mode of crystallization. By contrast, a weak temperature
dependence on solubility suggests that an evaporative process may be superior.
A highly temperature-dependent solubility can become a constraint, as it may
lead to the need for additional jacketing, insulation, and temperature control of
the slurry exiting the crystallizer and entering the solid–liquid separations device.
This additional cost and operational sensitivity are necessary to avoid encrustation
in the vessel or pipes and any change in the product properties due to fouling,
bursts of nucleation, or rapid uncontrolled crystal growth.

7.3.2 SALT FORMS

Active pharmaceutical ingredients (APIs) are usually crystallized as organic salts,
rather than in the free base (or free acid) form. The decision to scale-up this type
of crystal is a judgment made during development. Salt forms of APIs generally
exhibit greater aqueous solubility than their free base or acid equivalent forms;
therefore, increased bioavailability is an advantage of drug products containing
APIs as salts. The counter-ion is selected empirically from those that crystallize
and which provide a stable form of the APIs, with minimized toxicity potential
introduced by the counter-ion. The hydrochloride salt is the most common,
although many others exist.28

7.3.3 FEASIBILITY TESTING CRYSTALLIZATION

When a solvent (or several candidates) has been selected, small-scale, single-
batch crystallization should be conducted using a small quantity of the material.
This is best conducted in a vial (10 to 100 mL). The vessel should be agitated
(by shaker tray or overhead mixer, if available). Although magnetic stirring bars
are commonly used at this point, doing so is discouraged because it leads to
grinding of the crystals, which can produce misleading early data on crystal size
distribution. If the feasibility test is completed within minutes, magnetic agitation
is an acceptable compromise, but for longer periods it should be avoided. 

Feasibility testing involves a simplified crystallization test, during which
crystallization should be rapidly induced by the simplest and most convenient
driving force (evaporation, cooling, or addition of an antisolvent, such as water
or an alcohol, or by rapid titration with a reactant such as acid or alkali). The
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feasibility test should not be taken too literally. It is simply a first test to allow
approximate purification levels to be considered; likewise, the mean crystal size
of the product can be indicated within several hundred percent and the likely
shape of the crystals can be noted. Both purity and particle size can be substan-
tially improved with process development data and good engineering. In many
cases, crystal shape can be manipulated, yet doing so requires more sophistication
in the experimental techniques and approach. 

If a system grossly fails the feasibility testing in terms of expected purity or
particle size, then resources should be deployed early to screen alternative pro-
cesses. For example, purification by chromatography, extraction, membrane pro-
cessing, or other means could be screened. Similarly, particle formation by spray
drying, granulation, extrusion, micronization, or other process could be examined
as stand-alone or additional unit operations. 

To reveal possible solid–liquid separation complications, the slurry from the
direct strike can be subjected to a filter leaf test to determine the specific cake
resistance. At this point, it is too early to establish design specifications for
filtration or centrifugation equipment; however, a particularly fine product (i.e.,
where the product contains more than a few percent of particles around or less
than 1 ∝m) may already suggest potential difficulties in separating the crystals
from the mother liquor, such as particles breaking through the filter media into
the filtrate or blinding of the filter media and a subsequent low filtrate flux.

7.3.4 VAPOR DIFFUSION CRYSTALLIZATION

Feasibility testing usually can be conducted for fine chemicals, food ingredients,
and consumer products; however, for pharmaceuticals, agrochemicals, and recom-
binant bioproducts, often only milligram to gram quantities of material are avail-
able. For these situations, microtechniques must be used. At the smallest scale,
vapor diffusion techniques can be used to crystallize microliter volumes of
material. This approach is widely used for the crystallization of proteins and
nucleic acids, although generally this is done to determine structure via x-ray

tion system according to the hanging drop technique. Several microliters of the
substance to be crystallized are suspended below a coverslip and mixed with
several microliters of a formulation solution containing the solvents, salts, and
buffers being screened for the crystallization chemistry. The drop hanging from
the coverslip concentrates via vapor phase equilibrium with a bulk of the same
formulation solution in a multiwell plate. Various kits are available that provide
arrays of formulation solutions as well as the plates and coverslips. 

After storage for days or weeks at the desired temperature, the microarray
plate is observed under a microscope. Coverslips that have desirable crystals
(rather than oils, amorphous solids, or other) are readily identified, which allows
rapid identification of solvents, salts, and buffer ingredients that are conducive
to crystallization of the target molecule. This technique was originally developed
for protein crystallization to generate high-quality, single crystals for x-ray
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crystallography. Figure 7.9 provides a schematic of a vapor diffusion crystalliza-
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diffraction studies of molecular structure; however, this same approach can be
applied to proteins, nucleic acids, and small molecules that are intended to be
crystallized at a larger scale when the solution chemistry has been identified.
Other configurations of vapor diffusion crystallization can also be used, such as
sitting drop, drop in oil, and vial in vial. Hampton Research (Aliso Viejo, CA)
is one supplier of equipment and literature for vapor diffusion crystallization
techniques.

7.3.5 MINIATURE FEASIBILITY CRYSTALLIZATION TESTS

For small-molecule crystallization screening (e.g., for pharmaceutical and agro-
chemical active ingredients), vapor diffusion techniques are used but far less
widely. The broader use of organic solvents makes the disposable, plastic hard-
ware of the hanging-drop techniques less convenient to use. In cases where only
milligrams or grams of material are available, microscale feasibility tests are often
conducted. Glass HPLC vials are convenient vessels for this purpose. Nitrogen
or dry air blown into these vials with fine tubing allows concentration and
subsequent crystallization through solvent evaporation. Antisolvent addition and
cooling techniques are also used. Semi-automated, high-throughput screening
techniques are emerging that allow crystallization to be assessed using smaller
quantities of material and more broadly than testing by manual methods. A good
review of this subject can be found in Morissette et al.29

7.3.6 LITER-SCALE STIRRED VESSEL CRYSTALLIZATION

Batch crystallization tests at a scale of approximately 0.25 to 5.0 L are very useful
and important when conducted properly. They provide more rapid data generation

scale crystallizers should include:

FIGURE 7.9 Vapor diffusion crystallization in the hanging drop mode. The diagram is
a cross section of one well in a multiwell vapor diffusion screening plate.
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than pilot testing and are less demanding on bulk material and operators. Figure
7.10 provides a diagram of a basic liter-scale batch crystallizer. Features of liter-
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• Jacketed glass vessel (height/diameter ratio of approximately 1 to 2)
• Programmable recirculating water bath
• Glass or other suitable lid to minimize evaporation or thermal gradients
• Reflux condenser, if appropriate
• Immersed thermocouple or thermometer
• Immersed pH probe (if pH monitoring is appropriate)
• Multibladed axial flow impeller located 1/4 to 1/2 a diameter above

the vessel base
• An impeller with a diameter equal to 1/3 to 1/2 that of the vessel

diameter
• A dip tube located close to the impeller high shear zone, for introducing

reactants or antisolvents
• A sampling port for withdrawing representative samples of slurry with-

out interrupting the agitator, dip tube, or thermocouple

FIGURE 7.10 Diagram of a batch crystallizer apparatus suitable for liter-scale test work.
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Some additional features that are desirable, if available, include:

• Bottom draw-off to dump the slurry product rapidly without disman-
tling the crystallizer apparatus

• Boroscope to image crystals in situ
• Lasentec focused-beam reflectance measurement (FBRM) probe to

measure chord length distributions in situ
• Attenuated total reflection–Fourier transform infrared (ATR-FTIR)

probe to measure solution concentration in situ to determine super-
saturation

• Raman probe to monitor the phase of the crystallizing solids in situ

At the liter scale, baffling is not essential. While several baffles are convenient,
the intrusive dip tube, thermometer, and pH probe all perform a baffling function
at this scale. Agitation should be set at the minimum revolutions per minute (rpm)
required to suspend the crystals so they do not accumulate at the base of the
vessel. Over-agitation is to be avoided. Small changes in rpm at the liter scale
can easily lead to over-agitation, which gives rise to greater secondary nucleation.

A number of automated lab reactors are available that are very useful for
crystallization tests at these scales. The LabMax® (Mettler-Toledo; Columbus,
OH), Advantage SeriesTM (Argonaut Technologies; Redwood City, CA), and
Auto-LabTM (HEL; Hertfordshire, U.K.) reactors are three examples of such
devices. Resin kettle reactor vessels without the automated peripherals (agitator,
heat and cooling, peristaltic pumping, data logging, etc.) can adequately be used
to achieve similar results with more manual programming and operator interven-
tion. The integration of online particle sizing with automated crystallizer or
reactor devices provides a useful function that improves data generation and
productivity. Software can be set up to allow smarter operation, such as resetting
automatic cooling, termination, and reheating for subsequent tests. 

The desupersaturation profile of a liter-scale crystallization is typically of the

while the total surface area is still low. As crystal nucleation and growth progress,
the total crystal surface area builds up, allowing the overall crystallization mass
transfer to occur more rapidly. As the supersaturation is depleted, the rate of
growth and overall mass transfer decreases. This continues as the batch
approaches the equilibrium solubility concentration.9

The growth and nucleation rates from batch crystallizations can be interpreted
using a variety of techniques. Misra and White30 reported a technique that is still
widely used. Their approach considers the shift of the cumulative number form
of the size distribution on the size axis (for growth rate) and number axis (for
nucleation rate). Thus, correlations of growth and nucleation rates with super-
saturation over time allow determination of the kinetic parameters. 
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form shown in Figure 7.11. Initially, the supersaturation is high and fairly flat,
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7.3.6.1 Experimental Objectives of Liter-Scale 
Crystallization

Much of the basic data generation for scale-up can be carried out at a scale of 1
to 5 L. These experiments should use prototypic feed liquor with an impurity
profile similar to that of the intended larger scale process. Highly purified feed
stocks should be used just to establish the effect of impurities (by comparison)
or if difficulty is initially encountered in determining the experimental conditions
(concentration, temperature, etc.). Each experiment should be designed to max-
imize the information gathered on the critical variable while minimizing the time
required. This is a most common industrial practice, as timelines for process
development often do not accommodate as thorough an investigation of each
parameter as may be desired. Careful analysis of experimental data and observa-
tions is important in judging which variables should be investigated. The follow-
ing section outlines areas of investigation that are most important in the absence
of all data required for population-balance-based scale-up and design.

7.3.6.1.1 Process Set Points and Product Yield
Experiments seeking to maximize yield by controlling the initial concentration,
final temperature, batch hold time, and solvent composition will allow determi-
nation of whether or not an adequate yield can be recovered from a single batch
crystallization. Such a determination can also be inferred from solubility data by
comparing the initial concentration with the solubility concentration at the final
temperature. If a sufficient yield cannot be achieved through manipulation of

FIGURE 7.11 Example of the desupersaturation profile during crystallization of glucose
isomerase enzyme.38
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temperature and solvent composition, the liter-scale crystallization apparatus can
be used to generate multiple batches of prototypic mother liquor quantities to
combine and use for testing and development of a secondary crystallization step.
Because the impurities are usually of a greater concentration in a secondary
crystallization, this unit process should be developed separately, as the impurities
can have a substantial effect on solubility, crystallization, and product quality.
The yield information from these experiments is important input for the material
balance of the process flowsheet.

7.3.6.1.2 Seeding
If a sufficiently wide metastable zone width exists, the effectiveness of seeding
can be tested to gain greater process control and minimize batch-to-batch vari-
ability. Seed can be added dry or as a slurry. Slurried seed is preferred, as it lacks
adsorbed amorphous material from dried mother liquor and can be injected readily
as a slurry, rather than dosed as a powder. Varying the seed mass charged to the
crystallizer can provide control over the rate of crystallization as well as the final
crystal product size distribution. This is the case when the batch is maintained
within the metastable zone, so spontaneous nucleation is avoided. It is the total
surface area of seed crystals added that primarily affects the mass transfer rate
(more surface area leads to faster desupersaturation), and it is the number of these
crystals that can provide control over the final product size (fewer seed crystals
lead to a larger product). Despite this, the easiest means of adding seed crystals
is on a dry mass or slurry volume basis; therefore, it is very useful for subsequent
process data analysis and optimization that the seed crystals used for process
development experiments be taken from a single stock supply and that this stock
be well characterized in terms of the total surface area per unit mass and crystal
number per unit mass. Particle size analyzers can provide this information in a
crude fashion, while additional data from specific surface area analysis strength-
ens the confidence in the data. For initial purposes, the seed mass should be in
the range of 1 to 5% of the anticipated crystal product mass. This mass can be
increased or decreased substantially depending on the seed surface area, kinetics
of the crystallization process, desired batch time, and desired product crystal size
distribution.

7.3.6.1.3 Nucleation Onset
If seeding is not practical due to a narrow metastable zone, the sensitivity of the
nucleation onset point can be determined with respect to deviations in operational
parameters (e.g., temperature, concentration, reactant addition quantity). Manip-
ulation of the early part of the cooling profile leading up to initial nucleation can
be quite useful here. To gain better process control and lessen batch-to-batch
variability, the objective of these experiments should be to establish a repeatable
onset temperature of nucleation and minimize the nucleation rate. Gentle
decreases in temperature (or slow addition of antisolvents) during the transition
period from homogeneous solution to a nucleated slurry of fine crystals is the
best strategy. Note that the cooling profile from natural heat loss from a vessel
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will provide an undesirably high rate of cooling during this transition period;
therefore, management of vessel temperature through controlled cooling along
with adequate mixing of the solution contents to avoid hot or cold spots is the
best approach.

7.3.6.1.4 Particle Size and Filtration Performance
The effect of various parameters on the final particle size distribution should be
investigated as much as time and resources permit; for example: (1) initial con-
centration, (2) final concentration, (3) temperature profiles (cooling rate),
(4) antisolvent or reactant addition rate, (5) evaporation rate, (6) filterability of
the slurries exhibiting significantly different size distributions or rheologies,
(7) sensitivity of the filtrate to further crystallize with slight temperature changes,
and (8) sensitivity of the crystals to breakage resulting from over-agitation.

7.3.6.1.5 Feed Liquor Impurities
Impurities present potential issues in processing by crystallization when they are
not well understood. Careful experimentation is worthwhile to determine the
sensitivity to various impurities. The influence of impurities can be investigated
by comparison with equivalent tests using high-purity feed stocks. Impurities
have the potential to affect all key aspects of the crystallization: growth and
nucleation kinetics, metastability, product size distribution, yield, overall rate,
crystal habit, and product quality. The solid–liquid separation properties of these
slurries should also be examined closely. Variation in feed liquor impurities at
the manufacturing scale is common. A filter leaf test is a good way to test for
any significant effects of impurities on the potential performance of the solid–liq-
uid separation device. Impurities commonly affect the crystal habit and can have
a large impact on filterability and purity. Needle or plate-like crystals tend to
stack in a way that traps impure mother liquor. These are shapes that are more
conducive to forming a compressible filter cake, thus making it particularly
difficult to draw the filtrate through. In attempting to improve the impurity profile
of a product, it is useful to seek to understand the location of each impurity
species. Washing tests with various solvents in which the impurity is soluble but
the product is insoluble will allow determination of impurities adsorbed to the
surface of the crystal product and those that are trapped internally within the
crystal. 

7.3.6.1.6 Effect of Washing
The effect of washing on purity and yield can be tested at the liter scale using
various candidate wash solvents and proportions. Such testing will provide a more
accurate estimate of the purity than is possible in the initial crystallization. Where
greater purity is desired, the effect of multiple washes or the use of a different
wash solvent is preferred over secondary crystallization processing. Purity analy-
ses must be carried out on both the washed crystals and the separated liquor after
washing. Because some product may be lost through dissolution, a total material
balance approach allows logical tracking of impurities for each washing condition
tested.
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7.3.6.1.7 Effect of Recrystallization on Specific Impurities
Trials for one or several recrystallizations are often performed, even on a small
scale. It is possible for the concentration of impurities to increase or decrease in
the crystal product, so impurities must be analyzed at this point on a species basis
(e.g., by HPLC, gas chromatography [GC], inductively coupled plasma [ICP]
analysis), rather than at the more simplistic total impurity level. Impurities can
be incorporated into the crystal product by several mechanisms: (1) being
adsorbed to the exterior of the crystal through dried mother liquor (majority of
impurity mass); (2) being entrained within the crystal through inclusions (trapped
pockets of mother liquor); (3) by poisoning of one or more crystals faces. 

7.3.6.1.8 Slurry Rheology
Observation and measurements of the rheological properties of the slurry are a
useful way to ensure that mixing, suspension, and slurry pumping will be possible
and not lead to a potential catastrophic event (such as not being able to resuspend
a dense slurry after an agitator shutdown or a pump failure).

7.3.6.2 Purity and Mean Crystal Size

The purity of the final product can be affected by the performance of a crystal-
lization process. As the majority of impurities are found on the outer surface of
crystals, a larger mean crystal size can give a higher purity, all else being equal.
Likewise, if the mean crystal size distribution is smaller, the higher surface area
per unit mass gives a lower purity product. The impurities located on the exterior
of the crystals are those that are reduced somewhat by washing during solid–liquid
separation. Since the wash solvent may partially dissolve the product crystals, it
is preferable to have larger crystals so the extent of yield loss is reduced. Since
the separability of the slurry increases with larger particle sizes, a larger crystal
size distribution is desirable for three reasons. 

Control of the crystal size distribution is possible in batch crystallization. For
bulk products, process manipulation efforts to increase the mean crystal size are
more usual. In the best case of a seeded process that operates within the metastable
zone, the mean crystal size can be varied substantially via the number of seed
crystals charged to the vessel. Since no significant nucleation occurs, the mean
crystal size of the product can be calculated directly from the batch product mass,
initial seed number, and initial seed size (assuming size-independent growth and
no growth rate dispersion). Fewer seed crystals (on a number basis) lead to a
larger product mean crystal size. In the worst case, where the metastable zone
width is too small for practical use, the mean crystal size can be effectively
increased through fines destruction. In this mode of operation, the smallest crys-
tals are classified out mid-batch (e.g., in a settling zone or cyclone), redissolved
(e.g., by heating), and then brought back to the crystallizer. This is a very effective
way to ensure that the larger crystals continue growing and the smaller crystals
are removed. Longer batch times are required due to the recycling; however, fines
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destruction has proven itself a very effective approach to increasing the mean
particle size as well as purity. 

For intermediary cases, where seed control or fines destruction is not appro-
priate, manipulation of the cooling profile or antisolvent addition rate is a means
of increasing the crystal size distribution. The goal should be to reduce the
supersaturation, when fines are generated early in the batch, and additionally to
reduce the agitation intensity. A cube law cooling profile can be tested. In this
case, the rate of decrease in the batch temperature is nonlinear and not natural
(via heat loss). Minimal decreases occur for most of the batch while the surface
area is being generated, then a much faster decrease occurs toward the end of
the batch. This allows more surface area to be generated for rapid mass transfer
without large deviations in supersaturation that otherwise would induce massive
nucleation.

Inclusion of mother liquor within crystals decreases the purity independent
of crystal size and is a problem that is not improved through washing. Higher
purity can be achieved by recrystallization, which dilutes out the impurities.
Inclusions can be observed microscopically by placing the crystals into a non-
solvent of the same refractive index as that of the pure crystal. The inclusions
appear as dark specks, often in zones with shapes similar to those of the crystals.
In some cases, inclusions may be reduced by reducing the growth rate; however,
this does not simply mean increasing the hold time at the end of a batch. It
requires manipulation of the cooling rate, antisolvent, or reactant addition rate
so supersaturation is lower when the inclusions would otherwise be trapped into
the crystal. Density measurement of crystalline products (such as sugar) is some-
times used as a batch quality control test for the level of inclusions. Generally,
the greater the inclusion level, the less the density deviates from that of the pure
crystalline material.

7.3.7 SELECTION OF APPROPRIATE MODE OF SOLID–LIQUID 
SEPARATION

If after the particle formation step (crystallization/precipitation) a dry product is
desired, the appropriate mode of solid–liquid separation has to be selected. Basic
filtration and sedimentation data are required to make the correct decisions regard-
ing equipment selection and design. The following sections provide guidance on
the available tools and procedures to facilitate this screening phase.

7.3.7.1 Pretreatment of Slurry

Special attention should be paid to the sample preparation prior to filtration
experiments. This is an often neglected area that can easily lead to misinterpre-
tation of lab results and false conclusions for the design and optimization of the
solid–liquid separation process. The following discussion addresses what should
be observed during testing.
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In general, particulate systems are not stable over time. The particles can
settle over time or agglomeration can change the properties significantly with
regard to solid–liquid separation. Also, Ostwald ripening and dissolution of fines
and the growth of larger crystals caused by temperature fluctuations during
shipping have to be taken into account. If possible, the sampling and testing
should occur as close to the process as possible. If shipment of samples from
plant sites cannot be avoided, the consequences of shipping the slurry (shaking,
changes in temperature, ongoing reactions or degradation of the components)
must be evaluated carefully. If the properties change significantly, the data gen-
erated will not be valid and cannot be used to derive any useful design criteria,
so every effort should be made to perform the testing onsite or to generate the
material closer to the testing equipment. 

In many cases filter aids or flocculants are added to the slurry to improve the
solid–liquid separation performance. Testing and screening of different flocculent
additions can be done by following the settling characteristics (see below) or by
use of the capillary suction test. The capillary suction timer (CST) automatically
measures the time for the filtrate to advance between radially separated electrodes
when a fixed area of special filter paper is exposed to the suspension.

7.3.7.2 Filter Media Selection

Filter media should be tested and selected with the separation objective in mind.
A clarifying filtration (to obtain clear filtrate) will have different criteria for the
filter medium than a filtration application aimed at recovery of the solids, where
a certain bleeding of particles through the filter medium can be tolerated. Usually,
a compromise must be made between tight filter media that will give clear filtrate
from the start or more open media that will allow for some bleeding of particles
during the start-up phase. If the media are selected properly, the bleeding should
stop after the filter cake builds up on the filter media. The performance of the
filter media can be tested using lab-scale equipment as described below. The
following list summarizes the requirements for a good-performing filter media:6

• Ability to retain particles and quickly bridge solids across the pores
• Minimum propensity to entrap solids in the pores and blind the media
• Minimum resistance to filtrate flow
• Chemical resistance
• Sufficient strength and resistance to mechanical wear
• Ability to cleanly discharge filter cake

A good selection guide is also given by Perry et al.6 to optimize the require-
ments given in the list above.

Porosimetry involves the testing of filter media by measurement of the pore
size distribution in the clean and used media by displacement of a wetting liquid
from the pores through a steadily increasing pressure differential. This method
can be very helpful to quantify the successive blinding of filter media after
multiple filtration batches.
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7.3.7.3 Lab-Scale Filtration Tests

7.3.7.3.1 Pressure Filters 
Lab-scale filter rigs are available from various suppliers in a large variety of
materials and degree of instrumentation and accessories. The basic setup for
pressure filtration experiments is shown in Figure 7.12. Most commonly used
systems include those offered by Cuno, Millipore, Sartorius, and Bokela. They
all accommodate a variety of standard filter media as well as customized media.
Also, most filter manufacturers will offer some sort of lab-scale device for screen-
ing and testing. Again, the measurements should simulate the process conditions
as closely as possible, including temperature, agitation conditions, and timing.
After addition of the slurry into the filter, the system is pressurized. The filtrate
is collected and the filtrate mass is recorded over time. If necessary, a washing
step can be simulated. The recorded data can be used to calculate specific cake
resistance, permeability, and cake forming time. The final cake solids content
gives an indication of the residual moisture to expect. By measuring the same
material at various pressure levels, the compressibility of the material can be
evaluated. The clarity of the filtrate and its solid content are characteristic of the
filter medium performance. During the testing, it should be observed if the filtrate
runs clear after an initial turbid phase. The bleeding of fine particles through the
filter medium is typical for cake filtration and can be handled in the large-scale
process by recirculation, if necessary. If the filtrate continues to contain unac-
ceptable levels of particles, other filter media should be considered.

FIGURE 7.12 Lab-scale pressure filter.
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7.3.7.3.2 Leaf Filter
A very simple test is the laboratory filter leaf test. It consists of the filter media
on the metal support and appropriate sealings connected to a vacuum source
(Figure 7.13). The leaf filter is dipped into the agitated slurry tank to start the
filtration. A cake forms on the filter leaf, and the filtrate is collected in the filtrate
receiver. Data analysis is analogous to the pressure filter test described previously.
Due to sedimentation effects during the filtration process, it is important for the
filter leaf orientation in the slurry tank to match conditions in the large-scale
process.

7.3.7.3.3 CP Cell
A common tool for the investigation of filter cake resistance and cake solids
content (or porosity) with the applied pressure is the compression–permeability
cell (CP cell), first proposed by Ruth.16 The CP cell does have some disadvan-
tages, as pointed out by Wakeman.31 CP cell data do not show any effect of slurry
concentration, which affects α and εv values in the actual filtration process.
Inaccuracies in CP cell testing can result from sidewall friction, the time lag
required to reach an equilibrium porosity, and changes in the cake characteristics
over time. It is therefore desirable to develop experimental techniques and theories
that obviate the need for CP cells and provide further insight into the formation
and structure of filter cakes.31 CP cells, however, still find application in classi-
fying the behavior of various kinds of materials under stress.

7.3.7.4 Sedimentation Tests 

Sedimentation performance is obviously influenced by the particle characteristics
(density, size, shape) and the fluid characteristics (density, viscosity). In addition,

FIGURE 7.13 Lab-scale leaf filter test.
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the slurry properties will dictate the settling behavior. At very low concentrations
and particle sizes larger than approximately 20 ∝m, settling of discrete particles
will occur, obeying Stokes’ law. With increasing solids concentration and smaller
particle size (or broader size distribution), the settling will be in the zone settling
regime, where all the particles in suspension settle at approximately the same
velocity. Sedimentation behavior can be tested in various ways, the simplest being
a transparent tube and observation of the settling front over time. Sampling of
the slurry over time at various heights and characterizing the total solids and
particle sizes provide a good indication of the settling properties and whether or
not classification is occurring. It must be noted that for slurries that tend to
flocculate over time the test-tube length should be adequate to simulate process-
like conditions. A more detailed description of the long- and short-tube test is
given in Perry et al.6 Other means for characterizing sedimentation behavior
include the measurement of light transmission or backscattering in a turbidity
meter. 

7.3.7.5 Lab-Scale Centrifugation Tests

7.3.7.5.1 Beaker Centrifuge
Beaker centrifuges are available in various designs for lab-scale separations or
for testing and design of filter centrifuges. More sophisticated designs allow for
online measurement of the dewatering kinetics. For kinetic measurements, the
dewatered liquid is collected in a secondary beaker that contains a pressure sensor.
The pressure values are transmitted wirelessly, and the dewatered liquid from the
filter cake is calculated. The optical observation of the filter cake during process-
ing (filter cake formation and dewatering) can also be helpful in understanding
the compressibility of the filter cake under centrifugal acceleration. A special
case of beaker centrifuge is the long-arm centrifuge, in which the beakers are
located far enough from the rotational axis to neglect the influence of the varying
centrifugal acceleration in the layers from the axis to outer diameter.

7.3.7.5.2 Lab Basket Centrifuge
Lab-scale basket centrifuges have proven to be useful to study filling procedures,
cake buildup, and washing procedures in filter centrifuges.

7.3.7.5.3 Bottle Spin Test
A bottle spin test can be used to determine sedimentation in solid-bowl centri-
fuges. In these tests, the suspension is poured into graduated centrifuge bottles,
which are centrifuged at a given time and g force. The supernatant is transferred
into a second graduated centrifuge bottle and centrifuged at a higher relative
centrifugal force. This second centrifugation yields the volume percentage of
solids remaining in the supernatant.

7.3.7.5.4 Analytical Centrifuge
Analytical centrifuges with integrated measurement of light transmission allow
for rapid classification of stability and separation. This type of equipment is very
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useful for small sample sizes and for screening and quality control purposes. It
records the kinetics of light transmission changes for multiple samples simulta-
neously and can be temperature controlled.

7.3.8 PARTICLE SIZE MEASUREMENT

Numerous devices are available to measure the size distributions of particles.
Examples include sieving, Coulter counters, laser diffraction, time of flight, and
image analysis. Particle sizing methods determine a distribution based on volume
or number. Conversion from one form to the other is mathematically simple but
can generate large artifacts if not performed with a good understanding of the
sensitivity to analysis errors. 

For spherical particles, methods of size analysis are in closer agreement;
however, crystals are not spherical, and discrepancies arise because each method
produces results biased by its interpretation of edges and shape. Laser diffraction
devices are commonly used in crystallization studies. They rapidly measure a
volume-based size distribution, which can be related through the crystal density
to the solute desupersaturation to determine the overall crystallization rate. Micro-
scopic measurement with image analysis is a useful technique because it requires
only small quantities of crystals and suspending media to obtain a size distribu-
tion. Furthermore, the crystals can be readily recovered from the microscope slide
after analysis; however, image analysis can be tedious and imprecise due to low
number statistics. Regardless of the device chosen, it is important that the user
understand the biases of the device and be critical in the interpretation of distri-
butions generated by the instrument. Truncation at the coarse end of a volume-
based distribution or at the fines end of a number-based distribution is commonly
performed to avoid being misled by imprecise distribution tails. 

Particle sizing sample preparation and stability are critically important in
crystallization and solid–liquid separation. If a slurry is being used, the sensitivity
of the slurry to changes in temperature must be considered. Samples withdrawn
from a vessel at above ambient temperature are usually difficult to the sample
after cooling to ambient conditions (due to further crystal growth and nucleation
upon cooling). Dilution of a slurry sample into a more temperature-stable non-
solvent is one way to handle this issue. Another way is to rapidly filter samples
at the process temperature, then resuspend immediately before sizing in a sizing
medium that is equilibrated with the same crystal phase at the temperature of
size measurement. A good reference for particle size analysis and devices is given
by Allen.32

7.3.9 SUSPENSION AND FILTRATE RHEOLOGY

Darcy’s law holds for fluids with Newtonian flow behavior, which means viscosity
is shear independent; however, many filtrates show non-Newtonian fluid proper-
ties. Viscosity (η) is then no longer a material constant but depends on actual
flow conditions through the porous medium. A further complication is that laminar
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flow through porous media consists of shear and extensional flow components.
It is, therefore, difficult to determine the actual stress experienced by the fluid.
Changing pore structure (compressible filter cake) additionally alters flow behav-
ior. The fluid rheology is also needed to determine the sedimentation behavior
in the separation equipment and for mixing operations. Comprehensive overviews
on rheology and rheometrical methods are given, for example, by Macosko33 and
Pahl et al.34

7.4 PILOT TESTING

Developmental testing of crystallization processes at a pilot scale is good practice
for establishing the robustness of the process, determining the principal scale-up
parameters, and generating prototypic product samples for evaluation. The size
of equipment used for pilot testing varies substantially depending on the available
equipment, the available feed stocks, and the eventual full-scale crystallizer vol-
ume. Reasonable volume-based scale-up factors from the lab to pilot level can
range from 20 to 500. At high scale-up factors, greater risks and costs are
associated with a failed test batch; further, it becomes more difficult to interpret
unexpected results. When working with crystallizer or reactor vendors, often their
equipment and facilities can be used for these tests. 

For small-quantity products typical of pharmaceutical and some agrochemical
activities (from hundreds of kilograms to several tonnes per batch at full scale),
pilot studies address the simpler aspects of scale-up. Where time and resources
permit, these should include statistical experimental designs (such as partial and
full factorials designs) for understanding the impact, sensitivity, and interactions
of key process variables on the reproduction of favorable lab-scale results with
regard to:

• Yield 
• Size distribution
• Bulk density
• Slurry product filterability
• Purity

The process variables are generally set to those of the lab-scale process, with
controlled deviations in one or two driving forces for crystallization (e.g., cooling
rate, antisolvent addition rate, evaporation rate). Similarly, scale-up variances in
the influence of agitation rate, seed charge, and initial concentration are important
to test. Where larger production batches are intended at full scale (i.e., more than
several tonnes per batch), such as those common in the fine chemical and food
industries, the pilot study parameters to be tested should include greater attention
to mixing and heat transfer. As the diameter of the vessel increases, the agitator
rpm does not scale up geometrically, neither does the relative available heat
transfer surface. 
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Many authors have published differing bases of agitation scale-up. Some have
included constant impeller tip speed, while others use a constant power input to
the slurry. Power input per swept volume generally appears to be a reliable basis
for agitator scale-up. More information on industrial mixing can be found in Paul
et al.35

Reconfiguring the internals of the pilot crystallizer is an option that is useful
for systems that prove to be quite sensitive to mixing. A draft tube is an excellent
way to suspend a slurry for least agitator power input. Mechanically sensitive
crystals (such as needle-like habits) can benefit from this feature. Further, a draft
tube ensures vertical mixing of the slurry which minimizes the opportunity for
solids settling. The downside of draft tubes for batch processes is that a constant
fill height is required. If a draft tube is used for a batch crystallizer, windows are
needed in the draft tube to avoid the settling of solids and not being able to
resuspend them during filling and emptying. Hence, draft tubes are rarely used
for batch crystallizers. Although draft tubes are not so appropriate for batch
crystallizers, the use of baffles is a very effective way to achieve good mixing
within the process vessel. Baffles disrupt the solid-body rotation and vortexing
of a slurry. They lead to higher turbulence and improved suspension of crystals
for a given agitator speed. The mixing requirements in batch crystallization vary
according to:

• Suspension of crystals in the bulk of the vessel
• Dilution of antisolvent or reactant streams
• Dispersion of highly supersaturated regions of molecules or reactants

Insufficient macromixing leads to settling of solids, which can cause a cata-
strophic failure in a full-scale crystallizer, particularly if the vessel is not designed
to allow this situation to be ameliorated. Although settling usually is not cata-
strophic in lab- and pilot-scale crystallizers, the point at which it occurs must be
known so a safety factor can be built into the full-scale mixing design and
operational procedures. Over-mixing at the macro scale is not wise, as it leads
to breakage and greater secondary nucleation. This can shorten the batch time,
but at the cost of loss of control, a lower mean crystal size, and a slurry that is
more difficult to separate. 

As the diameter of a jacketed vessel increases, the surface area increases
proportionally to the diameter squared, while the volume to be cooled increases
proportionally to the diameter cubed. Hence, at larger scales, relatively less heat
transfer area is available for cooling if proportionally more heat transfer surface
is not introduced. For this reason, macromixing must provide an adequate sweep
of slurry past the cooling surface. If stagnant regions exist, the local slurry will
be over-cooled, leading to uncontrolled nucleation, while other regions of slurry
will be insufficiently cooled. This leads to a lack of crystallizer control, batch-
to-batch variability, and greater dispersion of crystal size and possibly shape. So,
the macromixing requirements must be balanced between maintaining reliable
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“just suspended” conditions and sufficient mixing to sweep the slurry over the
heat transfer surface.

At shorter length scales, fast dilution of antisolvent streams (or reactants)
with the bulk of the slurry must be achieved to avoid uncontrolled nucleation in
the highly supersaturated zones. In the worst case (which is all too common),
antisolvent or reactants are decanted or dumped above the surface of the slurry,
while the impeller is at the bottom of the vessel. In the best case, the antisolvent
or reactant stream is added as a high-velocity jet through one or more spargers
as close as possible to the highest shear zone in the vessel (usually the impeller
tip). Pilot studies can be designed to test such extremes or intermediate situations
with other feed-point locations to determine the effect of this parameter on overall
batch performance.

For the case of antisolvent-driven crystallization or reactive crystallization,
the chemical reaction rate or dilution rate affects the kinetics sometimes more so
than the crystal growth and nucleation kinetics. Therefore, poor mixing at the
submicron eddy scale can cause local gradients in the driving force for crystal
nucleation and growth which can lead to greater dispersion of the crystal size
distribution and shape, especially the occurrence of higher aspect ratio crystal
habits. 

Impeller selection is important at the pilot and full scale. Mixing texts and
available mixing options must be carefully considered, as geometric scale-up of
impellers is not recommended. For higher aspect ratio or large tanks, multiple
impellers on the same shaft can be used. Axial flow impellers are primarily used
for batch crystallization. Retreating curved impellers are to be avoided for crys-
tallization. They lack axial lift, hence over-agitation is required to suspend the
crystals. Radial flow impellers are rare for batch crystallization, except for tanks
with multiple agitators, in which a radial impeller is sometimes used at the base
of the tank and an axial impeller higher up the shaft.

The thermal gradient (∆T) at the heat transfer surface is a parameter that is
useful to test on a pilot scale. To test the sensitivity of the crystallizing system
to thermal gradients, bursts of significantly colder heat transfer fluid can be used
to achieve the same cooling profile but with deliberately induced higher ∆T. If
the equipment permits, a better way is to disconnect the cooling fluid from one
or several zones of the heat transfer surface, which provides an acceptable ∆T
and a heat transfer surface area that can be measured empirically. Higher thermal
gradients tend to lead to regions of high supersaturation, uncontrolled nucleation,
encrustation, and consequent variability from batch to batch. 

At the pilot scale, as with lab scale, the use of a microscope (light microscope
or scanning electron microscope [SEM]) to add qualitative observations is most
strongly encouraged. These data can be quantified by the use of image analysis
software, if warranted. Changes in crystal habit (shape) and multimodalities of
the size distribution can quite strongly affect the separation as well as the final
product characteristics (e.g., flowability, caking propensity, bulk density, and
segregation). These subtle changes are usually not noticed in regular measure-
ments of the size distributions. 
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Seeding should be tested at pilot scale if the lab study has recommended its
use. The seed can be added as dry powder or preferably as a slurry. In either
case, the size distribution, number, and surface area of crystals per unit mass of
seed must be measured carefully and precisely prior to use of the seed. This will
allow improved data interpretation and detection of significant nucleation, if it
occurs. If seed is prepared as a slurry, it should be made up in a formula that
minimizes the sensitivity of the seed slurry to thermal gradients and maximizes
the dispersion stability of the seed (a surfactant may be useful here). This might
require the use of a dispersion of seed in a solvent that is actually a diluted
antisolvent for the compound under development. This approach enables one
master seed tank to be used for an entire campaign or season of production.
Accurate dispensing of the seed slurry is important (volumetrically or gravimet-
rically). The seed must be added to the vessel when the liquor becomes super-
saturated but before it exceeds the secondary nucleation threshold. This should
be timed according to the readout from a thermocouple immersed in the vessel
near the site of where the seed should be charged. Adding seed too early leads
to dissolution of the seed and no significant effect on the crystallization. Adding
the seed too late (after self-nucleation) leads to the seed having little influence
over control and reproducibility of the batch. Seeding, therefore, must be tested
with care and precision. 

Many authors describe aspects of crystallization process scale-up and design
according to population balance and computational fluid dynamics modeling
techniques; however, most industrial situations have a lack of these essential data
to use these approaches effectively. Further, the time and costs required to measure
these data for process design and establishing setpoints are often prohibitive, so
an empirical approach is more commonly used. The insights of modeling and
population balancing are very powerful for process optimization and post-instal-
lation improvements; yet, for initial design purposes, the empirical techniques
still predominate, so no good substitute exists for well-conducted pilot studies in
the development of industrial crystallization and solid–liquid separation
processes.

For solid–liquid separation equipment, pilot-scale testing is also common
practice and should be conducted parallel to the crystallization pilot testing
whenever possible. Most vendors of solid–liquid separation devices offer pilot-
scale equipment for testing. The selection of appropriate equipment will be based
on previously performed lab-scale tests. The importance of good-quality data
from lab-scale tests is again emphasized here. Just as an industrial-scale operation
can only be designed based on valid pilot-scale data, pilot-scale tests will only
be meaningful and successful if the proper equipment was selected for the pilot
testing.

Whereas lab-scale tests provide guidance on the selection of appropriate
modes of solid–liquid separation (filtration, sedimentation, centrifugation) and
the general types of equipment necessary (e.g., basket filter centrifuge vs.
inverting filter centrifuge), pilot testing confirms the appropriate selection of
equipment and, more importantly, the correct design and specifications of the

DK3017_C007.fm  Page 244  Friday, August 5, 2005  1:29 PM

© 2006 by Taylor & Francis Group, LLC



Crystallization and Associated Solid–Liquid Separations 245

apparatus. Due to the complexity of solid–liquid systems and the difficulty in
appropriately describing them, the use of simple tables and decision trees or
mathematical modeling alone in most cases is not sufficient to select the
necessary equipment.

Scaling of filtration equipment is calculated based on the mass of dry solids
or filtrate volume flow rate per unit area and cycle. A safety factor of 25% on
top of the calculated filter area is commonly applied.6 Expert systems and soft-
ware packages based on empirical models can be very helpful for selection and
design if the required parameters can be measured reliably. A recent development
in this direction was described by Nicolaou.36 The system allows various inputs
of lab-scale filtration data (cake formation, cake expression, cake washing, and
cake dewatering) and yields design and scale-up data for the specified equipment.

7.5 INDUSTRIAL EQUIPMENT

7.5.1 CRYSTALLIZATION EQUIPMENT

7.5.1.1 General

A variety of commercial crystallizers is available as turn-key processes or with
the flexibility to be customized. An endorsement is not given here for
particular vendors, but a good starting point is the list of suppliers found at

engineering firms for custom design, fabrication, and installation of crystallizers
is quite common and allows unique features to be readily built in (e.g., tank,
agitator, drive motor, gearbox, pumps, instrumentation, controls, fines destruc-
tion systems). The materials of construction, cleaning and sanitation require-
ments, valves, and fittings are important aspects that must be addressed to suit
par t icu lar  appl ica t ions .  The  pharmaceut ica l  and  agrochemica l
industries primarily use glass-lined tanks, which give a high level of chemical
resistance to process solvents, reactants, and cleaning agents. By contrast, the
food industry mostly avoids the use of glass in process areas and equipment.
Crystallization vessels for food ingredients are typically made from a suitably
acid- or corrosion-resistant grade of stainless steel (316 being the most com-
mon). 

7.5.1.2 Modular Crystallization Equipment

agitator, baffle, and instrumentation are attached to the head of the vessel.
These glass-lined tanks have a wide range of process temperatures and pres-
sures which gives them the flexibility to be used in a modular fashion for
batch processing. Of particular advantage to crystallization is their flexibility
to be used in cooling, vacuum evaporative, and antisolvent modes. Reactions,
mixing, distillation, and solvent exchanges are all commonly performed with
the same type of vessels.
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FIGURE 7.14 Examples of glass-lined tank crystallizers. (Courtesy of Pfaudler, Inc., Rochester, NY.)
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7.5.1.3 Stainless Steel Agitated Tank Crystallizers

The draft tube baffled (DTB) crystallizer by Swenson Technology (Monee, IL)
has been widely used for agitated-tank crystallization of inorganic and organic
salts, minerals, fertilizers, and fine chemicals. This style of crystallizer has been
applied to cooling, evaporative, and reactive crystallizations. Numerous other
designs and suppliers are available, and stainless steel crystallizers are commonly
custom built for an application rather than using “off-the-shelf” designs.

7.5.1.4 Scraped-Surface Crystallization

Scraped-surface heat exchange crystallizers are often used in the processing of
waxes, some fine chemicals, ice cream, frozen concentrations (e.g., orange juice),
and margarine. These devices are a tube-and-shell type of heat exchanger, with
a low-speed internal agitator that runs the length of the pipe and removes nuclei
from the chilled inner surface. Cooling is controlled as a profile along the length
of the crystallizer using a counter-current cooling fluid in the outer region of the
tube-in-tube heat exchanger. The diameter and throughput determine the residence
time. Due to the small diameter and powerful agitation drives, scraped-surface
crystallizers can operate at higher slurry viscosities than agitated-tank crystalliz-
ers. This lends their application to lower temperature processing (e.g., freeze
crystallization of water in ice cream) and more concentrated slurries. Scraped-
surface crystallizers can be configured to operate in batch or continuous mode.
Cleaning and sanitation requirements (e.g., for food products) as well as through-
put generally dictate the choice of process mode. Armstrong Engineering Asso-
ciates (West Chester, PA) is one example of a scraped-surface crystallizer supplier.

7.5.1.5 Melt Crystallization

Sulzer Chemtech Ltd. (Houston, TX) is one supplier of melt crystallization
equipment, which performs crystallization purification from the melted state of
a crude organic material. Development of these processes is not covered in this
chapter, but, briefly, after filling the melt crystallizer chamber with the molten
feed, the contact surface is chilled to below the freezing point of the compound.
The melt freezes onto the cold surface, after which the temperature is cycled
above and below the melting point. This leads to sweating and drainage of lower
melting impurities away from the crystalline mass. Finally, the surface tempera-
ture is raised above the melting point, and the purified product is recovered as a
liquid. Naphthalene, waxes, and benzoic acid are examples of chemicals that are
purified by industrial melt crystallization. A key advantage of melt crystallization
is that crystallization purification can be achieved without investment in
solid–liquid separation devices; however, this process delivers a liquid-phase
product that would require further processing (e.g., prilling, spray chilling) to
achieve a particulate form.
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7.5.2 SOLID–LIQUID SEPARATION EQUIPMENT

This section compiles a list of the most common batch solid–liquid separation
process equipment groups. This list has been limited to batch processing equip-
ment, although sometimes it may be necessary to use a continuously operating
separation device in combination with a batch operating crystallizer. Advantages
of batch solid–liquid separation equipment include its flexibility with regard to
adjustment of feed and washing and dewatering conditions, which allows their
adaptation to a variety of products and process conditions. For centrifuges, dis-
charge at a reduced speed ensures a gentle discharge of shear-sensitive products,
such as fragile crystals.

7.5.2.1 Bag Filter

Bag filters are discontinuously operating filters, in which a filter bag sits in a
supporting perforated basket. The filtrate is collected in the surrounding pressure
tank. Bag filters are used primarily to clean up large volumes of liquid with low
contamination. The filter bag is exchanged when the upper pressure loss across
the bag filter is reached. 

Lab test for design: Lab-scale pressure filter (with ability to filter larger
amounts of feed, due to low solids concentrations usually found in bag filter
applications).

7.5.2.2 Candle Filter

Candle filters (or external-cake tubular filters) can be designed for cake filtration
or depth filtration. The tubes can be made of wire cloth, plastic, or metal and can
be used with additional filter media or in combination with a precoat of filter aid
(e.g., diatomaceous earth). Various solids discharge mechanisms, including back-
pulse or backflushing techniques, are available. Common designs have multiple
candle elements combined in a filter housing to increase the available filter area
per filter housing volume unit.

Lab test for design: Lab-scale pressure filter.

7.5.2.3 Dead-End Filtration

A discontinuous version of membrane processes is dead-end filtration. The fil-
tration occurs through a micro- or ultrafiltration membrane until an upper pressure
loss across the membrane is reached. At this point, the membrane cartridge has
to be exchanged or regenerated.

Lab test for design: Lab-scale pressure filter (same comment as for bag filter
might apply).
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7.5.2.4 Filter Press

Characteristic of the filter press processes is the squeeze or pressing cycle after
the filtration step which leads to a reduction of the filter cake pore volume and
consequently a further reduction in moisture content in the pressed cake. Many
designs are available, the most common being the plate and frame type. Filter
presses have the advantage of relative low cost and small footprint per filter area.
The systems can be operated at high pressures to yield dense, dry filter cakes
with good solids-handling properties. In addition, the filter capacity can be
adjusted easily by adding additional frames. Some disadvantages of filter presses
include potential leaking from the filter frames and exposure of the operators to
the filter contents. It is of particular importance to test for the cake release
properties of the filter medium, as the discharge operation relies on the cake
dropping off the vertical plates by gravity when they are opened. Some presses
can apply backpulses to assist the release. Washing of the filter cake is also
possible in filter presses, but variable cake density can lead to uneven wash results.
Complete systems can be obtained from equipment vendors such as Netzsch
(Selb, Germany).

Lab test for design: CP cell.

7.5.2.5 Monoplate Pressure Filter/Nutsche Filter

Monoplate or Nutsche pressure or vacuum filters are used for high-solids-content
suspensions in cake filtration mode. This very popular filter is usually designed
to have a horizontal filter plate with top-down flow direction. Sizes vary over a
wide range as well as the sometimes quite sophisticated discharge mechanisms
for cake discharge. Nutsche filters are very versatile for washing operations as
in most designs both displacement and slurry washing can be performed in the
same equipment. The term Rosenmund filter is sometimes used and refers to the
traditional manufacturer of this type of batch filters. Nutsche filters are available
as completely closed systems that allow handling of hazardous materials.

Lab test for design: Lab-scale pressure filter.

7.5.2.6 Tubular Centrifuge

Tubular centrifuges are sedimenting centrifuges with a solid bowl. They usually
operate at high g forces (>10,000 g) compared to their continuous counterparts
for sedimentation centrifugation (decanter, disc stack centrifuge). The discharge
mechanism can be time consuming with tubular centrifuges and can involve
manual handling. Tubular centrifuges are often used for clarification of low solids
concentration streams containing fine particles.

Lab test for design: Bottle spin test. 
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7.5.2.7 Peeler Centrifuge

The peeler centrifuge is a filtering centrifuge with a horizontal basket. Charac-
teristic of this equipment is the discharge mechanism that allows it to plow
through the filter cake with a knife at relatively high basket speeds (see also
schematic drawing in Figure 7.15). This very efficient discharge mechanism can
reduce cycle times significantly, although the high mechanical shear on the
crystals has to be taken into account, and in some fragile systems the peeler
centrifuge can generate too much attrition. The peeler centrifuge can also be
operated with a siphon mechanism that provides an additional vacuum to enhance
dewatering of the filter cake. 

Lab test for design: Laboratory bucket centrifuge, lab-scale basket centrifuge.

7.5.2.8 Vertical Basket Centrifuge

The vertical basket centrifuge is usually the lowest-cost option for a filtering
centrifuge. Discharge occurs through a valve in the bottom part of the screen
bowl or by a peeling mechanism (Figure 7.15). Due to the vertical setup of the
basket, uneven cake buildup is a potential problem. Basket centrifuges are often
used for small-scale operations and frequently changing products. Also, for shear
sensitive products, this centrifuge offers a gentler discharge of solids.

Lab test for design: Laboratory bucket centrifuge, lab-scale basket centrifuge.

7.5.2.9 Inverting Filter Centrifuge

In the inverting filter centrifuge, the filter cake is formed on a flexible filter cloth
supported on a screen bowl. For the discharge of solids, the filter cloth is inverted

feature of this centrifuge type is that the filtration bowl can be pressurized, offering
an additional driving force for dewatering. This concept of hyperbaric centrifugal
filtration offers many benefits for materials difficult to filter and dewater.37 

Lab test for design: Laboratory bucket centrifuge, lab-scale basket centrifuge.

FIGURE 7.15 (Left) Peeler centrifuge and (right) vertical basket centrifuge. (From Fried-
mann, T., in Institute of Food Science: Laboratory of Food Process Engineering, ETH
Zürich, Zürich, 1999. With permission.)
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8.1 INTRODUCTION

 

The chemical process industries face continually increasing expectations from
society and regulators to reduce releases to the environment. Until recently, end-
of-pipe treatment methods have provided sufficient control to maintain regulatory
limits. As environmental concerns tighten, waste treatment alone is insufficient
to ensure low impact to air, water, and land. Good housekeeping and elimination
of fugitive emissions have demonstrated impressive environmental impact reduc-
tion;

 

30,54,87

 

 however, further emissions reductions may only be achieved through
process design modification. The identification of process modifications to avoid
waste generation is termed 

 

pollution prevention

 

 (PP). Many terms are used to
describe PP activities: waste minimization, waste reduction, source reduction,

the hierarchy of pollution prevention efforts.

 

74

 

 According to this pyramid, mini-
mum waste generation at the source is superior to safe disposal. Stricter definitions
of pollution prevention

 

96

 

 recognize only the upper two tiers in the hierarchy:
minimize generation and minimize introduction.

Due to the complex reaction chemistry, batch pharmaceutical manufacturing
differs significantly from continuous chemical synthesis in the petroleum and
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waste diversion, pollution prevention, recycling, and reuse. Figure 8.1 introduces
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bulk chemical industries (e.g., USEPA, 1976).

 

94a

 

 In batch pharmaceutical indus-
tries, the problem of waste minimization and pollution prevention is much more
challenging due to the required regulatory supervision by the Food and Drug
Administration (FDA). The FDA drug approval process commands that operating
conditions of each step in a pharmaceutical recipe be specified within tight limits
to ensure consistent product quality. An approved manufacturing recipe cannot
be altered. This approval eliminates options for ongoing process improvements.
The specific challenges facing pharmaceutical manufacturers at each level of
pollution prevention are discussed next: 

1.

 

At-source waste reduction

 

 — Drugs are manufactured in numerous
stages of complex organic reaction steps transforming large organic
precursor molecules into drug intermediates. In the majority of phar-
maceutical processes, the final product is obtained in multiple stages,
each one producing a single highly purified intermediate. The product
purification and equipment cleaning necessary in each stage require
additional solvents for extraction, crystallization, filter cake washing,
etc. The extensive use of solvents often cannot be avoided in long and
complex organic syntheses requiring sophisticated chemical reaction
and separation pathways. Optimization of an existing batch recipe to
reduce solvents is not permissible without expensive FDA reapproval.
Because at-source waste reduction is only possible in the conceptual
design phase before drug approval, it is often impractical for existing
manufacturing recipes. 

2.

  

put structure of a multistage batch pharmaceutical process with a

 

FIGURE 8.1

 

Pollution prevention hierarchy. (Adapted from Mulholland, K.L. and Dyer,
J.A., 

 

Pollution Prevention: Methodology

 

, 

 

Technologies

 

 

 

and Practices

 

, American Institute
of Chemical Engineers, New York, 1999. With permission.)
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Internal recycles opportunities — Figure 8.2 compares the input–out-
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conventional continuous process. In batch processes, the recovered
solvents cannot be recycled back into the process due to strict concerns
of cross-contamination. Due to the attention to product quality, drug
manufacturing generates huge amounts of waste loads per unit mass
of finished product; however, recycling to other tasks of inferior
demands may be possible. As an example consider organic solvents
such as acetonitrile, methanol, and ethyl acetate, used for the extraction
of polymer-based hydrophobic molecules during the manufacture of
phenols and pesticides.

 

97

 

 These used solvents can be recovered and
reused for equipment washing in another drug-manufacturing cam-
paign within the same plant. Solvents can also be recovered offsite by
separation specialists using complex separations (e.g., azeotropic,
extractive, reactive distillation).

 

33,49,51,56,91

 

3.

 

External reuse and recovery

 

 — If solvent-recovery is not economically
viable, solvent-rich waste streams are incinerated either onsite or in an

 

FIGURE 8.2

 

Input–output analysis for batch vs. continuous processes.
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offsite facility. An interesting alternative to waste treatment is convert-
ing effluents into marketable products. In pharmaceutical manufactur-
ing, this approach is often quite attractive, as the byproduct streams
contain expensive compounds. The complementary products are infe-
rior in the quality spectrum (e.g., paint additives, line flush, wash
solvents). Avoidance of wastes by conditioning all effluents into sec-
ondary products can be accomplished by chemical transformation and
conditioning of byproducts, additional recovery steps, and blending.
Details of this method, known as product-only manufacturing, can be
found elsewhere.

 

24

 

4.

 

End-of-pipe treatment: destructive treatment and offsite disposal

 

 —
Unavoidable residues and wastes after solvent recovery are destroyed
by thermal incineration or disposed of offsite. End-of-pipe treatment
of pharmaceutical and specialty chemical compounds is expensive due
to the loss of material value and relatively high operating costs asso-
ciated with destructive treatment. Moreover, oxidation of valuable
organic precursors is not ecologically sound. Consequently, existing
environmental legislation, such as the Resource Consumption and
Recovery Act (RCRA), impose stringent regulations on end-of-pipe
treatments of pharmaceutical wastes. The RCRA legislation also
imposes a cradle-to-grave responsibility on manufacturers who are held
liable even if they contract a third party to dispose their hazardous
wastes. The current regulatory framework also dictates the use of
specific treatment technology to reduce emissions (e.g., use of partic-
ulate scrubbers for treating flue gases from incinerators). 

This chapter provides an overview of waste management options for batch man-
ufacturing processes. Special attention is given to pharmaceuticals, although,
except for FDA regulations, the discussion applies also to specialty chemical
manufacturing. The relation between different regulatory models and manufac-
turing practices is also discussed. In Section 8.2, we briefly review standard batch
process operations, sources of pollution, and typical pollution control technolo-
gies used in pharmaceutical and specialty chemical industry. Section 8.3 discusses
regulatory incentives for pollution prevention. Section 8.4 demonstrates system-
atic approaches for identifying pollution prevention measures for batch industries.
Industrial case studies illustrate the potential of computer tools for the systematic
pollution prevention and waste reduction efforts. The chapter closes with conclu-
sions and a summary.

 

8.2 POLLUTION SOURCES AND CONTROLS IN 
BATCH INDUSTRIES

 

This subsection provides a brief overview of batch operations in pharmaceutical
and specialty chemical plants, introduces the sources of pollution in batch
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manufacturing, and reviews existing environmental regulations for handling these
pollutants.

 

8.2.1 B

 

ATCH

 

 O

 

PERATIONS

 

 

 

IN

 

 P

 

HARMACEUTICAL

 

 

 

AND

 

 S

 

PECIALTY

 

 
C

 

HEMICAL

 

 I

 

NDUSTRIES

 

8.2.1.1 Multipurpose Plant Operation

 

The pharmaceutical and specialty chemical industries utilize a fixed set of batch-
type unit operations realized in standardized equipments at multipurpose plants.
The standardization of operational tasks is necessary to allow entirely different
synthesis routes to be manufactured in the same multifunctional equipment. Each
pharmaceutical product is usually manufactured in a “campaign,” during which
one or more production lines are used for a few weeks or months to produce the
amount necessary to satisfy the projected demand. After equipment cleaning, the
same standard equipment can be used to manufacture a completely different
product using other raw materials according to a different batch recipe. Most
products can be synthesized in any multipurpose site. Campaigns are usually
tightly scheduled, with detailed coordination extending from the procurement of
raw materials to packaging and labeling of the product. The three main phases
involved in the manufacturing of pharmaceutical and specialty chemicals are (1)

each of the stages: 

•

 

Product synthesis

 

 — Synthesis involves the chemical formation of a
molecule with desired pharmacological properties or product qualities.
New molecules can be produced through (organic) chemical reactions
or extracted from natural sources (e.g., plants, minerals, or animals).
Drugs and specialty chemicals are manufactured by three principal
routes: (1) fermentation, (2) chemical (organic) synthesis, and (3) bio-
logical extraction steps. Sometimes fermentation is combined with
organic chemical synthesis steps.

•

 

Fermentation/bioreaction 

 

— Fermentation is a large-scale batch pro-
cess used commonly for producing antibiotics and steroids.

 

90

 

 In fer-
mentation, the main ingredient is synthesized in mass cultures of
microorganisms (biomass) growing in bioreactors. The biomass con-
sumes the carbon substrate to synthesize the desired drug. Numerous
organisms (e.g., yeast, bacteria) are used for different drugs.

 

11,12,55

 

 Most
bioreactions take place in aqueous phase in excess of 90% water. After
completion of the fermentation step, the product mix contains the
desired product suspended in water, byproducts (wax, defoamers, etc.),
and biomass. All but the product are potential waste sources.

•

 

Chemical synthesis

 

 — Chemical synthesis employs organic reactions
without using microorganisms. Most drugs today are produced by
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product synthesis, (2) purification, and (3) formulation/dosage (see Figure 8.3).
Table 8.1 lists the typical operations used in batch manufacturing processes in
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FIGURE 8.3

 

Production steps in batch pharmaceutical manufacturing.
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chemical synthesis.

 

8,57

 

 

 

Cardiovascular agents, central nervous system
agents, vitamins, antibiotics, and antihistamines are just a few examples
of the bulk pharmaceutical substances synthesized chemically.

 

100

 

 The
precursors for chemical synthesis range widely and include organic
and less commonly inorganic reactants. In addition, a wide variety of
organic solvents listed as priority pollutants

 

100

 

 are deployed for dilution
of reactants, as liquid catalysts to facilitate reactions, and as solvents
to stabilize the product in the liquid phase. Some reactions also require
solid catalysts, but less commonly than solvents.

•

 

Biological and natural extraction

 

 — Pharmaceutical products are
extracted from natural sources such as plants, animal glands, and par-
asitic fungi through a series of volume reduction and chemical extrac-
tion steps. This process is common in allergy relief medicines, insulin,
morphine, anticancer drugs, or other natural substances with pharma-
cological properties. Blood fractionation to isolate plasma belongs to
the group of natural product extraction processes.

 

100

 

 These operations
are usually conducted on a much smaller scale than fermentation or
chemical synthesis.

 

8.2.1.2 Purification

 

After the chemical synthesis of a new drug, the product must be separated to
eliminate unreacted species, byproducts, solvents, and catalysts. Purification of
drugs or specialty chemicals involves a series of complex condensed phase sep-
aration steps such as solvent extraction, filtration, reverse-osmosis, direct precip-
itation, and ion exchange or adsorption (see Table 8.1). In the specialty chemical
industry, high purity and ultra-high specifications may require additional

 

TABLE 8.1
Typical Batch Manufacturing Operations

 

Group of 
Operation Name of Operation

 

Material transfer Charge, charge from recycle, transfer, transfer-through-heat exchanger, 
transfer intermediate

Heat transfer Cool, heat, heat and reflux, quench
Operations on 
gases

Pressurize, vacuum, purge, vent, sweep

Operations on 
solids

Centrifuge, drying, ceramic microfilters, reverse osmosis, continuous 
filtration, filter in place, wash cake, crystallization 

Liquid separations Concentration (continuous/semicontinuous), distillation (batch/continuous), 
fractionation, extraction, decantation

Column operations Elusion, loading, regeneration
Reactions Age, pH adjustment, react, react in CSTR  
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unit operations such as crystallization and recrystallization of the product,
centrifugation for collecting and washing the product, forced-air drying to dry
the intermediate product, classification for isolating various particle sizes, and
finally milling to achieve the desired particle sizes and shapes. Some of the
separation steps common in batch processes are described next:

 

68,73 

 

•

 

Solvent extraction

 

 — Solvent extraction is often used to transfer the
intermediate product from the aqueous broth into a more concentrated
solution.

 

46,66,85

 

 If contaminants are separated in multiple stages, the
process is termed 

 

extraction

 

. Splitting a liquid stream in a single stage
into an aqueous and an organic phase is also known as 

 

decantation

 

.
After an extraction step, solvent evaporation, precipitation, batch
distillation, or additional extraction steps may be necessary to further
concentrate the product. 

•

 

Ion exchange, adsorption, or chromatography 

 

— These are separation
processes transferring the product from the broth to a solid surface
such as ion exchange resin, adsorptive resin, activated carbon, or the
pores of a granular support. In chromatography, the solutes to be
separated move through a chromatographic separator with an inert
eluting fluid at different rates.

 

85

 

 These sorption processes are often used
for removal of trace contaminants.

•

 

Batch distillation 

 

— Batch distillation is becoming increasingly impor-
tant for solvent recovery in high-value, small-volume specialty and
pharmaceutical industries. Batch distillation is the preferred unit oper-
ation for small-scale solvent recovery due to its flexibility. The optimal
design of batch distillation dynamics as well as product-cut sequencing
has been discussed extensively in the literature.

 

2,29,31,32,110

 

 A single-stage
distillation with recondensation in a condenser is a very common batch
operation and is known as 

 

concentration

 

. Vacuum distillation is used
to lower the bubble points for the separation of thermally unstable
products.

•

 

Crystallization

 

 — Often the final drug purification step, crystallization
is induced by lowering the temperature below the solubility line of the
mixture (cooling). Alternatively, the addition of another solvent (cosol-
vent or antisolvents) may alter the liquid–solid phase equilibrium,
causing crystals to form. Crystallization proceeds through three con-
secutive stages: (1) nucleation (i.e., initial aggregation of crystallization
nuclei), (2) crystal growth (i.e., successive incorporation of molecules
onto the crystal surface), and (3) Ostwald ripening (i.e., the aggregation
of larger crystals at the expense of smaller crystals due to solubility
differences). Control of crystallizers is an important topic for ensuring
product quality.

 

45,69,108

 

 In recent years, supercritical fluids have been
introduced as crystallization media.

 

36

 

 Crystallization from supercritical
fluids may be achieved by adding gas antisolvent (GAS), by rapid
expansion of supercritical solutions, or by precipitation with
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compressed antisolvents using either the supercritical antisolvent
(SAS) process or an aerosol-spray extraction (ASE) system. 

•

 

Filtration and drying

 

 — The crystallizer sludge containing the product
may be concentrated by boiling off the remaining solvent (e.g., vacuum
concentration). The product sludge can be purified by filtration. The
remaining solvent in the wet cake is removed by drying. Drying is a
unit operation often employed during product purification and in for-
mulation and dosage operations. The drying process may impact the
quality of the final drug in several aspects: the polymorphic form of
the active ingredient, degradation products formed due to the drying
conditions, and the presence of residual solvents undesirable or above
the permitted limits after drying.

 

48

 

 Consequently, it is important to
control the influence of all factors consistent with the desired product
specifications. After the product purification (cleaning and drying), the
crude drug product is shipped for formulation and dosage. 

 

8.2.1.3

 

Formulation/Dosage

 

Formulation plants receive crude drug ingredients as raw materials with the
purpose of turning them into a form and strength suitable for human use as tablets,
liquids, capsules, ointments, etc. This last processing stage is often carried out
at a different site than the crude drug manufacturing.

 

58,84

 

 A pharmaceutical product
can take a number of dosage forms (e.g., liquid, tablets, capsules, ointments,
sprays, patches) and dosage strengths (e.g., 50, 100, 250, 500 mg). The final
formulation incorporates substances other than the active ingredient (

 

excipients

 

)
to improve the taste, stabilize active ingredients in tablet form, delay absorption
of the drug into the body, or prevent bacterial growth in liquid or cream prepa-
rations. The unit operations involved in dosage and formulation include mixing
and compounding. 

 

8.2.2 P

 

OLLUTION

 

 

 

FROM

 

 B

 

ATCH

 

 O

 

PERATIONS

 

A batch pharmaceutical plant may produce hundreds of waste streams from
multiple campaigns. A pilot study of a pilot pharmaceutical process indicated
that, for every unit of finished drug product, 500 units of wastes were produced

 

60

 

 Another case study led to a ratio of 3600 kg of waste to 150
kg of final product.

 

40

 

a typical pharmaceutical manufacturing plant. One can see that the maximum
loads are wastewaters followed by organic solvents and solid wastes. The total
volatile organic compound (VOC) air emissions from pharmaceutical manufac-
turing in the United States amounted to 37 kton in the year 1997.

 

100

 

 Even though
air emissions are smaller than the liquid and solid wastes, they have much higher
environmental impact. Effluents emanating from a batch-manufacturing site can
be categorized into five main groups: (1) wastewater, (2) sludges, (3) inorganic
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loads, (4) volatile air emissions, and (5) organic solvents. Table 8.2 lists the
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FIGURE 8.4

 

Overview of material streams in pharmaceutical pilot plant. (From Linninger,
A.A. et al., 

 

AIChE Symp. Ser.

 

, 90(303), 46–58, 1994. With permission.)

 

FIGURE 8.5

 

Typical waste loads and distribution in a synthetic organic medicine plant
(USEPA, 1976).
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sources for each of these waste categories and the common pollution prevention

ations with the effluents they may produce.

 

8.2.2.1 Wastewater

 

Almost 70% of all wastewater stems from fermentation and chemical synthesis
operations. Wastewater from chemical synthesis processes typically have high
biological oxygen demand (BOD), chemical oxygen demand (COD), some sus-
pended solids (traces of organic crystals), and pHs ranging from 1 to 11.

 

100

 

 Major
portions of the remaining 30% wastewater originate in equipment cleaning
between operational steps or batches. Aqueous waste streams also result from
filtrates, concentrates, wet scrubbers, and spills. Because of high organic concen-
tration or toxicity, pretreatment may be required prior to sewer discharge. Waste-
water loads also arise in purification steps (e.g., extraction, stripping, vacuum
distillation). Normally, solvents used for final product purification are recovered
and reused externally; however, small portions left in the aqueous phase can
appear in the wastewater stream of the plant. 

 

8.2.2.2 Organic Solvents

 

Organic solvents often originate in extraction, crystallization, and filter cake
washing. Typical solvents used in the pharmaceutical industry include acetone,
methanol, isopropanol, ethanol, tetrahydrofuran (THF), amyl alcohol, and methyl
isobutyl ketone (MIBK).

 

101

 

TABLE 8.2
Pollution Sources in Pharmaceutical Manufacturing and Their Control

 

Waste Categories Source Pollution Control Options

 

Waste water Fermentation, chemical 
synthesis and cleaning 

Wastewater treatment plant

Sludges Residual cells and waxes from 
fermentation; filter press from 
purification steps

Secured landfill

Organic solvent Product purification operations: 
extraction, crystallization, and 
vacuum distillation

Recovery, recycle, and reuse; 
incineration; offsite disposal

Inorganic loads Chemical synthesis operations Neutralization, chemical oxidation, 
offsite disposal

Air emissions: 
VOCs 

Volatile solvents used for 
synthesis and product 
purification 

Scrubber, condensers, flares, heat, 
charge, vacuum distill, purge

 

DK3017_C008.fm  Page 266  Friday, August 5, 2005  10:53 AM

© 2006 by Taylor & Francis Group, LLC

controls associated with these waste types. Table 8.3 correlates batch unit oper-
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TABLE 8.3
Operations and Effluents in the Pharmaceutical Industry

 

Process Inputs Air Emissions Wastewater Residual Wastes

 

Chemical 
synthesis 
reactions

Solvents, catalysts, 
reactants

VOC emissions from reactor vents, manways, 
material loading and unloading, and acid 
gases; fugitive emissions from pumps, sample 
collections, valves, and tanks

Process wastewaters with spent solvents, catalysts, 
and reactants; pump seal waters and wet scrubber 
wastewater; equipment cleaning wastewater; 
wastewater may be high in BOD, COD, and TSS 
with pH of 1 to 11

Reaction residues and 
reactor bottom 
wastes 

Separation Separation and extraction 
solvents

VOC emissions from filtering systems that are 
not contained and fugitive emissions from 
valves, tanks, and centrifuges

Equipment cleaning wash waters, spills, leaks, and 
spent separation solvents

Purification  Purification solvents Solvent vapors from purification tanks; fugitive 
emissions

Equipment cleaning wash waters, spills, leaks, and 
spent purification solvents

Drying Finished active drugs or 
intermediates

VOC emissions from manual loading and 
unloading of dryers

Equipment cleaning wash waters, spills, leaks 

Natural product 
extraction 

Plants, roots, animal 
tissues, extraction 
solvents

Solvent vapors and VOCs from extraction 
chemicals

Equipment cleaning wash waters and spent solvents; 
natural product extraction wastewaters have low 
BOD, COD, and TSS and pH of 6 to 8

Spent raw materials  

Fermentation  Inoculum, sugars, 
starches, nutrients, 
phosphates, and 
fermentation solvents

Odoriferous gases, extraction solvent vapors, 
and particulates

Spent fermentor broth, fermentation wastewater 
containing sugars, starches, nutrients, etc.; 
wastewater tends to have high BOD, COD, and TSS 
and pH of 4 to 8

Waste filter cake and 
fermentation 
residues

Formulation  Active drug, binders, 
sugar, syrups, etc.

Tablet dusts and other particulates Equipment cleaning wash waters (spent solvents), 
spills, and leaks; wash waters typically contain low 
levels of BOD, COD, TSS and have pH of 6 to 8

Particulates, waste 
packaging, rejected 
tablets, capsules etc.

 

Source: 

 

USEPA, 

 

Profile of the Pharmaceutical Manufacturing Industry

 

, EPA/310-R-97-005, EPA Office of Enforcement and Compliance Assurance, Washington, DC, 1997.
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8.2.2.3 Sludges

 

Unconverted raw materials and additives from the fermentation process make up
the bulk of solid wastes (i.e., cell masses, waxes, and defoamers). The filter press
materials may also generate additional solid wastes (e.g., dicolite used for ceramic
microfilters). Solid effluents are generally sent to secured landfills.

 

8.2.2.4 Volatile Air Emissions

 

Most batch operations, such as charge, heat, or drying, involving VOCs result in
air emissions. The free volume above the liquid level of batch equipment is
saturated with vapors that include VOCs. When that saturated gas is displaced or
liberated to the atmosphere, it carries with it the VOCs. The type and amount of
emissions generated are dependent on the operating temperature and pressure, as
well as on how the product is manufactured or formulated. Dryers belong to the
largest sources of VOC emissions in batch manufacturing.

 

100

 

 In addition to the
loss of solvent during drying, manual loading and unloading of dryers can release
solvent vapors into ambient air, especially when tray dryers are used. VOCs are
also generated from reaction and separation steps via reactor vents and manways.
Table 8.4 lists VOC-generating operations such as heat, charge, vacuum distilla-
tion, and purging. This table is based on the U.S. Environmental Protection
Agency (USEPA) guidelines for reporting VOCs emissions from batch opera-
tions.
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 Typical controls for these emission sources include cryogenic condensers,
scrubbers, carbon absorbers, and incinerators.
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8.2.3 P

 

OLLUTION

 

 C

 

ONTROL

 

 R

 

EGULATIONS

 

This section provides a brief overview of current environmental regulations in
effect for pharmaceutical wastes and pollution control. Environmental regulations
define what types of chemicals constitute a hazard, give guidelines on how to
treat them, and in some cases prescribe specific treatment steps for emission

 

 

TABLE 8.4
Operations That Create Volatile Organic Carbons (VOCs)

 

Batch Operation Cause of Pollution

 

Charging Displacement of air saturated with VOCs
Evacuation (depressurizing) Saturation of freeboard gas due to pressure change
Nitrogen or air sweep Saturation of purge gas with VOCs
Heating Increase in VOC vapor pressure due to temperature
Gas evolution Displacement of air saturated with VOCs due to chemical reaction
Vacuum distillation VOC generation due to compositional and pressure change

 

DK3017_C008.fm  Page 268  Friday, August 5, 2005  10:53 AM

© 2006 by Taylor & Francis Group, LLC

control (see Table 8.5).
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8.2.3.1 Air Emissions Regulations

 

Both gaseous organic and inorganic compounds as well as particulates may be
emitted during batch manufacturing. Some of the volatile organic compounds
and inorganic gases are classified as hazardous air pollutants (HAPs) under the
Clean Air Act (CAA). The CAA, originally passed in 1970 and amended in 1977
and 1990, maintains the following standards: (1) the National Ambient Air Quality
Standards (NAAQs) for priority pollutants, and (2) maximum achievable control
technology (MACT) standards for hazardous air pollutants. The NAAQs estab-
lished six priority pollutants: ozone, lead, carbon monoxide, sulfur dioxide, nitro-

secondary standards were established to protect public health against adverse
effects from direct exposure. The secondary standards for any adverse environ-
mental effects are usually less stringent. MACT standards are technology-based
air emission standards authorized by the CAA and designed to drastically reduce
HAP emissions. The CAA amendments regulate 188 HAPs from different indus-
trial sources; therefore, the MACT regulations are both industry specific and
technology specific. The nearly 100 MACT standards are found in the Code of
Federal Regulations (40 CFR Part 63). Each standard deals with a specific source
category such as dry cleaners, petroleum refineries, or vegetable oil production.
The pharmaceutical MACT program can be found in 40 CFR 63.1250 through
63.1261.

 

104 

 

8.2.3.2 Wastewater Regulations

 

The three types of discharges applicable to the pharmaceutical and specialty
chemical manufacturing are (1) direct discharge, (2) indirect discharge, and (3)
zero discharge. Direct discharge refers to the discharge of pollutants directly into
lakes, streams, wetlands, and other surface waters. National Pollutant Discharge

 

TABLE 8.5
Pollution Source and their Regulations

 

Wastes Regulation Discharge Type

 

Air Maximum achievable control technology (MACT) Hazardous air pollutants 
(HAPS); 188 listed

National Ambient Air Quality Standards (NAAQs) Criteria pollutants: NO

 

2

 

, SO

 

2

 

, 
CO, O

 

3

 

, Pb, particulates
Water National Pollution Discharge Elimination System 

(NPDES)
Direct discharge to sewer

Site-specific regulations Discharge to sanitary district
Organic chemical plastic synthetic fibers (OCPSFs) Industry specific discharge

Solids Resource Consumption and Recovery Act (RCRA) Solids, spilled liquids, and 
containerized liquids
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gen dioxide, and respirable particulate matter, as listed in Table 8.6. Primary and
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Elimination System (NPDES) permits regulate all direct discharges. Indirect
discharge concerns the discharge of pollutants indirectly through publicly owned
treatment works (POTWs). Zero discharge prohibits the discharge of any pollutant
to surface waters of the United States or to a POTW. Table 8.7 shows the final
pollutant concentrations for direct and indirect discharges based on average infor-
mation from several fermentation and chemical synthesis facilities.101 The typical

8.2.3.3 Regulations for Solid Wastes

Solid wastes (e.g., sludges from pharmaceutical and specialty chemical manu-
facturing processes) are treated according to the Resource Consumption and
Recovery Act (RCRA) of 1976. According to RCRA regulations, spilled liquids
from process pipelines and containerized liquids are considered to be solid wastes.
This concept establishes a cradle-to-grave responsibility, thus preventing hazard-
ous waste generators from delegating liability for waste disposal by a contractor.
Even if the wastes are mishandled through the actions of a third party, the original

TABLE 8.6
National Ambient Air Quality Standards

Pollutant Primary Standards (Protective of Health)

Ozone 0.120 ppm (1-hour average)
Carbon monoxide 9 ppm (8-hour average)

35 ppm (1-hour average)
Particulate matter (<10 µm) 150 mg/m3 (24-hour average)

50 mg/m3 (annual arithmetic mean)
Sulfur dioxide 0.140 ppm (24-hour average)

0.03 ppm (annual arithmetic mean)
Nitrogen dioxide 0.053 ppm (annual arithmetic mean)
Lead 1.5 mg/m3 (arithmetic mean averaged quarterly)

TABLE 8.7
Pollutant Concentrations in Final Effluents 
for Direct and Indirect Discharge

Pollutant

Final Effluent Concentration (mg/L)

Direct Discharge Indirect Discharge

BOD5 90 885
COD 530 2200
TSS 122 444
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thresholds for indirect discharge to a local POTW are indicated in Table 8.8.
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generator is liable for improper disposal. According to the RCRA, wastes are
classified either as hazardous or nonhazardous. An example of the logic for RCRA

stringent permit programs for waste handling and disposal. These can be found
in the Code of Federal Regulations (40 CFR 260–272).4

8.2.4 REGULATORY INCENTIVES FOR POLLUTION PREVENTION

The majority of existing environmental regulations follow a command-and-con-
trol type of approach. The regulators command hard thresholds on emissions and
specify which treatment is considered state of the art. If a manufacturing site
crosses thresholds, specific control measures are dictated (e.g., MACT rules that

typical command-and-control regulations. 
While manufacturers operating within a command-and-control environment

are usually in compliance, they have few incentives for further process improve-
ment.93 This type of regulation does not encourage process innovations or enhance
ecological process performance beyond regulatory limits. In recent years, the
USEPA has moved toward market-based regulations in order to encourage sus-
tained pollution reduction efforts.102 Because new market-based approaches
already affect pharmaceutical and chemical manufacturers (e.g., VOC emission
trading), the basic principles of emission trading and its impact on batch manu-
facturing are introduced next.

TABLE 8.8
Indirect Discharge: Typical Wastewater 
Discharge Limits for a Local POTW 
(North Shore Sanitary District, IL)

Pollutants
Daily Maximum

(mg/L)
Monthly Average

(mg/L)

COD 1800 1200
BOD5 600 400
TSS 500 350
Ammonia 50 —
Nitrate 45 —
Phosphorus 20 —
Cyanides 0.3 —
Zinc 4 —
Iron 50 —
Arsenic 0.5 —
Selenium 14 —
pH 5–9 —
Sulfide (water) 0.5 —
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hazard qualification is depicted in Figure 8.6. RCRA hazardous wastes have very

enforce the use of maximum available control technology). Table 8.9 provides
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FIGURE 8.6 Logic for classification of RCRA hazardous wastes.

TABLE 8.9
Example of Command-and-Control Regulatory Framework

Command (1) The Clean Air Act of 1990 regulates a maximum threshold of 10 ton/yr of a 
single hazardous air pollutant (HAP) or 25 tons per year of a combination of HAPs 
for any manufacturing facility.

(2) Threshold for SO2 is <0.3 ppm (NAAQS, annual arithmetic mean standards).
Control (1) Wastewater discharges covered by the National Pollution Discharge Elimination 

System (NPDES) must meet effluent limitations based on available technology; 
for toxic and nonconventional pollutants, the best available technology (BAT) must 
be used.

(2) Particulate scrubbers must be used for flue gases emanating from incinerators.

F, K, U or P

Listed Waste?

(40 CFR, Part 261) 

yesno

Not RCRA

Hazardous

yes

noIgnitable (Flash Pt < 140 F)?

Corrosive (2 < ph < 12.5)?

Reactive?

RCRA

Hazardous

yes

Container

Not RCRA

Hazardous

RCRA

Hazardous

Is End Product

a Waste

no
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Economists have proposed a cap-and-trade regulatory model that exploits the
forces of a competitive market to stimulate pollution prevention and accelerate
technological improvement.71,76,93 In a cap-and-trade market, a regulator collab-
orates with a group of manufacturers for the common goal of achieving acceptable
levels of total emissions usually capping or reducing their total emissions. The
regulator stipulates a tolerable level of emissions. This cap limits the total emis-
sions of a region (e.g., state of Illinois) or the total emissions from a group of
polluters (e.g., power generators). The regulated industries receive titles for the
right to emit a certain amount of pollutant, a so-called emission permit. The
volume of permits issued corresponds to the cap of permissible emissions. Each
polluter must render permits equal to the amount of pollution they cause at the
end of each period. A company can sell surplus permits on a secondary market
for profit. A polluter can purchase additional permits to cover emissions in excess
of its allowance if unused permits are available. This system encourages pollution
reduction measures in exchange for revenues from selling surplus pollution rights.
Despite the free trading, the total emissions from the regulated industry can never
exceed the cap.

A limited emission trading market has existed since 1975. The first major
environmental success was the sulfur dioxide emissions trading program, which
cut SO2 emissions from power generators to reduce acid rain and proved the
effectiveness of the concept on a large scale. As of 2001, SO2 trading encompassed
nearly 2300 units at 1000 plants and had reduced emissions by more than 6.5
million tons compared to 1980 levels. By 2010, the program will achieve a cap
of 8.95 million tons, which is 50% of the 1980 SO2 emission levels.103 

Market-based mechanisms for reducing greenhouse gases have achieved
widespread intellectual and political support. The broad acceptance of emission
trading was reflected in the Kyoto Protocol,78 which has not yet been signed by
the United States. Industrialized countries abiding by the treaty adopt legally
binding commitments to cut back emissions to levels below those of 1990. 

The Chicago Board of Trade administered the first SO2 permit auction in
1993. Currently, pharmaceutical and specialty chemicals industries are regulated
through the trading of VOC air emissions in the following states: Connecticut,
Illinois, Florida, Maine, Michigan, New Jersey, and Virginia.15 

8.2.5 CAP-AND-TRADE REGULATORY MODEL

volume of emissions permits (cap), the distribution of allowances (or permits),
and emission trading opportunities. The cap puts a ceiling on total tolerable
emissions to be generated by all polluters. Each year the regulator allocates a
maximum number of emission permit credits equal to a cap amount. This cap is
firm and cannot be violated; hence, the total emission credits are designed such
that the total emissions remain below acceptable limit. A critical question relates
to a fair distribution of the rights to pollute. Three different permit allocations
systems exist:14,27,39 
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The cap-and-trade model has the basic elements listed in Table 8.10: a maximum
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1. The one-time allocation system provides for gratis allocations based
on the history of previous emissions (e.g., SO2 trading program).103

Under one-time allocation or grandfathering, permits are extended to
sources perpetually at the beginning of the program. A drawback of
this system relates to the impossibility of permit allocations for new
companies.

2. The auctioning approach knows no free distribution of permits; even
original rights to pollute need to be acquired in an open auction (e.g.,
Chicago Board of Trade). Under a pure auction, all generators must
pay up front for all allowances. All polluters in the program have an
equal position in the auction, usually held once a year.

3. Output-based allocation permits are distributed according to the pro-
duction outputs (e.g., power generation) from each unit in prior years.
Allowance allocations are periodically redistributed, typically every 1
to 3 years. Output-based allocation also provides permits to entering
companies. This aspect is an important factor in encouraging invest-
ments in newer plants and technologies. 

 Example

initial emissions of the entire region are assumed to amount to 60 tons/yr of a
certain pollutant (e.g., SO2: plant A, 20 tons/yr; Plant B, 18 tons/yr; Plant C, 22
tons/yr). The regulatory agency determines an emission reduction for the region
of 25%; consequently, the regulator allocates new emission credits in accordance
with the emissions history of each plant and by factoring the desired 25% reduc-
tion (e.g., plant A, 15 tons/yr; Plant B, 13 tons/yr; Plant C, 16 tons/yr). After
installing the new abatement technology, company B emits 12 tons/yr, thus

TABLE 8.10
Elements of Emission Trading

Term Definition

Emissions cap A limit on the total amount of pollution that can be emitted (released) from 
all regulated sources (e.g., power plants); the cap is set lower than historical 
emissions to cause reductions in emissions

Allowance Authorization to emit a fixed amount of a pollutant 
Measurement Accurate tracking of all emissions
Flexibility Being able to choose how to reduce emissions, including whether to buy 

additional allowances from other sources that reduce emissions
Allowance trading Buying or selling allowances on the open market
Compliance At the end of each compliance period, each source owning at least as many 

allowances as its emissions

Source: USEPA, 2003 (Ref. 102).

DK3017_C008.fm  Page 274  Friday, August 5, 2005  10:53 AM

© 2006 by Taylor & Francis Group, LLC

the assumption of only three polluters in a region (companies A, B, and C). The
Figure 8.7 illustrates the basic concept of cap-and-trade pollution control under
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leaving 1 ton/yr of unused permits, which it can sell for profit. Company C emits
17 tons/yr, 1 ton more than the allocated amount. Company B can sell its excess
permits to Company C. Although Company C emitted more than its original
permit allocation, the total cap for the entire region was not surpassed (15 + 13
+ 16 = 44 tons). This simplified example demonstrates the flexibility given plant
managers to decide when to invest in new abatement technology while keeping
emissions capped. A more detailed case study is available in Section 8.4.

8.3 IMPLEMENTATION OF POLLUTION 
PREVENTION

This section introduces technological options available for pollution prevention
in batch industries. First, guidelines for choosing different waste management
strategies are presented, and a brief survey of software tools to support pollution
prevention efforts is given at the end of this section.

8.3.1 AVAILABLE POLLUTION PREVENTION TECHNOLOGIES

ufacturing site composed of a centralized incineration facility, dedicated solvent
recovery unit, and wastewater treatment plant. A manufacturing site may also
have its own hazardous waste landfill and tank farms for temporary storage of
effluents before off-site treatment. 

8.3.1.1 Solvent Recovery Plant

Spent solvents from different campaigns can be recovered in dedicated solvent
recovery plants by batch or continuous distillation. Complex separations such as

FIGURE 8.7 Emission trading between three companies (A, B, and C).

Trading of 1 allowance for $90–$130 

60 Tons
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New
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Abatement cost:
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Abatement cost:

$100/ton 

TRADE

20 Tons 18 Tons
22 Tons

17 Tons
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Figure 8.8 depicts a typical waste management facility at a pharmaceutical man-
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extractive or azeotropic distillation are not commonly undertaken in multipurpose
sites. Table 8.11 gives examples of standard industrial column sizes used for
batch and continuous distillation. Recovered solvents are mostly directed to
inferior uses (e.g., washing) or are sold for profit in a secondary industry (e.g.,
paint industry). 

FIGURE 8.8 Illustration of typical waste management facilities at a batch manufacturing
site.

TABLE 8.11
Standard Sizes for Batch and Continuous 
Distillation Columns

Batch Column Capacity
(L/batch)

Continuous Column Height 
(ft) × Diameter (in)

150 22 × 12
250 35 × 18
400 82 × 18
600 82 × 24

1000 200 × 36

Source: Coldberg, R., Oral Communication, Chemical Inter-
mediates and Catalysis Research Lab, Kingsport, TN, 2002.
With permission.
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8.3.1.2 Wastewater Treatment Plant

Figure 8.9 shows a schematic of a wastewater treatment facility. Industrial waste-
water treatment facilities for an entire manufacturing site can handle more than
5 million gallons of wastewater per day.25 Organics are usually destroyed in
biological reactors (anaerobic and aerobic digesters). The microorganisms operate
under slightly basic conditions (pH range of 6 to 9). High pH variations in
effluents entering the wastewater treatment facility are adjusted in an equalization
basin. The neutralized wastewater passes through a carbonaceous aeration basin
where the aerobic digestion takes place. After aerobic digestion, the biomass is
typically settled in a clarifier, and part of the activated sludge is removed by
filtration to maintain a stable population of microorganisms. The clean water from
the clarifier is sent to a monitoring center to ensure that environmental health
and safety standards are being met before discharging the water to a municipal
sanitary district or sewer. Wastewater containing high concentrations of organics
(up to 10 to 20%) must be treated in a high-strength equalization basin followed
by anaerobic digestion. The pretreated effluents can be directed to the aerobic
digester only after suitable reduction of organics. Wastewater containing nitrates
may be subject to special denitrification steps.

FIGURE 8.9 Typical wastewater treatment facility.
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8.3.1.3 Incinerator Waste Plant

Thermal destruction of organic wastes is carried out in centralized incinerators.
The thermal rating of hazardous waste incinerators varies from 30 to 120 BTU/hr
(7500 to 30,000 lb/hr capacity).26 Reduction in waste volume is attained by
converting organics into flue gases (e.g., CO2, water vapor, NOx, SOx, and HAPs)
and solid ashes. According to federal regulations, an incinerator must destroy at
least 99.99% of hazardous organics. Examples of federal performance standards
for flue gases emanating from hazardous waste incinerators in the United States
are listed below:54

• Particulates — 0.08 grains/dry standard cubic foot (180 mg/disc) cor-
rected to 7% O2 in the flue gas.

• Emission of HAPs — 4 lb/hr or 99% control; RCRA regulations will
probably change these standards to risk-based limits for HAPs and
chlorine.

• Carbon monoxide — 100 parts per million by volume as a 60-minute
rolling average corrected to 7% oxygen measured on a dry basis.

• Metal emissions — Antimony, arsenic, beryllium, cadmium, chro-
mium, lead, manganese, nickel, selenium, and mercury are listed as
HAPs under Title III of the 1990 Clean Air Act amendments.

• Gaseous emission control — Incinerator off-gas may be subject to air-
emissions control by scrubbing (gas washing). Wet scrubbers or gas
absorbers are used to remove one or more constituents from a gas
stream by treatment with a liquid. For deciding the applicability of a
scrubbing pollution control step, the solubility of the contaminant in
the absorbing liquid must be high. Scrubbing can treat acidic or basic
compounds and VOCs with removal rates of up to a 90% of the
contaminant.100 Particulate scrubbers or electrostatic precipitators elim-
inate dust and heavy metal particulates. This equipment is used to
capture solid particles resulting from drying intermediates or from
formulation steps.

8.3.1.4 Off-Site Disposal and Landfill

Overloads from a manufacturing site can be also stored in tank farms and disposed
of offsite. Off-site disposal costs depend greatly on whether the waste is solid or
liquid and hazardous or not, the nature of the hazardous constituents, and even
geographical location (e.g., supply and demand for offsite waste treatment capac-

typical offsite disposal costs for various waste types. 

8.3.2 GUIDELINES FOR POLLUTION PREVENTION

Many companies have adopted a standardized protocol for pollution prevention.
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Figure 8.10 outlines a generalized three-phase pollution prevention guideline

ity). Landfill is the least sustainable treatment option. Table 8.12 summarizes the
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proposed by Mulholland and Dyer:74 (1) the chartering phase, (2) the assessment
phase, and (3) the implementation phase. In the chartering phase, the flowsheet
of a manufacturing process is fixed. The operational steps and stream table are
determined. Initial decisions on waste-reduction steps vs. end-of-pipe treatment
decisions are made. The assessment phase entails the characterization of process
and waste streams (hazardous, toxic, other adverse properties), the definition of
pollution prevention goals (e.g., removal of SO2 from a VOC stream, COD

TABLE 8.12
Typical Offsite Disposal Costs for Different Waste Types

Type of Waste Specific Cost ($/lb) Disposal Method

Bulk organic liquids 0.35 Incineration
Sludges (with organics) 1.15 Incineration
Sludges (with inorganics) 0.43 Stabilization and secure landfill
Solids (with organics) 0.85 Incineration
Solids (with trace organics) 0.13 Secure landfill

Source: Mulholland, K.L. and Dyer, J.A., Pollution Prevention: Methodologies, Technol-
ogies and Practices, AIChE, New York, 1999. With permission.

FIGURE 8.10 Pollution prevention guidelines. (Adapted from Mulholland, K.L. and
Dyer, J.A., Pollution Prevention: Methodology, Technologies and Practices, American
Institute of Chemical Engineers, New York, 1999. With permission.)
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reduction in wastewater streams), and the screening of various pollution preven-
tion options (e.g., onsite thermal incineration vs. condensation of VOC streams).
In the implementation phase, the most suitable pollution prevention options are
implemented. Approval for the successful pollution prevention project is secured
from the company’s management, and the technical implementation finally com-
mences (e.g., equipment installation, treatment). All phases of pollution preven-
tion require a lot of time and effort by experienced engineers. Time constraints,
lack of information, and limited in-house expertise may lead to suboptimal deci-
sions; therefore, several automatic software tools have been developed in recent
years to assist plant managers in identifying PP opportunities consistently.13 The
next section discusses some of the features offered by software tools in support
of pollution prevention.

8.3.3 SOFTWARE TOOLS FOR POLLUTION PREVENTION

Computer-aided pollution prevention tools enable designers to quantify environ-
mental implications and generate suggestions for process modifications. Software
tools are becoming more popular with plant managers and environmental health
and safety specialists.79 A number of commercial pollution prevention tools,
primarily originating from government agencies and university research program,

features. A short description follows: 

• Online manuals, such as the Pollution Prevention Electronic Design
Guide (P2EDGE)47 or Solutions Facilities P2 Plan Software,88 offer
guidelines for facility planning. P2EDGE is an electronic “idea note-
book” of pollution prevention strategies. These tools can also be used
in conjunction with other pollution prevention assessment protocols
for minimizing the impact of hazardous material spills and inventories,
stormwater pollution, and incorporate recycled materials into the con-
struction of buildings and landscapes. Several EPA guidelines99 offer
step-by-step protocols and case studies for pollution prevention.
OpsEnvironmental, from Environmental Software Providers, brings
together data from permits and manufacturing and support operations
into a single framework for calculations, reporting, and action-item
notification. A collection of successful pollution prevention projects in
the German and Swiss chemical and pharmaceutical industries can be
found in DECHEMA.30

• The Waste Reduction Resource Center (WRRC)109 database of pollu-
tion prevention articles and pamphlets belongs to the largest pollution
prevention clearinghouses in the United States. The Waste Reduction
Advisory System (WRAS) is a database of pollution prevention and
waste minimization abstracts organized by both keyword and Standard
Industrial Code (SIC); it was developed for the state of Illinois in 1987.
In addition, several commercial Material Safety Data Sheets (MSDS)
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serve this relatively small market. Table 8.13 lists the available software and their
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databases, hazardous material tracking systems, and waste tracking
software products are also available for assessing pollution prevention
opportunities and measuring program effectiveness.75

• Expert systems such as the Solvent Alternatives Guide (SAGE)80,98 is
a comprehensive guide designed to provide pollution prevention infor-
mation on solvent and process alternatives for parts cleaning and
degreasing. Detailed technology descriptions for each applicable
option along with the rationale for their selection are presented. Other
examples include creative thinking tools such as Idea Fisher,42 which
uses associative thinking for the expansion of design ideas. The main
asset of Idea Fisher is that it is an “idea base” that contains thousands
of questionnaires. Expert Choice41 applies the analytical hierarchy pro-
cess, a decision methodology that can be very useful in making com-
plex decisions with incomplete information. Venkataramani et al.107

developed the EASY expert system for the assessment of treatment
options for liquid and vapor waste streams from batch pharmaceutical
plants.

TABLE 8.13
Pollution Prevention Software Summary

Application Type Uses Software Name  

Online environmental manuals Impact assessment P2EDGE
P2 Plan Software
EPA webpage
OpsEnvironmental

Databases of chemical impacts Impact assessment WRRC
WRAS
MSDS

Expert systems Guide to cleaning options SAGE
IdeaFisher
Expert Choice

Process simulation software Design and development 
of batch processes

BDK®

Batchplus®

EnviroPro 
Designer®

Batch XL
Batches
Emission Master®

Decision analysis tools Informed decision making 
for pollution prevention 
alternatives

WAR
EFRAT
DORT
P2/FINANCE
CPS
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• Process analysis tools are state of the art for the design and development
of batch processes. These simulation tools facilitate the creation of
process flow diagrams and provide estimates of the expected waste
quantities and compositions. Specialized tools are available as a con-
stituent part of commercial packages: 
• Batch Plus® by Aspentech is a recipe-oriented batch process mod-

eling environment that spans the pharmaceutical process develop-
ment value chain from candidate drug selection through
manufacturing.5,6 EnviroProDesigner® from Intelligen performs
material and energy balances for batch operations used in pharma-
ceutical and specialty chemicals and calculates the amount as well
as type of waste generated.79,83 Wastestreams are automatically clas-
sified as liquid, solid and emissions (vapor).

• The Batch Design Kit (BDK®), available through Hyprotech/Aspen-
tech, offers a virtual laboratory that enables process designers to
experiment with conceptual batch recipes and assess the environ-
mental impact caused by their design ideas.60–63 

• Batch XL, from ABB Eutech,1 focuses on improving business oper-
ation performance by optimizing resource allocation, batch sizes
and schedule.

• Batches, from Batch Processing Technology,7 is a versatile simula-
tion system designed specifically for multiproduct pharmaceutical,
specialty chemical and food industries. It contains accurate and
easy-to-use batch operation modules.

• Emission Master®, from Mitchell Scientific,70 is useful for estimat-
ing HAP vent emissions for batch and continuous processes using
computerized EPA models. Its process modeling environment offers
computational models for filling, purging, heating, depressurization,
vacuum, gas evolution, solids drying, and storage tanks considered
in maximum achievable control technologies (MACTs).

• Decision-analysis tools help users evaluate the environmental and cost
consequences of various pollution prevention options; they aim at
achieving a better understanding of the hidden costs associated with
environmental compliance. This category of software tools also assists
users in evaluating the full life-cycle impacts of manufacturing
processes.

• The Waste Reduction (WAR) algorithm67 discriminates between pro-
cess alternatives by performing a potential environmental impact (PEI)
balance on alternative process flowsheets. The resulting global pollu-
tion index provides a measure of the environmental performance of a
chemical process flowsheet. The Environmental Fate and Risk Assess-
ment Tool (EFRAT)86 assesses flowsheets in terms of human health
and environmental damage based on an environmental risk index cal-
culator (ERIC).
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• The Design Options Ranking Tool (DORT)94 provides the means to
compare alternative process design options based on economics, envi-
ronment, health, and safety as well as other user-defined criteria. The
tool supports standard economic analysis such as discounted cash flow
and net present value.

• The P2/FINANCE tool92 features environmental cost-accounting prin-
ciples, particularly for the evaluation of capital investment options such
as process upgrades or modifications. The software estimates the envi-
ronmental costs associated with a process by taking into account factors
such as waste management and liability costs.

The existing methods to identify design alternatives still require expert knowl-
edge and a significant number of skilled man-hours. The applicability of these
methods, particularly during conceptual process design, can be limited due to a
lack of data.44 The next section presents a brief overview of various computer-
aided methodologies for the synthesis of pollution prevention options with very
scarce data.

8.3.4 COMPUTER-AIDED METHODS FOR THE SYNTHESIS OF 
WASTE REDUCTION OPTIONS

Computer-aided process synthesis aims at generating process alternatives auto-
matically with little user intervention. Without claiming completeness, four cat-
egories of systematic synthesis approaches are discussed:

• Mass exchanger networks
• Batch process design with ecological considerations
• Waste reduction algorithms
• Combinatorial process synthesis (CPS)

8.3.4.1 Mass Exchanger Networks

El-Halwagi and coworkers34,37,38,72 proposed the concept of a mass exchanger
network (MEN) for the synthesis of optimal waste treatment options. A mass
exchanger is any direct-contact, mass-transfer unit that employs a mass separating
agent (MSA) to selectively remove pollutants from a waste stream. Successful
industrial applications involve cleaning dilute systems such as wastewater and
flue gases from incinerators. Pistikopoulos50 discussed the simultaneous synthesis
of reaction and separation steps using MEN modules. The IDEA framework111

guarantees consideration of all alternative network designs and global optimality
of the resulting process flowsheets. Analogous to pinch analysis for heat exchang-
ers networks, this research has provided optimal criteria for the allocation of
separation networks. Results have been obtained for the synthesis of energy-
efficient distillation networks, mass exchange networks with single and
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multicomponent targets, optimal membrane networks, reactor networks, and
power generation cycles.

8.3.4.2 Batch Process Design with Ecological 
Considerations

Few methods in computer-assisted process design have focused on batch process
design,3,35,52,81 batch operations,9,10,59 or online optimization.89 A pioneering rec-
ipe-oriented simulator was PROVAL, developed by Merck.53 Linninger and
Stephanopoulos61,62 introduced a methodology for generation and assessment of
batch processes with ecological considerations based on the concept of zero
achievable pollution (ZAP) and minimum avoidable pollution (MAP).
Venkatasubramanian105,106 developed a computer-aided methodology for the auto-
matic synthesis of batch operating procedures. Friedler’s combinatorial
algorithms82,94 led to a maximum superstructure of state-task-networks based on
graph theoretical considerations.

8.3.4.3 Waste Reduction Methodologies for Batch Processes

A practical software tool for ecological and economic assessment of waste
treatment options has been developed by the ETH Safety and Environmental
Technology Group and applied successfully to industrial problems in Swit-
zerland.16 The method was extended to model waste treatment selection and
costing in the presence of uncertainty.17 Simplified decision trees were used
for determining possible treatment paths for each waste stream. Various uncer-
tainty amounts and compositions gave rise to the least expensive path and
most advantageous cost distribution under uncertainty. The ETH researchers
have also developed a metaheuristic algorithm using stochastic optimization
techniques for multi-objective design of multipurpose batch plants.18 The ETH
approach can generate the least expensive treatment and recycle options for a
given waste stream. The design methodology focuses on steady-state analysis
of single processes. The technology selections rules do not take into account
existing site infrastructure or capacities.

8.3.4.4 Combinatorial Process Synthesis

which generates a superstructure of all feasible recovery and treatment steps.64,65

Superstructures for industrial problems typically encompass thousands of struc-
turally different design policies. Optimal waste management strategies are iden-
tified via rigorous mathematical programming techniques to arrive at operating
procedures offering optimal trade-offs among economic and ecological targets
while  still satisfying site-specific emission, logistic, and plant-specific capacity
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Combinatorial process synthesis is a new flowsheet synthesis paradigm. Figure
8.11 outlines the architecture of the combinatorial process synthesis software,
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constraints. The reasoning and superstructure optimization programming offers
code generation features that automatically synthesize problem files for commer-
cial optimization tools (e.g., GAMS, MATLAB). Comprehensive reporting func-
tions including plant operation reports, investment reports, and facility allocation
reports help plant managers analyze different solutions and their impact on the
entire plant.20 The combinatorial process synthesis was applied successfully in
the following types of waste minimization synthesis problems:

• Multi-objective synthesis and design — Design of plant-wide waste
management policies with the best trade-off between process econom-
ics and environmental impact19

• Design under uncertainty — Multi-objective design of plant-wide
operations under uncertainty in the process streams21

• Long-term operational and investment planning — A predictive closed-
loop control algorithm for optimal plant operation and investment
decisions for the entire manufacturing site over a planning horizon of
5 to 10 years22

• Source reduction/waste minimization — Pollution prevention by opti-
mally converting and conditioning all process streams into a changing
portfolio of secondary products (e.g., product-only manufacturing
paradigm)24

FIGURE 8.11 Architecture of the combinatorial process synthesis software.
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8.4 CASE STUDIES

This section discusses two hypothetical industrial case studies exemplifying com-
puter-aided decision making for pollution prevention in the batch industries. The
first example demonstrated how to arrive at operating procedures with optimal
trade-offs among economic and ecological targets while satisfying site-specific
emission, logistic, and plant-specific capacity constraints. The second case study
quantifies the impact of various regulatory models on business decisions to
illustrate that a market-based approach can lead to emission reductions at lower
cost to the industry than would be achievable with existing command-and-control
regulations.

8.4.1 CASE STUDY A. MULTIPERIOD WASTE TREATMENT 
SYNTHESIS

This design problem identifies the best recycle and treatment options for a 5-year
planning horizon as well as the optimal investment schedule while increasing the
production capacity of a multipurpose manufacturing site by 10%. It is expected
that a command-and-control regulatory scenario currently imposing a limit of 65
ktons of CO2 emissions per year will further reduce the threshold to 55 ktons in
5 years (see Figure 8.12).

Initial Plant Infrastructure

columns ranging from 35 to 200 feet in height and 12 to 36 inches in diameter,
(2) a wastewater treatment plant with a daily capacity of 5 million gallons, and

FIGURE 8.12 Command-and-control regulatory scenario for case study A.
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The inventory of our hypothetical batch-manufacturing site is depicted in Figure
8.8 and specified in Table 8.14: (1) a solvent recovery facility with 12 distillation

(3) a centralized incineration facility with a capacity of 50 mBtu/hr. (See Refer-
ence 23 for more details) 
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Waste Forecast Scenarios

Market and business forecasts lead to expected plant production data for the entire
planning period. From the projected production figures, one can infer the expected
waste loads and compositions — the so-called waste forecast described in Table

waste forecasts and displays the expected waste loads of the eight waste categories
emitted at the site. The organic waste streams, W1, W2, and W8, are associated
with high-demand products; consequently, a sharp increment in these categories
will occur (approximately 15 to 20% per year). The other streams are expected
to grow slowly. The objective of the computed-aided analysis is to solve the

TABLE 8.14
Initial Waste Management Facilities Infrastructure for Case Study

Site A Equipment Type Number of Units

Incinerator facility Incinerator (50 mBtu/hr)
Wet scrubber (10,000 cfm)

1

Solvent recovery unit 200’ ↔ 36”
82’ ↔ 24”
82’ ↔ 18”
82’ ↔ 12”
35’ ↔ 18”
35’ ↔ 12”

1
2
3
3
2
1

Wastewater plant Clarifier, ion exchanger, equalizer (5 mgd) 1

TABLE 8.15
Waste Composition for Case Study

Compounds

Composition (ton/yr)

W1 W2 W3 W4 W5 W6 W7 W8

1-Propanol 0 0 100 0 300 300 0 100
Methanol 0 40 0 16 0 0 2 0
Acetone 100 70 60 100 0 0 100
Acetonitrile 0 0 300 0 60 250 0 300
Water 0 10 0 50 0 30 22 0
Benzene 50 0 0 0 0 0 0 0
Ehtylene-dichloride 60 0 0 0 0 0 0 0
Toluene 59 0 0 0 0 0 0 0
Sodium chloride 0 0 0 25 0 0 53 0
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8.15, Figure 8.14 illustrates the relationships among the business, market, and
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following multiperiod planning problem to find the optimal operating procedures
and itemized capital investments:

Given plant superstructure and the expected waste loads…
Find the yearly operating policies (recycle and treatment options) and

necessary investments (new recycle units or treatment equipment) at…
Minimum total annualized cost…
Subject to the plant capacity and regulatory limits (thresholds).  

The exact formulation of this complex mathematical program is discussed in
the literature (Linninger,23

structure of feasible recovery and treatment steps for four of the eight waste
streams (W1, W2, W3, and W4) automatically generated with combinatorial process
synthesis methodology. The superstructure embeds 69 distinct treatment and
recovery options with two to eight alternative treatment paths; therefore, this
partial superstructure implicitly embeds a total of 8 × 4 × 5 × 2 = 320 different
waste treatment alternatives. A treatment policy can only be implemented at a
particular manufacturing site if the plant offers free capacity of the required
equipment or plants (e.g., incinerators, distillation columns). The existing plant
capacity can also be augmented by purchasing additional units (investments). 

Due to a hard limit on CO2 emissions, the optimal strategy approach (π1)
combines solvent recycle steps and incineration. The operational steps chosen in
policy π1 are depicted in gray in Figure 8.15. For example, for waste stream W4

a liquid mixture of water, methanol, and sodium chloride is directed to a biological
wastewater treatment step, T70. The final emissions are (1) cleaned wastewater
(S55) and (2) off-gas (S54). S55 is discharged into the sewer (T72). S54 containing
CO2 and H2O from the digestion of organics in the biomass is liberated into the
atmosphere. In year three, the optimal treatment strategy swaps to a recycle policy
(π3), which deploys even more energy-intensive solvent recovery steps. This

FIGURE 8.13 Permit allocation in cap-and trade regulatory scenario for case study B. 
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 2004b). Figure 8.15 displays a portion of the super-
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transition to more difficult separation is necessary to avoid incineration steps,
thus satisfying the upcoming CO2 threshold of 55 ktons/yr. The new, more
expensive solvent recycle tasks are made possible by capital investments to
upgrade the solvent recovery plant, as indicated in Table 8.16. 

FIGURE 8.14 Mean waste loads from business and market forecasts and expected waste
forecasts.

TABLE 8.16
Optimal Operating and Capital Costs under Different Regulatory 
Scenarios

Period

Command-and-Control 
Scenario Cap-and-Trade Scenario

Operating
Policya

Capital Cost
(M$)

Operating
Policya

Capital Cost
(M$)

Emission Trading
Cost (M$)

Year 0 π0 — π0 — —
Year 1 π1 2.267 π1 2.267 –1.54
Year 2 π1 3.596 π1 3.596 –0.35
Year 3 π3 4.550 π2 0.400 0.48
Year 4 π3 0.400 π2 — 1.38
Year 5 π3 — π5 4.882 –3.16
Net present 
cost

88.897 81.821

a Each policy (p1 to p5) indicates different flowsheets.
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8.4.2 CASE STUDY B. THE IMPACT OF REGULATIONS ON 
MANUFACTURING PRACTICES

In earlier sections, we pointed out the lack of incentives for technological inno-
vations in the command-and-control regulatory model. We also presented the
benefits of the more innovative emission trading model. We now demonstrate the
ability of different regulatory systems to induce pollution prevention and waste
reduction efforts in the industry. Moreover, the case study also outlines a system-
atic approach to assess the costs associated with improved environmental perfor-
mance under any regulatory framework. Under a cap-and-trade regulatory sce-
nario, the same company presented in case study A is allowed to participate in
CO2 trading with other firms. It is assumed that the site will receive 65 ktons of
CO2 emission credits initially (e.g., year 0). In order to achieve a reduction in
output, permit allocation is assumed to decrease by 4% per year for the next 5

The optimal plant management strategy under the emission trading scenario
shows that it is advisable to change the operating policy from π0 to π1 in year
one. This policy shift is driven by the benefits associated with selling unused
permits from year 0. From year three onward, a less expensive policy (π2) avoids
difficult separations in favor of inexpensive self-sustained incineration. The use
of incineration, although inexpensive, requires more than the allocated CO2 per-
mits; hence, additional permits must be purchased on the market, as shown in

2

unaffected by the demand. The total cost for purchasing the necessary CO2 credits
is $1.8 million. In year five, additional investments make possible a switch to
high-volume solvent recovery, leading to long-term operations with low CO2

output. This new low-polluting policy, π5, profits from the benefits of selling the
unused CO2 

Comparison of Regulatory Models

The optimal strategies under both regulatory models have similar investment
schedules for the first two years; however, the cap-and-trade strategy allows the
plant manager to decide when to invest in state-of-the-art pollution abatement
equipment in contrast to the command-and-control strategy that commands invest-
ment in a specific technology at a particular time (see Table 8.17). Flexibility
with regard to the timing and size of investment decisions in accordance with
ecological considerations as well as production plans is missing in a command-

2

the command-and-control strategy, which always operates below its hard upper
bound. Figure 8.17 depicts the CO2 emissions for the cap-and-trade strategy which
temporarily surpass the permit allocation in years three and four before adoption
of a very clean strategy in year five. Despite the additional permits, under the
cap-and-trade scenario the total cumulative CO2 emissions over the 20-year pro-
jected horizon are only 580 ktons, which is 63% lower than before induction of

DK3017_C008.fm  Page 290  Friday, August 5, 2005  10:53 AM

© 2006 by Taylor & Francis Group, LLC

years, is depicted in Figure 8.12.  

Figure 8.17. In this simple example, the CO  permit price is assumed to be

and-control regulatory scenario. Figure 8.16 plots the annual CO  emission from

permits on the market, as shown in Table 8.17.
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FIGURE 8.15 Superstructure of four waste streams. OnR, onsite recycle; INC, incineration; REU, reuse; EVA, evaporation; IonE, ion exchange;
SCR, scrubber; WAO, wet air oxidation; BIO, biological treatment; LEA, leaching; LF, landfill; ATM, atmosphere; SEW, sewer.
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the new regulations. On the other hand, the command-and-control regulation leads
to 735 ktons of CO2, which amounts to only a 52% emission reduction. Moreover,
the optimal strategy under emission trading has a lower total annualized cost of

and the revenue of selling surplus emission credits resulting from investments in

cost strategy, with the lowest possible capital and operational cost; however, that
strategy causes very high pollution levels.

8.5 SUMMARY

This chapter has provided an overview of waste management options for batch
manufacturing processes and a brief review of standard batch process operations,
sources of pollution, and typical pollution control technologies used in pharma-
ceutical and specialty chemical industries. The presentation included a discussion
of commonly used batch operations and the types of wastes associated with them.
Existing types of environmental regulation were summarized, and a brief intro-
duction to the novel cap-and-trade regulatory framework was provided. Available

FIGURE 8.16 Yearly CO2 emissions in the optimal command-and-control strategy.

TABLE 8.17
Total CO2 Emissions for Strategies S0 to S2

Strategy CO2 Emissions (Ktons) CO2 Reduction (%)

Minimum-cost strategy (S0) 1549 —
Command-and-control (S1) 738 52
Cap-and-trade (S2) 580 63
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technology. The data of Figure 8.17 and Table 8.16 show the globally minimum

$81.8 million as compared to $89 million in the command-and-control (see Table
8.16) . This better cost performance is due to the optimal timing of the investments
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pollution prevention techniques were explained, and systematic approaches for
identifying pollution prevention measures for the batch industries were presented.
Computer-aided design methodologies can aid plant managers in choosing opti-
mal operating procedures and scheduling necessary investments for optimal pol-
lution prevention strategies in anticipation of regulatory changes. Under the
simplified assumptions of the case studies (e.g., arbitrary permit costs, no price
flexibility), a cap-and-trade regulatory system achieved a higher level of emission
reduction at lower cost. The quantitative analysis revealed that the flexibility of
the emission trading model benefited plant managers in two aspects: (1) they can
optimally time investments in accordance with their production plans, and (2)
they can receive ongoing benefits from technological improvements by selling
surplus permits. In conjunction, these two advantages may encourage the intro-
duction of pollution prevention efforts in industry which are missing in the current
command-and-control environmental regulations.

8.6 SUMMARY OF POLLUTION PREVENTION 
SOFTWARE  

Online Manuals

• Pollution Prevention Electronic Design Guide (P2EDGE), available at

engineers and designers incorporate pollution prevention strategies
during the design of new products, processes, and facilities in order to
reduce life-cycle costs and increase materials and energy efficiency.

•

tory lists, manuals, etc.) on CD-ROM.

FIGURE 8.17 Yearly CO2 emissions in the optimal cap-and-trade strategy.
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http://www.ornl.gov/adm/ornlp2/p2edge.htm, offers a tool set to help

Solutions Facilities P2 Plan Software, available at http://www.env-
sol.com/, specializes in providing public-domain documents (regula-

http://www.ornl.gov
http://www.envsol.com
http://www.envsol.com
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•

operations into a single framework for calculations, reporting, and
action-item notification.

Databases

•

documents is one of the largest pollution prevention clearinghouses in
the U.S available at United States.

• WARS (Waste Reduction Advisory System) is a database of pollution
prevention and waste minimization article abstracts, organized by both
keyword and Standard Industrial Code (SIC); it was developed for the
state of Illinois in 1987.

• MSDS databases, hazardous material tracking systems, and waste
tracking software products are also available for assessing pollution
prevention opportunities and measuring program effectiveness at

Expert Systems

•
an interactive interface that leads users through a series of questions
that help the system narrow down the cleaning options based on a wide
variety of part- and process-specific issues.

•
for the expansion of ideas. The main feature of the software is an idea
base that contains thousands of questionnaires.

• ExpertChoice41

hierarchy process (HAP), a decision methodology that can be very
useful in making complex decisions with incomplete information.

Process Simulation Software Tools

• The Batch Design Kit (BDK), available through Hyprotech/Aspentech

that enables process designers to implement their ideas and assess the
environmental impact caused by their designs.

•
oriented batch process modeling environment that spans the pharma-
ceutical process development value chain from candidate drug selection
through manufacturing.

manufacturing facilities.
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OpsEnvironmental, from ESP (http://www.esp-net.com/ops/index.
htm), brings together data from permits, manufacturing, and support

The WRRC (Waste Reduction Resource Center; http://wrrc.p2pays.
org/) database of pollution prevention articles, pamphlets, and other

http://www.ilpi.com/msds/.

The Solvent Alternatives Guide (SAGE; http://clean.rti.org/) provides

IdeaFisher™ (http://www.ideacenter.com/) uses associative thinking

 (http://www.expertchoice.com) applies the analytical

(http://www.hyprotech.com/bdk/default.asp) offers a virtual laboratory

Batch Plus by Aspentech (http://www.aspentech.com) is a recipe-

• EnviroProDesigner from Intelligen (http://www.intelligen.com/envi-
ronmental.shtml) performs material and energy balances of integrated

http://www.esp-net.com
http://www.esp-net.com
http://wrrc.p2pays.org
http://wrrc.p2pays.org
http://www.ilpi.com
http://clean.rti.org
http://www.ideacenter.com
http://www.expertchoice.com
http://www.hyprotech.com
http://www.aspentech.com
http://www.intelligen.com
http://www.intelligen.com
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•
ing business operation performance by optimizing resource allocation,
batch sizes, and schedule.

•

multiproduct pharmaceutical, specialty chemical, and food industries
that contains rigorous, accurate, and easy-to-use operation modules.

•

emissions for batch and continuous processes using computerized EPA
. The process modeling environment offers such computational models
as filling, purging, heating, depressurization, vacuum, gas evolution,
solids drying, and storage tanks considered in the MACT standard.

Decision-Analysis Tools

•

tives by performing a potential environmental impact (PEI) balance on
alternative process flowsheets. The resulting global pollution index
provides a measure of the environmental performance of each process
flowsheet.

• The Environmental Fate and Risk Assessment Tool (EFRAT)

ronmental damage, and on fate and transport characteristics.
•

on economics, environment, health, and safety as well as other user-
defined criteria. Standard economic analyses such as discounted cash
flow and net present value can be performed using DORT.

•
trates environmental cost-accounting principles, particularly for the
evaluation of capital investment options such as process upgrades or
modifications. The software estimates the environmental costs associ-
ated with a process by taking into account such factors as waste man-
agement and liability costs.

• Combinatorial Process Synthesis, developed by the University of Illi-

decision-making tool for synthesizing plantwide waste management
strategies; it provides options for generating a tree of feasible recycle
and treatment options for effluents from batch manufacturing.
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Batch XL from ABB Eutech (http://www.abb.com/) focuses on improv-

Batches, from Batch Processing Technology (http://www.bptech.
com/), is a versatile simulation system designed specifically for the

Emission Master, from Mitchell Scientific (http://www.mitchellscien-
tific.com/EmissionMaster.htm), is useful for estimating HAP vent

The waste reduction (WAR) algorithm (http://www.epa.gov/ord/
NRMRL/std/sab/sim_war.htm) discriminates between process alterna-

(http://es.epa.gov/ncer_abstracts/centers/cencitt/year3/process/shonn2.

index calculator (ERIC), which is indicative of human health and envi-
html) discriminates between flowsheets based on an environmental risk

The Design Options Ranking Tool (DORT) (http://cpas.mtu.edu/tools/
d0014/index.htm) provides a means to compare design options based

P2/FINANCE tool (http://www.tellus.org/b&s/software/p2.html) illus-

nois at Chicago (UIC) (http://vienna.che.uic.edu/) is a computer-aided

http://www.abb.com
http://www.bptech.com
http://www.bptech.com
http://www.mitchellscientific.com
http://www.mitchellscientific.com
http://www.epa.gov
http://www.epa.gov
http://es.epa.gov
http://es.epa.gov
http://cpas.mtu.edu
http://cpas.mtu.edu
http://www.tellus.org
http://vienna.bioengr.uic.edu
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9.1 INTRODUCTION

 

The interest in batch process modeling and optimization in the chemical industry
has increased during the last years in response to the requirements of increasingly
competitive markets. Typically, batch processes are considered as a process
alternative:

• If a high-value product is produced at a low volume
• If there are large market-driven fluctuations in the demand or short

product life-cycles
• If flexibility with respect to product grades, volume, and quality is

required
• If technical difficulties such as long residence times, multiphase sys-

tems, or fouling are significant

Batch processes are characterized by some distinct features. Various products
are often produced in the same plant. The process units and their connections to
a plant may change with time. Often, the intermediate products are stored in
buffer tanks and are processed (sometimes after blending) in the same but possibly
reconfigured plant or in a different plant. The operation of batch processes is
defined by some recipe that allocates processing tasks to process equipment and
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defines a sequence of time-varying controls, which are continuous and discrete
in nature. The high flexibility of batch processes can only be fully exploited if
design and operational decision making are supported by advanced modeling and
optimization techniques.

As an illustration, we consider a reactive distillation process for the produc-
tion of methyl acetate (MeAc) produced by a reversible reaction between acetic
acid (HAc) and methanol (MeOH):

We would like to produce methyl acetate from methanol and acetic acid in reactive
and nonreactive distillation columns. The raw materials are pure components.
The desired product streams are methyl acetate and water with some given purity
specifications. The most favorable process consists of a semibatch reactive dis-
tillation column that produces methyl acetate of a desired purity as the top product.
A schematic of this process is shown in Figure 9.1. The use of reactive distillation
is especially advantageous for equilibrium reactions, as the continuous removal
of the product increases conversion; however, it is not the only possible option
for designing a process for this purpose, as we will see later.

 

9.1.1 W

 

HY

 

 M

 

ODEL

 

?

 

There are several reasons why we are interested in a model of a batch process.
The most important engineering tasks, which should be carried out by means of
a model, are process and recipe design, as well as planning and scheduling, in
order to match the production demands of the customers. These tasks assume
nominal operation and a reasonably valid model. Design of a process unit or a
process plant given some production targets (comprised of type of product, the
desired quantity, and the requested quality specifications) typically involves three
steps. The first step takes place in the laboratory, where a new product is discov-
ered or alternative ways for the production of an existing product are identified.

 

FIGURE 9.1

 

Semibatch reactive distillation column for the production of methyl acetate.
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Then, the unit operations and their interconnections to a 

 

batch plant

 

 as well as
feasible and efficient operational strategies for all process units, the so-called

 

recipes

 

, are determined in a process design step. Finally, the third step deals with

 

equipment allocation

 

 and 

 

batch process scheduling

 

, accounting for customer
demand and employing the recipes obtained from the previous design step. In
the following text, we focus first on the process design step, which comes in
various degrees of complexity with respect to the structure of the process plant
and the units to be chosen to implement the functionality.

Let us illustrate the different degrees of complexity by means of the methyl
acetate example. Here, the reaction and a first guess of the process structure are
given. Further, we have developed a rough idea on alternatives to the initial

employed, the remaining degrees of freedom to be fixed are:

• The feed rates of both raw materials (

 

F

 

 in Figure 9.1)
• The heat supplied to the evaporator (or the boil-up rate, 

 

V

 

)
• The distillate flow rate (

 

D

 

) (or the reflux rate, 

 

R

 

)

as functions of time, as well as the amount of the raw materials put in the still
before the process is started. Hence, we have decision variables that are time
varying as well as time invariant. If, in addition, the column itself is not given,
the additional degrees of freedom lie in the equipment configuration itself. They
include the size and number of trays, location of the feed tray, and alternatives
to the regular processing from a still at the bottom, such as a middle-vessel
operation (see Figure 9.2), where the main reaction volume is placed somewhere
in the middle of the column. In this case, some structural degrees of freedom
have to be fixed once and are not reconsidered during process operation.

 

FIGURE 9.2

 

Process design option with middle vessel.
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The design problem to be solved here belongs to the class of dynamic
optimization (or optimal control) problems with differential–algebraic constraints
and continuous degrees of freedom (time-dependent or time-varying) if the equip-
ment structure is fixed or with continuous as well as discrete degrees of freedom
if the equipment structure is also a subject to be decided on.

Up to this point, only the case of a single and given production target has
been considered. In practice, batch plants are operated in campaigns and a mul-
titude of products are manufactured. For example, a variety of esterifications may

production target comprised of type of product, volume, and quality for a certain
campaign has to be determined on a higher decision level involving planning and
scheduling activities.

So far, we have assumed complete knowledge of the process and its operation.
In particular, we have implicitly assumed a perfect model with known (or van-
ishing) disturbances as well as a perfect forecast of customer demand for the
products. All these assumptions are not valid in a realistic setting. Various kinds
of uncertainty have to be considered. Unknown time-invariant parameters (e.g.,
coefficients in the reaction kinetics or heat transfer relation) are a source of
uncertainty. Furthermore, uncertainty is caused by time-varying disturbances such
as drifting model parameters (e.g., a decreasing heat-transfer coefficient due to
fouling) or changing environmental conditions. Additionally, structural model
uncertainties may exist, for example, unknown side reactions in the esterification
reaction mechanism in the example above. Finally, the process itself may be
subject to such uncertainty as a sudden loss of cooling or heating due to a pump
failure in the condenser or evaporator of the semibatch distillation column.

The uncertainties can be dealt with explicitly during the design phase. The
general strategy is to design the process in such a way that it fulfills the require-
ments even in the presence of uncertainty. For example, we can define a possible
range for the uncertain parameters and then develop a design of the process that
ensures a feasible operation within this entire range. Typically, such approaches
lead to conservative solutions.

Alternatively, we can deal with uncertainty in real time during the operation
of a particular process. This is advantageous, because, in addition to the 

 

a priori

 

knowledge used in the design phase, we also have measurement information
available, which  in conjunction with the model  can be used to reduce the
uncertainty. Not only do the measurements include a part of the process state but
they also refer to some of the disturbances acting on the process as well as to
changes in the production target due to varying customer demand. Hence, in this
way we are able to adjust the process to the actual situation in real time to
maximize profit at any instant in time to the extent possible. In this case, a
combined estimation and optimization problem has to be solved in order to
reconcile the model as well as to fix continuous and probably also discrete
decision variables online.
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9.1.2 W

 

HY

 

 O

 

PTIMIZE

 

?

 

We have learned about a number of design and operational problems that are
supposed to be solved by the aid of a model. It is common practice to solve the
design and operation problems in an iterative manner. The process (and control)
structure is selected and fixed for a given production schedule. The model is
formulated and implemented by means of a simulator. Then, parameter variations
are carried out in order to match the design requirements for some configuration
in an extensive search process. This procedure is not likely to succeed, given the
immense complexity of batch design, control, and operation problems. In contrast
to continuous processes, we have to decide on time-varying quantities and hence
on a virtually infinite number of parameters that are required to fix the decision
variables as a function of time.

Instead of simulation we advocate the use of optimization algorithms to
improve the quality of the resulting design at reduced engineering effort. Even
in the case of optimization, we will not be able to avoid the trial-and-error search
during problem solving that is a typical feature of simulation-based design.
However, this search is carried out on a higher level of abstraction. Whereas we
search over the space of process structures, design parameters, and recipes for
simulation-based problem solving, the search space is restricted to alternative
objective functions and constraint sets for an optimization-based approach. Obvi-
ously, in the latter case, the designers’ objectives can be formulated more directly
and the search for appropriate process structures, design parameters, and recipes
is carried out exhaustively by means of a numerical algorithm. Consequently, the
solution quality can truly be expected to improve at reduced engineering effort
if optimization is employed.

 

9.1.3 W

 

HAT

 

 

 

TO

 

 G

 

AIN

 

 

 

FROM

 

 M

 

ODELING

 

 

 

AND

 

 O

 

PTIMIZATION

 

?

 

Industrial batch and semibatch processes are often still operated using recipes
based on heuristics and experience. In contrast to continuous processes, for which
many rigorous optimization studies of practical relevance have been published,
these techniques are not yet commonly applied for batch-type processes; however,
supported by maturing dynamic optimization techniques, recently published stud-
ies show the benefits for batch process applications.

For example, Li et al.

 

86

 

 applied modeling and optimization techniques to an
industrial semibatch distillation process with a chemical reaction taking place in
the reboiler. A detailed dynamic model was set up to describe the process. The
model was validated with measured data from experiments conducted on the
industrial site. With the help of model-based optimization of reflux ratio and feed
rate policies, significant savings of 30% in terms of operational time when
compared to the conventional operation have been achieved.

Abel et al.

 

1

 

 described optimization of the operation of an industrial semibatch
reactor. As in the publication discussed before, the objective of this case study
was to minimize the batch time. Various operational, quality, and safety-related
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constraints were considered during the batch and at its final time. The optimization
was based on a detailed process model derived from first principles. With the
help of a reduced model optimization, computations were carried out that resulted
in optimal trajectories for the operational variables of feed flow rate and reactor
temperature. A reduction of the conventional operating time by 28% can be
expected and has been verified experimentally in the laboratory and at the pro-
duction scale.

 

9.1.4 C

 

HAPTER

 

 O

 

VERVIEW

 

The scope of this chapter includes modeling and optimization techniques for
batch process design and operation assuming a fixed and given production target.
In this context, we also address the unavoidable uncertainties that may be encoun-
tered during process design or during process operations. We will not deal with
scheduling and planning, because dynamic process models using detailed physical
knowledge are not used at that level. Scheduling and planning are based on coarser
models that only represent nonlinearity and dynamics in a very approximate

aspects of batch process modeling with a focus on model application in dynamic
optimization. Section 9.3 gives an overview of various mathematical techniques
for design optimization for processes with a fixed structure and those for which
the structure itself is subject to optimization. Section 9.4 discusses concepts and
algorithms for dynamic real-time optimization and control. Examples are used
throughout to illustrate the theoretical considerations. We conclude with a sum-
mary and briefly discuss open research issues.

 

9.2 MODELING FOR OPTIMIZATION

 

In contrast to continuous processes, the discrete–continuous nature of batch
processes has to be accounted for in the process model. Even in the case of a
continuous representation of those physical phenomena that give rise to sharp
transitions of the process variables (for example, in the case of a phase change
or rupture of a safety disc), the recipes will unavoidably introduce discontinuities
into the model. Furthermore, optimal control profiles are typically discontinuous
by nature. The discrete–continuous behavior of batch processes can be divided
into phases with continuous quantities. If all the sharp transitions of states caused
by fast physicochemical phenomena are modeled in a continuous way, the dis-
continuities are only due to the discrete events imposed by the discrete stages of
the recipe implemented in the supervisory control system.

Appropriate consideration of the various types of discontinuities, the transi-
tion conditions from one phase to the next, and the possible arrangement of the
phases over time leads to a number of hybrid model structures. These different
structures are discussed in detail in Section 9.2.3. As we will see, all these models
consist of the dynamics necessary to describe the behavior in a certain phase,
switching conditions that trigger a switch from one phase to the following, and
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mapping conditions that transfer the states at the end of one phase into the states
at the beginning of the following phase.

 

17

 

 These models form the core of the
optimization models that are presented in Section 9.2.4.

Within each of these phases, the models governing the process behavior have
to be derived from the process knowledge available. The systematic development
of a mathematical model for a single phase of a batch process is not any different
from the development of a continuous process model; hence, all the experience
built up in recent years can also be employed here.

The next two sections cover the issue of how to deal with the unavoidable
uncertainty and the lack of mechanistic understanding in batch process modeling.
This is an important aspect due to the complex and poorly understood physico-
chemical phenomena of the special unit operations and complex multiphase and
multicomponent mixtures that often occur in batch processes.

 

9.2.1 F

 

UNDAMENTAL

 

–E

 

MPIRICAL

 

 M

 

ODELING

 

Let us consider a batch process in a particular phase between two discontinuities
such as the semibatch reactive distillation column for methyl acetate production

the procedure suggested by Marquardt

 

39

 

 and Foss et al.

 

59

 

 We start with an abstrac-
tion of the process plant leading to a set of balance envelopes and their connec-
tions. In case of the reactive distillation column, the major balance envelopes are
the trays, the still, and the reflux drum, or, more precisely, the liquid and vapor
phases therein. In the next step, the balance equations are formulated as a sum
of fluxes for the extensive quantities of interest. The balance equations can be

The fluxes are modeled by constitutive equations to specify, for example, the
relation of a reaction rate with other process quantities. Recursively, these con-
stitutive equations contain process quantities (e.g., the rate constant of a chemical
reaction) that may result from other constitutive equations such as an Arrhenius
law or a physical property correlation. We continue until we have a fully deter-
mined set of equations, which allows computation of the state variables from
specified parameters and inputs, which can be of a constant or time-varying nature
depending on the type of input.

The formulation of all the model equations is largely dependent on the level
of process knowledge available. For every process quantity occurring in an equa-
tion on a certain level of the recursion, we can decide whether it is treated as a
constant or a time-varying quantity to be specified as a degree of freedom in the
simulation model or will be refined by another equation. In the latter case, these
constitutive equations may have a mechanistic basis or, alternatively, may be of
a physically motivated semiempirical or even completely empirical nature. In
most cases, we are not able to incorporate or (for complexity reasons) are not
interested in incorporating truly mechanistic knowledge (on the molecular level)
to determine the constitutive equations. Instead, we correlate unknown process
quantities by means of a (semi-)empirical equation.
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interpreted to have the inherent hierarchy shown in Figure 9.3.
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Hence, all process models are by definition 

 

mixed fundamental–empirical
models

 

, as they are comprised of fundamental as well as empirical model con-
stituents. The fundamental model constituents typically represent the balances of
mass, energy, and momentum and at least part of the constitutive equations that
are required to fix the fluxes and thermodynamic state functions in terms of state
variables. Empirical model constituents, on the other hand, have to be incorpo-
rated in the overall process model if no physically grounded constitutive equation
is available to model some physical property or kinetic phenomenon. The two
different types of parameterizations to implement these relations are 

 

empirical
regression models

 

 and 

 

empirical trend models

 

.

 

9.2.1.1 Empirical Regression Models

 

If we limit ourselves to lumped parameter systems, a set of differential–algebraic
equations (DAE): 

(9.1)

will show up at some level of refinement. Here, the variables 

 

x

 

 

 

∈

 

 

 

�

 

nx

 

 denote the
dynamic state variables, whereas 

 

z

 

 

 

∈

 

 

 

�

 

nz

 

 are the algebraic state variables;

 

FIGURE 9.3

 

Model hierarchy of balance equations and constitutive equations.

balance equation

−Vi (yi,j − xi,j) + ∑nj,nri,n

Mixi, j = Vi+1 (yi+1,j − xi,j) + Li−1 (xi−1, j − xi, j)

constitutive equation

reaction rate

constant ki,n

constitutive equation

reaction rate

·

nr

n =1

ri,n

ri,n = ki,nxi,n

−En
RTi





ki,n = an exp

0 1= f x t x t z t u t p( ( ), ( ), ( ), (·), , ( ), )� ξ ϑ
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ϑ

 

1

 

 

 

∈

 

 

 

�

 

n

 

ϑ

 

1

 

 and 

 

u

 

 

 

∈

 

 

 

�

 

nu

 

 denote model parameters and time-dependent inputs,
respectively; and 

 

p

 

 

 

∈

 

 

 

�

 

np

 

 are time-invariant design parameters. In the case of the
reactive distillation column, the states 

 

x

 

 could be concentrations, temperatures,
and holdups on the trays, in the still, and in the reflux drum. Molar fractions and
reaction rates are typical examples for the algebraic states 

 

y

 

. The time-dependent
decision variables are the feed, reflux, and boil-up rates. The time-invariant
degrees of freedom comprise the initial charge of materials in the still which is
part of the initial conditions of the DAE (Equation 9.1).

The functions 

 

f 

 

are assumed to be known. They typically include the balances
of mass and energy, which can always be formulated on the basis of the available
process understanding. The 

 

n

 

ξ

 

 unknown functions 

 

ξ

 

(·) represent physical quan-
tities that are difficult to model mechanistically. Examples are a flux, kinetic
constant, or physical property. In the methyl acetate example, a rate constant 

 

k

 

i,n

 

Obviously, instead of postulating some model structure:

(9.2)

based on physical hypotheses, as in fundamental modeling, any other purely
mathematically motivated (empirical) model structure can be chosen to imple-
ment the constitutive equation for the computation of the unknown 

 

ξ

 

. The prob-
ably unknown parameters in 

 

ϑ

 

1

 

 of the fundamental model and the structure of
the function 

 

ξ

 

(·) and its parameters 

 

ϑ

 

2

 

 

 

∈

 

 

 

�

 

n

 

ϑ

 

2

 

 have to be estimated from plant
data. Neural networks, linear multivariate regression models, and fuzzy and
neuro-fuzzy models have been employed in the past. Mixed fundamental–empir-

 

98

 

and have found numerous applications in batch process applications. Satisfactory
prediction quality can be obtained if sufficient data are available for training.

 

123

 

9.2.1.2 Empirical Trend Models

 

The algebraic model (Equation 9.2) suggested in the last section as part of a serial
hybrid model structure is most appropriate to represent the static relation between
fluxes or physical properties and state variables. However, in some situations, the
dynamic model:

(9.3)

(9.4)

may be more suitable to complement a fundamental model. Here, the quantities

 

ξ

 

 

 

∈

 

 

 

�

 

n

 

ξ

 

 and 

 

π

 

 

 

∈

 

 

 

�

 

n

 

π

 

 are interpreted as part of the (extended) state vector rather
than as a nonlinear state function. Often, due to a lack of better knowledge, the

ξ ξ ϑ= , ,( ( ) ( ) )x t u t 2

ξ ω ξ π ϑ= , , , ,1 3( )x u

π ω ξ π ϑ= , , , ,2 4( )x u

 

DK3017_C009.fm  Page 314  Monday, August 15, 2005  11:44 AM

© 2006 by Taylor & Francis Group, LLC

(see Figure 9.3) in the expression for the reaction kinetics could be unknown.

ical models with serial structure (see Figure 9.4b) are getting a lot of attention
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dynamic models for 

 

ξ

 

 and 

 

π

 

 are chosen simply as constant or linear trends.

 

108

 

Because the predictive quality of the model is very limited, its use is confined to
real-time applications where predictions are only required on a short time inter-
val.

 

67

 

 An example is given later in Section 9.4.4.

 

9.2.2 M

 

ODEL

 

 

 

AND

 

 P

 

ROCESS UNCERTAINTY

A structured combination of mechanistic and empirical model constituents as
suggested in the previous section can be interpreted as an attempt to deal with
model uncertainty; however, sufficient model structure information is often not
available. For example, the choice of the balance envelopes, the spatial and
chemical resolution of the physicochemical phenomena chosen, and the
definition of the system boundary unavoidably introduce uncertainty, which is
often unstructured.

In those ill-defined situations, the fundamental model is pragmatically
upgraded by a corrective quantity. For example, Kramer and Thompson80 suggest
a parallel structure of a fundamental and an empirical model (Figure 9.4a), where
the outputs of both constituents are summed up to form the output of the mixed
model. Usually, both of these models are dynamic. The empirical model is often
implemented as some type of neural network that correlates known process inputs.

FIGURE 9.4 Mixed models: (a) parallel structure, and (b) serial structure; u and η denote
the inputs (manipulated and measured variables), and x represents the states of the process
to be modeled.
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It acts as an error model and compensates for any unstructured model uncertainty
in the fundamental model.

In addition to the model uncertainty discussed so far, we often have to deal
with process uncertainty or disturbances. Typical examples are the fouling of
heat transfer areas, the clogging of distillation tower trays, fluctuating feed
streams from an upstream process, or even the complete failure of some piece of
equipment, such as a cooling water pump.

Often, process uncertainty and disturbances can be modeled the same way
as the uncertainties stemming from inadequate understanding of the physico-
chemical phenomena in nominal operation. For example, the parallel structure in
the last subsection may also be used if the correction can be adequately correlated
with measurable process quantities.

This assumption is not valid in those cases where the uncertainty is due to
the dynamics of the environment or where internal process uncertainty cannot be
directly correlated to the system state. While the model structure (Equation 9.1)
is still valid in principle, the uncertain quantities are often assumed to enter the
model in an additive manner. If we replace ξ(·) by the variables d(t), which only
depend on time, we obtain the model structure:*

(9.5)

The unknown quantities d(t) ∈ �nd are interpreted as disturbances. These
unknown inputs can be represented by a trend model (Equations 9.3 and 9.4),
where the right-hand sides ω1 and ω2 do not depend on x and u. Often, simple
integrating models are used. Alternatively, the components of d(t) are parameter-
ized by some expansion:

(9.6)

the parameters of which have to be determined either by parameter estimation
or by approximate model inversion (see, for example, Binder et al.26).

After parameterization of model or process uncertainty by means of an
empirical regression, a trend model, or a time-varying function, as presented
above, most of the model parameters in the vectors ϑi,i = 1,…,4, concatenated
in ϑ ∈ �nϑ, are themselves uncertain. This remaining parametric uncertainty can
be modeled in two different ways.

In a deterministic setting, the parameters are assumed to vary in a bounded
set T. In particular, every single parameter ϑ may be bounded from above and
from below. Hence, there is an infinite number of models for every realization
ϑ ∈ T. In order to approximately solve these infinite dimensional problems, a

* Obviously, the functions f in this expression are not the same as in (Equation 9.1). For the sake of
simple notation, we do not distinguish different functions f here and subsequently..

0 1= , , , , , +f x t x t z t u t p d t( ( ) ( ) ( ) ( ) ) ( )� ϑ

d t ti

j J

i j j( ) ( )=
∈

, ,∑ ϑ ϕ5
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representative sampling of ϑ has to be applied. For a particular realization of ϑ,
this constitutes a single model.

Alternatively, the process parameters ϑ and time-varying disturbances d(t)
can be considered as random variables with an associated probability density
function. Consequently, all the process states x(t) and z(t) become random vari-
ables also resulting in considerable model complexity.

For convenience, we assume an explicit parameterization of all unknown
quantities by a finite number of uncertain parameters ζ ∈ �nζ, which are of a
deterministic or stochastic nature. In the deterministic case, the parameters are
assumed to lie in a compact set (e.g., ζ ∈ C), whereas a joint probability density
function, F(ζ), has to be defined in the stochastic case.

We want to briefly mention here a completely different approach to represent
uncertainty in dynamic systems.31,124 Rather than representing the time-varying
uncertain quantities d(t) by a series expansion with random variables weights
(see Equation 9.6), the disturbance inputs are discretized in time. At any time
instant, the discrete disturbance can assume a random value according to its
probability density. Discrete control variables are introduced accordingly to coun-
teract the influence of the disturbance in discrete time. This formulation leads to
a scenario tree where the complexity of the tree is determined by the number of
discretization intervals and the number of decisions possible in each control
period. This modeling approach will not be considered in the sequel.

9.2.3 DISCRETE–CONTINUOUS MODEL STRUCTURES

Regardless of the modeling approach taken and the uncertainties present in the
model, different types of discrete–continuous model structures arise due to the
large variety of problems to be addressed in conjunction with batch process design
and operation. Though it would be possible to generalize and come up with a
model framework that covers all the various special cases, such a model would
be difficult to comprehend. Further, due to the inherent complexity of all of these
models, the model framework that best matches the requirements of an application
is always chosen in order to limit complexity to the extent possible.

We will now introduce three different problem classes with increasing orders
of complexity. In all cases, we assume that the structural (discrete) degrees of
freedom have been fixed previously. This assumption will be relaxed later. The
classification relies on the type of discontinuities present in the model of a batch
process. Implicit discontinuities arise when a discrete change in the process is
triggered by its physical behavior. Such a discontinuity occurs in general when
a certain relation between process parameters and states is met. This is, for
example, the case when the feed valve of the semibatch reactive distillation
column is opened or closed depending on the amount of material or concentrations
of reactants in the still, or if a thermodynamic phase change takes place in some
piece of equipment. On the other hand, the opening of the feed valve at a time
set in advance is considered an explicit discontinuity. This type of discontinuity
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depends only on the process time and has no relation to the process states and
parameters.

The three model classes we want to distinguish are as follows: (1) they do
not show any discontinuity, (2) they show discrete switching at given times, or
(3) they may switch if some state- (and time-) dependent logical condition is true.
These classes are denoted as single-stage, multistage, and general discrete–con-
tinuous hybrid models, respectively. In this section, we are not explicitly dealing
with uncertainty. Obviously, most of the considerations in Section 2.1 are valid
and can be taken into account in setting up the following models.

9.2.3.1 Single-Stage Models

Let us look again at the methyl acetate example and consider only the semibatch
reactive distillation with fixed equipment structure. We have one unit and only
one manufacturing task. The DAE model:

(9.7)

(9.8)

is, for convenience, written here in implicit form. We assume that the equation
system can be transformed into semi-explicit form by simple algebraic manipu-
lations. Further, the differential index is restricted to one. The final time tf may
also be considered as a design degree of freedom. The initial conditions l are
assumed to be consistent with the model equations at time t0. The model f is
continuous and is comprised of a single set of dynamic and algebraic states x
and z, controls u, design parameters p, and model parameters ζ; therefore, the
model describes a process in a single mode or single discrete state and is referred
to as a single-stage model.

9.2.3.2 Multistage Models

In contrast to the models introduced in the previous section, multistage models
are used to describe situations where the process is subject to a sequence of modes
or discrete states and where switching from one mode to the next occurs at some
time tk. The terms stages and phases are often used instead of mode or discrete
state to reflect this strict sequence.

We define a set K = {1,…, ns}, comprised of the indices of all model stages.
In every stage, the process dynamics can be modeled by a set of DAEs, as above.
Then, the multistage model reads as:

(9.9)

f x t x t z t u t p t t t t f( ( ) ( ) ( ) ( ) ) [ ]� , , , , , , = , ∈ ,ζ 0 0

l x t x t z t p( ( ) ( ) ( ) )� 0 0 0 0, , , , =ζ

k k k k k kf x t x t z t u t p t t t( ( ) ( ) ( ) ( ) ) [� , , , , , , = , ∈ −ζ 0 11, , ∀ ∈t k Kk ]
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(9.10)

(9.11)

Index k denotes quantities belonging to stage k. Multistage models contain addi-
tional stage transition conditions (Equation 9.11), which map the differential state
variable values across the stage boundaries. The mapping condition
(Equation 9.11) occurs quite frequently but is a simple form of a more general
formulation that is required for problems where the stage transition conditions
depend on process parameters and algebraic states, in addition to the differential
states. According to Leineweber et al.,84 a generalized mapping condition can be
formulated as:

(9.12)

The indices of the mapping conditions are collected in the set Km = {1,…, ns –
1}. With a fixed index k = ns = 1, we obtain a single-stage model as introduced
previously. Note that the final time tf of the batch process corresponds to in
the multistage formalism. The mapping condition (Equation 9.12) might also be
defined in a more general form where mk is also a function of the control variables
uk(t) and the parameters ζ. Moreover, Equation 9.12 might only be available in
implicit form.17

In the example of methyl acetate production, a batch reactor and a nonreactive
batch distillation column operated in sequence could be employed as an alterna-

case, the final product of the reactor is fed to the still of the batch column; hence,
we have ns = 2 stages, where the reaction is stage 1 and the separation is stage

Note that this process and therefore the corresponding process model are
discontinuous. For the modeling and illustration of discrete event systems, Petri
nets are used quite frequently.102 Such a representation is also shown in Figure
9.5. A Petri net consists of so-called places (circles) representing the discrete
system states, and transitions (rectangles), which describe the switching from one
discrete state to the next. The currently active state is marked by a token. In our
example, the first discrete state corresponds to the operation of the reactor. When
the reaction is finished, the transition to the second state (separation in the
distillation column) is carried out.

9.2.3.3 General Discrete–Continuous Hybrid Models

In fact, the multistage process model discussed in the previous section could also
be referred to as discrete–continuous, but it is a special model of this type due
to the explicit nature of the switching condition and the fixed number and

l x t x t z t p( ( ) ( ) ( ) )1 0 1 0 1 0 0� , , , , =ζ

x t x t k Kk k k k m+ − = , ∀ ∈1 0( ) ( )

k
n

x R xk∈

x t m x t z t p t k Kk k k k k k k k m+ − , , , = , ∀ ∈1 0( ) ( ( ) ( ) )

tns
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tive to the semibatch reactive distillation column shown in Figure 9.1. In this

2, as depicted in Figure 9.5.
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sequence of modes. To understand this, we introduce the notion of a switching
or triggering function that is used to locate the point in time where a new process
stage is activated; that is, the model index k is increased by one. Following a
definition given by Carver,37 we can state the switching function:

(9.13)

on each model stage k ∈ K except for the first (k = 1), for which initial conditions
are specified in Equation 9.10. For simplicity, we assume that the switching
function is independent of the control variables uk(t) and the uncertain parameters
ζ. A transition takes place at time tk when the sign of the switching function
changes; that is, ϕk(tk) = 0. For multistage models, ϕk takes a very simple form
( ), which is independent of the state and parameter values:

(9.14)

If the final time tk of a batch process stage itself is a degree of freedom, the
reformulation t = tk + τk(tk – tk–1) is introduced where τk ∈ [0,1] is a nondimensional
time coordinate and the final time tk is a free parameter in stage k. In this case,
the switching function results in . Note that this function is again
independent of the states and parameters of the process.

The discrete–continuous models from the last subsection can be generalized
if the switching conditions are not restricted to depend on explicitly known points

FIGURE 9.5 Two-stage batch process with reactor and distillation column: equipment
(top) and event-oriented (Petri net) (bottom) representations.
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in time. Instead of switching at a given point in time tk from one discrete mode
to the next, the switching may be triggered implicitly by some states or parameters
in the process at some unknown time instant .* In this case, the switching
condition that applies for arbitrary model stages reads as:

(9.15)

The presence of implicit discontinuities increases the problem complexity tre-
mendously because the number of discrete modes is not known a priori as is the
case for a multistage model with a given number of stages ns. Moreover, the
numerical solution of these models is in general more difficult, as the location
of the switching point has to be determined in parallel to the solution of the model
equations (see, for example, Park and Barton95). An appropriate transition con-
dition  for example, continuity of the differential state variables (Equation 9.11)
similar to the one introduced in the previous section for multistage models  is
required for each discrete phase change. For discrete–continuous hybrid models
this leads to:

(9.16)

where the t* is again employed instead of tk. For more general mapping conditions,
which also include algebraic state variables and parameters, refer to, for example,
Barton and Pantelides.17 In fact, an interesting link between multistage and general
discrete–continuous models can be seen when comparing Equation 9.16 with the
mapping condition shown in Equation 9.11.

In many cases, a discrete–continuous hybrid model can be easily represented
by a so-called state graph.17 If, for example, weir hydraulics are considered for
the stages of a reactive batch distillation column,51 we have a discrete–continuous
hybrid model. The state graph representation of a single tray is depicted in Figure
9.6 (left).

* The notation t_* indicates that the triggering of the switching takes place immediately before the
actual switching time t*. 

FIGURE 9.6 State graph (left) and Petri net (right) representation of tray hydraulics.
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Here, the switching is triggered by a function that changes its sign when the
actual level h on a tray reaches the height of the weir hweir; that is, ϕweir = h – hweir.
For ϕweir < 0, we have no liquid flow leaving the tray (i.e., Lout = 0); otherwise, if
ϕweir > 0, Lout is related to tray holdup M by a Francis weir equation. Note that for
a batch distillation column, this formalism leads to a rather complex model because
the discrete–continuous hybrid elements have to be employed for every tray.

This type of discontinuity is termed reversible because switching in both direc-
tions, back and forth, is possible. This is not the case for irreversible discontinuities,
such as switching due to a bursting rupture disc or simply the multistage process

discrete phases including concurrent or alternative discrete modes exist), an event-

Most discrete–continuous hybrid models can be represented by a direct
sequence (such as the weir hydraulics mentioned above), a sequence containing
concurrent events, or a sequence of alternative events.93 If two heated tanks with
reactant are used to feed the reactive column with methanol at a predefined
temperature, we would have two concurrent discrete phases with two switching
functions that trigger the filling phase of the column as soon as the desired
temperature is reached. Alternative sequences are treated in the next section,
where structural design decisions are considered.

9.2.3.4 Accommodating Structural Design Decisions

In all previous cases we have neglected parameterization of the models with
respect to structural degrees of freedom. For example, we have fixed the number
of trays and the location of the feed tray in the reactive distillation column.
Structural degrees of freedom can show up in a variety of different ways in all
the three model classes. Raman and Grossmann99 proposed employing logic-
based superstructure models involving disjunctions expressed by Boolean vari-
ables: Y ∈ {True, False}ny . In the methyl acetate example, the Boolean variables
could be used to model the decision whether to connect a side feed stream to the
column instead of employing a classical batch operation or whether a middle-
vessel column should be used (Ymiddle–vessel = True) or not (Ymiddle–vessel = False).
These structural design options would be modeled by different sets of differential
equations, of which only one is used depending on the Boolean variable value.
In mathematical terms, this leads to a set of disjunctive equations, each of which
is related to a Boolean variable. Such a problem formulation is a rather natural
choice due to the relation between process synthesis problems and their disjunc-
tive representation.

If the location of the side feed stream of the batch reactive distillation column
and the number of reactive and nonreactive stages are additional degrees of freedom,
this leads to a problem of combinatorial complexity. In order to avoid undesired
design configurations and to reduce the complexity, we usually relate possible
combinations to each other by propositional logic expressions. For example, we

DK3017_C009.fm  Page 322  Monday, August 15, 2005  11:44 AM

© 2006 by Taylor & Francis Group, LLC

shown in Figure 9.5. In more complex cases (i.e., when a large number of potential

oriented representation such as a Petri net has advantages over state graphs. Figure
9.6 (right) shows the Petri net for the weir hydraulics example.
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may want to state that only nonreactive stages are implemented above the side feed
stream if a semibatch mode of operation is chosen. Such logical relationships
between parts of the superstructure model, termed implications, are frequently
employed in design problems. Another typical implication would be:

(9.17)

which expresses that no reactor will be chosen when a reactive semibatch distil-
lation column is selected. In this case, we would combine the structural design

Logic expressions, such as the implication in Equation 9.17, are usually trans-
formed into the representation Ω(Y), which involves logical operations only. Such
a representation of Equation 9.17 could be stated as:

(9.18)

We generally aim at propositional logic expressions due to the fact that they can
be easily transformed into an algebraic representation comprised of linear equality
and inequality constraints, as we will see later.

Summarizing, the following problem formulation is obtained by incorporating
Boolean variables and disjunctive sets of equations into the multistage model
stated in Equations 9.9 to 9.11:

(9.19)

(9.20)

(9.21)

(9.22)

Y Yreactive column reactor− ⇒ ¬
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alternatives depicted in Figure 9.1 and Figure 9.5 into one disjunctive model.
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(9.23)

Because fk(·) = 0, l(·) = 0 and the stage transition conditions (Equation 9.21) hold
globally, further equations qk,i(·) = 0, initial conditions si(·) = 0, and stage transition
conditions are included in Equation 9.22 that are only enforced if a corresponding
Boolean variable (Yi) is true. Otherwise, if Yi is false, a subset of the state and
control variables, time-invariant parameters, initial values of differential states
for nonexisting units are set to zero. Thus, Bk,i is a square diagonal matrix with
constant 1- or 0-valued matrix elements.

Note that, with a fixed choice of the Boolean variables Y and given control
variables uk, design parameters p, initial values xk(tk–1), and known uncertain
parameters ζ, then the combined set of DAEs fk(·) = 0 and qk,i(·) = 0, the corre-
sponding initial conditions l(·) = 0 and si(·) = 0, and the stage transition conditions
(Equations 9.19 to 9.22) are assumed to uniquely determine the state variable
vector, xk(t), zk(t).

The multistage model with structural design decisions can be regarded as a
generalization of the multistage model presented in Section 9.2.3.2. Here, the
switching conditions are also known explicitly and are, thus, independent of the
process state and of the model parameters; however, multiple alternatives exist
as to which model will be active during model stage k ∈ K, a fact that underlines
the combinatorial character of the formulations shown in Equations 9.19 to 9.23.

Differences between the two models show up when we look at the different
Petri net representations corresponding to the two model classes. In multistage
models, as discussed in Section 9.2, the Petri net takes the form of a direct

contains alternative sequences that are determined by the Boolean variables Y.
For example, two alternatives to separate the intermediate product of the batch
reactor for the multistage process shown in Figure 9.5 could be formulated as a
disjunctive multistage model containing two alternative options (distillation col-
umn and membrane unit) to perform the separation. The corresponding Petri net
presentation with two switching functions of the type shown in Equation 9.13 is
shown in Figure 9.7.

FIGURE 9.7 Alternative sequence in a Petri net.
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sequence (see Figure 9.5), whereas the model defined by Equations 9.19 to 9.23
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9.2.3.5 The Treatment of Implicit Discontinuities

So far, structural design decisions have been considered only in conjunction with
explicit discontinuities where the switching times tk are set explicitly (see Equa-
tion 9.14); however, it is possible to generalize the disjunctive multistage model
(Equations 9.19 to 9.23) to allow for implicit discontinuities in each of the stages
where the switching time is determined by solving the nonlinear switching con-
dition (Equation 9.15). Then, discrete–continuous hybrid models comprising
implicit discontinuities, discussed in Section 9.3, would enter Equations 9.19 and
9.22). Such a generalization would increase the complexity of the model tremen-
dously because a large number of explicit transitions between model stages as
well as between discrete modes triggered by implicit discontinuities (at a priori
unknown points in time t*) might occur. For example, Avraam et al.9 show how
disjunctions can be used to model implicit discontinuities in discrete–continuous
models. Using their formalism, the discrete–continuous multistage model (Equa-
tions 9.19 to 9.23) can be generalized to two layers of disjunctions. The first layer
is comprised of all design decisions, including all the explicit discontinuities
modeled by a switching function of the type shown in Equation 9.14. Implicit
discontinuities stemming, for example, from physical discrete transitions (such
as phase changes) lead to a disjunctive form of the DAE systems fk(·) = 0 and
qk,i(·) = 0 themselves, as different sets of model equations apply for different
discrete modes of the process within a stage k. Thus, for a fixed stage index k
the global DAE system fk(·) = 0 is represented by different sets of differential
equations. Each set is used to determine the state variable vector in the corre-
sponding discrete mode of the process (see Avraam et al.9 for more information).
Because the equations qk,i(·) = 0 are dependent on external design decisions, they
are already expressed in a disjunctive form (see Equation 9.22). Thus, a second
layer of disjunctions is required to model implicit discontinuities that can poten-
tially occur in the equations qk,i(·) = 0 in stage k if the corresponding Boolean
variable Yi is true.

9.2.4 OPTIMIZATION MODELS

All models described in the previous section define simulation problems on a
finite time interval when Y (the process structure and sequence of the stages) and
the duration (tk) of the stages are fixed, when the continuous degrees of freedom
uk and p have been specified, and when the nominal values of the uncertain
parameters ζ (representing model parameters ϑ and discretized disturbances d(t))
are available in all the stages. Such specifications would be largely arbitrary and
would typically not account for production constraints and process economics.
Hence, in order to specify requirements on the design, control, and operation of
a batch process, an objective function and various constraints have to be formu-
lated in addition to the model equations to finally result in a dynamic optimization
instead of a simulation problem. These model extensions are formulated in this
section.
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9.2.4.1 Constraints

Constraints are formulated to enforce design and operational specifications, as
well as to guarantee safety. A process operation is safe if all process variables
considered to be safety relevant stay within certain predefined bounds during the
entire operation cycle. Typical safety constraints are limits on the temperature or
pressure in a reactor. An example of an operational constraint is a prespecified
product concentration that is to be met during or at the end of the batch operation.
An optimization problem (and the process described thereby) is feasible if all
design, operational, and safety constraints are enforced during the entire opera-
tion.

The constraints can be cast into relations between the variables in a discrete
mode of the discrete–continuous models. These are typically formulated as addi-
tional inequality (or equality) constraints that are valid at a particular time instant,
such as a switching point in the multistage problem, or at the endpoint in any of
the problems above or during the entire horizon of operation. These path and
point constraints:

(9.24)

(9.25)

are hence added to the model equations in every discrete mode or model stage
k. The constraints are usually simple algebraic expressions that can be easily
evaluated; however, in some design problem formulations, these constraints are
complex and may even comprise a full simulation or optimization problem them-
selves, such as in scenario-integrated modeling and optimization.2

9.2.4.2 Objectives

In addition to constraints, for the representation of design or control specifications
one or more objectives are usually formulated, which are supposed to be mini-
mized as part of the design activity. For one objective, usually a suitable criterion
to measure economical success is chosen. Examples include such simple criteria
as batch time or more complicated ones such as total production cost per unit
product including annualized investment and operating costs.

Mathematically, the optimization objectives are formulated in terms of an
objective functional Φ. Commonly, two different types of objective functionals
are distinguished. The first one, the Mayer type, is employed, if the goal is to
minimize a functional at final time:

(9.26)
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An example would be to maximize the amount of product D in the methyl acetate

The second type, the so-called Lagrange type, is formulated as an integral
term of a functional L over the operation horizon:

(9.27)

This type of objective functional describes, for example, the minimization of
energy consumption, or a measure for the deviation of some process quantity
from a certain set point. Note that an objective functional of the Lagrange type
always can be converted into a Mayer-type formulation by introducing an addi-
tional state variable (see, for example, Betts19).

Often, profitability is not the only objective a designer has in mind, as not
all of the design decisions impact the profit of the production. For example, not
all of the environmental issues influence profit directly. In such cases, one has to
deal with a multiobjective problem that reflects the need to trade-off conflicting
goals.43 The objectives can then be stated as a vector of functionals:

(9.28)

The modeling of the objectives is as important as modeling the process dynamics.

9.2.4.3 Optimality

When all the constraints and suitable objective functionals have been formulated,
the optimization problem is set up and can be solved to optimality using an
appropriate constrained optimization algorithm. The solution of the optimization
problem is optimal if all constraints are met and if the objective functional is
minimal. In the case of multiple objectives, we can construct a single objective
by a suitably weighted sum of the individual objectives:

(9.29)

or we  can determine the Pareto optimal set (e.g., by variation of the weighting
factors) and defer the decision on the best compromise to a later point when the
Pareto optimal set is known. In fact, the commonly employed economical objec-
tive functionals stem from a multicriteria problem as we would like to minimize
at the same time production and investment cost. Often, these criteria are
conflicting. The cost functionals combining annualized investment and operating
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example (Figure 9.1), also discussed in the example in Section 9.3.1.5.
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costs are exactly a suitably weighted sum of both — very different — cost
functionals.

9.2.4.4 Flexibility and Robustness

The previous discussion does not account for uncertainty in the optimization
problem. The presence of uncertainties can have an influence on the solution of
an optimization problem, because model and process uncertainties can, for exam-
ple, cause a process to violate the constraints and hence become infeasible, even
if the nominal process is feasible. This leads to the definition of flexibility.

We now introduce the notion of the nominal batch process, which is charac-
terized by the nominal model with the uncertain parameters ζ (representing
uncertain model parameters ϑ and parameterized disturbances d(t)) fixed at some
nominal value ζnom. A batch process is flexible if the nominal batch process is
feasible and if there exist operational degrees of freedom (in particular, controls
uk(t)) such that the corresponding operational regimes are feasible for all possible
realizations of ζ ∈ C. In this context, flexibility is a qualitative measure that
defines whether model or process uncertainties might cause the violation of
constraints.

9.3 OPTIMAL DESIGN

After having established the modeling foundations, we now look at the optimal
design problem, where we assume a given production demand and a given model.
We distinguish two different cases: (1) design problems with fixed structural
decision variables and (2) design problems for which the structural variables are
also subject to optimization. The first case is discussed in Section 9.3.1 on the
basis of the model and constraint formulations introduced in Sections 9.2.3.1 to
9.2.3.3 and 9.2.4. Design problems with structural degrees of freedom are treated
in Section 9.3.2, where we make use of the model types that have been discussed
in Sections 9.2.3.4 and 9.2.4.

9.3.1 DESIGN OF BATCH PROCESSES WITH FIXED STRUCTURE

We now consider the optimal design of batch processes with a fixed structure
using single- or multistage models, as presented in Sections 9.2.3.1 and 9.2.3.2.
The choice of which process variables are considered to be the degrees of freedom
of the optimization and which type of objective functional Φ is employed depends
on the goals of the design task. In equipment design problems, we are interested
in optimal time-invariant parameters p, such as an optimal column diameter or a
still pot size. These design parameters are regarded here as continuous rather than
as discrete quantities. The determination of optimal control profiles, uk(t), k ∈ K,
is frequently performed using an open-loop trajectory design. If, in addition,
controllers of the process are integrated into the model, optimal closed-loop
trajectories are obtained in a so-called control-integrated design problem. In the
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following text, we present how an optimization problem can be formulated and
solved for these three different design tasks. We assume that neither uncertain
parameters nor disturbances are present within the dynamic models or that nom-
inal values are known; hence, the quantities ζ are suppressed in the following
formulations.

9.3.1.1 Mathematical Problem Formulation

The optimization problem formulation employed here is formally based on mul-

models are also covered by simply fixing the number of stages to ns = 1. The
objective functional Φ is obtained by summing up individual costs Φk formulated
for each model stage k ∈ K. Then, we obtain the following optimization problem:

(P1)

s.t. Equations 9.9 to 9.11, 9.24, 9.25 (9.30)

Note the analogy to a multiobjective problem, in that the objective functional in
Problem (P1) is also a summation of individual objectives, as in Equation 9.29;
however, here each individual Φk objective is associated with a specific stage. In
principle, a weighting of these stage objectives different from one is also con-
ceivable. The dynamic optimization problem (P1) can be solved by a number of
different approaches, which are discussed in the following text.

9.3.1.2 Solution Strategies

Solution strategies for dynamic optimization problems can be classified into
indirect and direct methods. The former class of solution approaches solves the
dynamic optimization problem indirectly. These methods, also known as varia-
tional methods, use the first-order necessary conditions from Pontryagin’s max-
imum principle96 in order to reformulate the problem as a two-point boundary
problem; however, the resulting boundary value problems are usually very diffi-
cult to solve.

In order to illustrate this solution method we restrict the problem class to
single-stage models without disjunctions. We assume a process model given as
a system of ordinary differential equations, x = f(x,u), with initial conditions x(t0)
= x0. We further allow path and endpoint constraints (Equations 9.24 and 9.25) and
assume an objective functional of the Mayer type (Equation 9.26) for simplicity.
Then, the application of Pontryagin’s maximum principle gives the Hamiltonian:35

(9.31)
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and the associated so-called adjoint equations:

(9.32)

Here, λ(t) ≠ 0 represents the vector of adjoint states, µ(t) ≥ 0 the vector of
Lagrange multipliers for the path constraints, and ν ≥ 0 the vector of Lagrange
multipliers for the terminal constraints. The solution of this two-point boundary
value problem requires forward integration of x = f(x,u) with the initial condition
x(t0) = x0 and backward integration of the differential equation system for λ
(Equation 9.32) with the given initial condition at time point tf .

The necessary conditions for optimality (NCO) are defined by:

(9.33)

and by:

µTg = 0, νTge = 0 (9.34)

If a free end time is allowed, the transversality condition:

(9.35)

has to be fulfilled, too. The numerical solution of these problems with state path
constraints is rather difficult;66 however, this solution approach gives deep insight
into the solution structure that can be exploited in online optimization applications
as shown in Section 9.4.2.3.

Alternatively, direct methods can be used. These solution methods solve the
optimization problem directly. The decision (control) variables uk(t) as well as
the state variables xk(t), their derivatives xk(t)

·  with respect to time, and the
algebraic state variables zk(t) appear as infinite dimensional quantities in this
problem. The problem can be converted into a finite dimensional one, usually a
nonlinear programming problem (NLP), which subsequently can be solved by a
suitable numerical optimization algorithm. This can be accomplished by discretiz-
ing the infinite dimensional quantities using a finite number of parameters. In
general, three different direct methods can be distinguished: the control vector
parameterization approach, the multiple-shooting approach, and the full discret-
ization approach. These methods differ in how the infinite dimensional
quantities are discretized and which of them are degrees of freedom in the opti-
mization algorithm. The control vector parameterization approach and the full
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discretization method are described in more detail in the following sections. The
multiple-shooting approach can be seen as an in-between one that combines
features of both of the other approaches. A concise review on multiple shooting
can be found elsewhere.33,85

9.3.1.3 Solution via Control Vector Parameterization

In the control vector parameterization approach (also termed sequential or single
shooting approach), only the discretized control variables, the time-invariant
parameters, and the final time of each stage are degrees of freedom for the
optimization.

Conversion into an NLP Problem
The optimization problem (P1) contains an nuk

-dimensional vector of time-depen-
dent control variables uk on each stage k according to:

(9.36)

Usually, the control profiles  are approximated on each model
stage k = 1, …, ns  by piecewise polynomial expansions of the form:

(9.37)

where denotes the index set of the chosen parameterization functions ,
and the vector contains the corresponding parameters. Each stage time interval
[tk–1, tk] is therefore divided into subintervals defined on each model stage k with
grid points . A typical choice for a parameterization are piecewise
constant functions where , if tk,j ≤ t ≤ tk,j+1, and , otherwise.
However, higher order splines can also be used to parameterize . The grid
points for each are contained in the mesh .

In the sequential approach, discretization of the state variables xk(t) and zk(t)
is done implicitly by means of numerical integration of the initial-value problems
defined on the ns model stages. Hence, the dynamic optimization problem can
be transformed into the following NLP for fixed with the search variable
vector , where xk(tk–1) denotes the vector of the free
initial values of differential state variables in each model stage k:

(P2)

  (9.38)
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(9.39)

(9.40)

Typically, path constraints gk are enforced only point-wise along the time
horizon. For this purpose, we define a unified mesh of all control variables on

each model stage k according to . Path constraints are then

enforced at all time points , as indicated in Equation 9.3.

Solution of the NLP Problem
Problem (P2) describes a finite dimensional nonlinear programming problem
(NLP), where the underlying DAE systems (Equations 9.9 to 9.11) are solved by
numerical integration. Due to this fact, the sequential approach corresponds to a
feasible path strategy, because each iterate of the optimization is feasible with
respect to the DAE system. Nevertheless, problem P1 might be infeasible with
respect to the constraints found in Equations 9.38 to 9.40 during the iterations.
The optimization problem itself can be solved by a suitable NLP solver. Common
choices in practice are sequential quadratic programming (SQP) solvers.63

In the sequential approach, the dimension of the search variable vector θk for
the NLP is typically much smaller than the dimension of the DAE system (Equa-
tion 9.9); therefore, the computational performance of this approach strongly
depends on an efficient evaluation of the objective and constraint function values
and also the gradient information of these functions with respect to θk. For
efficiency, NLP solvers generally require this gradient information, which can be
found in three different ways: (1) by integrating the sensitivity equation systems,
(2) by backward integration of the adjoint system, or (3) by perturbation. Although
advances have been reported,115 perturbation methods are generally considered
to be less accurate and efficient than the other methods. The computational
requirements for the adjoint approach35 are proportional to the number of con-
straints and independent of the number of decision variables. However, in the
presence of path constraints, such as Equation 9.38, this approach becomes almost
intractable because a separate adjoint system must be developed for each con-
straint.32 Solution of the sensitivity equations provides the state variable sensitivity
matrices:

(9.41)

which can be used for calculating the derivatives of the objective functional with
respect to the degrees of freedom θk:
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(9.42)

In a similar way, the derivatives of the constraint functionals with respect to
θk can be computed. The sensitivity integration approach can be applied in a
straightforward way to problems including path constraints. It is the method of
choice in most implementations of sequential approach dynamic optimizers.106,125

The drawback of this approach is that it can become computationally expensive,
because for each degree of freedom an additional sensitivity equation system
must be solved. The sensitivity system can be obtained easily from the DAE
model. It has special properties that allow an efficient integration together with
the DAE system itself.54 Nevertheless, the major part of computation time used
in the sequential approach to dynamic optimization is spent on the sensitivity
computation, because the effort grows superlinearly with the number of decision
variables for the control profiles. Hence, it is clearly desirable to keep the number
of decision variables as small as possible, without losing much accuracy in the
approximation of the control profiles. This can be accomplished by using an
adaptive strategy for the optimal selection of the discretization meshes as
we will see later.

As shown in Section 9.2.3.2, stage transition conditions (see Equations 9.11
and 9.12) are used to connect process state variables across the stage boundaries.
In a similar way, mapping conditions have to be used for the sensitivities of
the differential states:

(9.43)

when we have a continuity condition for the differential states such as the one
given in Equation 9.11. The algebraic sensitivities are calculated by a con-
sistent initialization of the sensitivity DAE system.

Discrete–Continuous Hybrid Models
In order to be able to optimize a discrete–continuous hybrid batch process, it is
not sufficient to only locate the point in time t* where the discontinuity takes
place and map the differential state variables from one discrete mode to the next.
Depending on the switching function ϕk and the mapping condition, sensitivities
of differential state variables may be discontinuous even if we assume continuous-
state variable profiles enforced by the continuity condition shown in Equation
9.16. If a discrete event takes place at time t*, the difference of the sensitivities
at and is calculated by:

(9.44)
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Hence, a jump in the sensitivities occurs if the switching time t* depends on the
decision parameters θk. The partial derivative is obtained through total differ-
entiation of the switching function ϕk with respect to θk as:

(9.45)

For simplicity, Equation 9.45 is derived on the basis of a switching function that
is independent of the algebraic state variables zk(t). This expression reveals an
important difference between implicit and explicit discontinuities. With explicit
discontinuities, we always have and, thus, continuous sensitivities due to
the fact that ϕk is independent of process states and parameters. If, instead, the
switching is triggered by variable state or parameter values, discontinuous sen-
sitivities have to be expected. In this context, it is interesting to note that for
multistage models the sensitivities are continuous across the stage boundaries
(see Equation 9.43) because the corresponding switching function (see Equa-
tion 9.14) is independent of the process states and parameters. Consequently, a
dynamic optimization problem involving a discrete–continuous hybrid model may
become a nonsmooth optimization problem for which smooth NLP methods (such
as SQP) are not appropriate.93 An alternative way to solve these nonsmooth
problems is to reformulate the discrete–continuous model as a disjunctive (see

which special solution techniques are available. An overview of these methods
is given later in conjunction with the structural design of batch processes in
Section 9.3.2.

Adaptation of Control Vector Grids
Due to the inherently transient nature of batch process operation, optimal control
profiles often exhibit large local differences in frequency content over the time
horizon. This, in addition to computational efficiency arguments, calls for adap-
tively chosen, possibly nonequidistant control discretization meshes. In particular,
a parameterization that is too coarse on a uniform grid or which locally resolves
the control profiles at the wrong place on a uniform grid cannot meet the pre-
specified accuracy requirements. On the other hand, a parameterization, that is
too fine not only leads to inappropriately high computational cost, but can also
cause robustness problems, such as oscillatory control profiles; however, it is no
trivial matter to generate a problem-adapted mesh a priori. A few attempts have
been made to incorporate adaptivity into the parameterization scheme with the
objective of automatically determining an appropriate mesh. For example,
Waldraff et al.129 applied a grid generation procedure based on curvature infor-
mation of the optimal solution. Betts and Huffmann20 proposed grid refinement
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Section 9.2.3.4) or mixed-integer model to obtain piecewise smooth models for
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based on local error analysis of the differential equation where the parameteriza-
tion of the control variables is directly linked to the approximation error. Vassil-
iadis et al.125 introduced the lengths of the discretization intervals of the control
variables as additional degrees of freedom into the NLP problem. Binder et al.24

suggested a framework that automatically generates sequences of nonuniform
grids with an increasing degree of resolution. This method is started from a coarse
grid with few decision variables so the problem can be solved efficiently and
robustly. In every following refinement cycle, grid points are either inserted or
deleted based on a multiscale-based refinement criterion. This framework makes
use of the fact that the Equation 9.37 offers the choice of separate, nonuniform
parameterization grids for each control variable. The refinement loop generates
efficient, problem-adapted meshes .

9.3.1.4 Solution via Full Discretization

In contrast to the control vector parameterization and multiple-shooting approaches,
full discretization methods fully discretize both, state and control variables.19,22 These
methods are also referred to as simultaneous methods, because the solutions of the
optimization problem and the DAE system are found simultaneously. In particular,
the DAE system is solved only once at the optimal point and does not have to be
fulfilled on the solution path of the optimizer. Therefore, the full discretization is an
infeasible path strategy in contrast to the control vector parameterization approach,
where the DAE system has to be solved in each optimization iteration.

Conversion into an NLP Problem
For conversion of the dynamic optimization problem into an NLP, the control
variables are approximated in a fashion similar to that for the sequential approach:

(9.46)

Additionally, the derivatives of the differential state variables and the algebraic
state variables are approximated as:

(9.47)

(9.48)
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Typically, collocation on finite elements is applied (see, for example, Biegler
et al.22) by choosing Lagrange polynomials as parameterization functions .
Then, the coefficients and correspond to the values of the profiles of
and at the collocation points. This is advantageous, because for example path
constraints can be easily implemented. Also, scaling of the original DAE model
directly propagates into the NLP problem. The collocation points for all xk, zk,
and uk are contained in the mesh Mk. The parameterization functions for
the differential variables are then chosen as polynomials, such that the coeffi-
cients match the derivative values of the profiles . To ensure continuity of
the differential state variable profiles, continuity equations are enforced at the
element boundaries.

Besides using polynomial expansions for approximation of the continuous
profiles, other discretization schemes have also been suggested. For example, a
multiscale-based discretization approach using wavelets as basis functions has
been employed by Binder et al.27 By substituting Equations 9.46 to 9.48 into
problem (P1), the following NLP problem is obtained:

(P3)

  (9.49)

(9.50)

(9.51)

(9.52)

with the search variable vector , where
xk(tk–1) denotes the vector of free initial values of differential state variables in
each model stage k. Note that by the choice of the collocation polynomials the
differential–algebraic model equations are essentially evaluated point-wise at the
collocation points.

Solution of the NLP problem
The dimension of the search variable vectors θk, k ∈ K is usually much larger
than in the sequential approach, because it depends not only on the dimension
nu of the control vector but also on the size of the DAE model (nx + nz), which
in typical practical applications is much larger than nu. Whereas the NLP problem
(P2) in the control vector parameterization approach is usually of small to mod-
erate size and can be solved with existing general purpose NLP solvers, the NLP
problem (P3) of the full discretization method can be quite large and requires
specifically tailored solution methods. Commonly, reduced space SQP (rSQP)
methods22 are applied using projected Hessian matrices or their quasi-Newton
approximation in order to avoid the need for second-order derivative information.
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The key feature of an rSQP strategy is to partition the optimization variables θk

into dependent variables determined by the constraints, and independent vari-
ables. It is important to note that the independent variables are not always
comprised of the control variables and parameters; rather, control variables and
parameters can be exchanged with algebraic state variables, if unstable modes in
the states are detected (see, for example, Biegler et al.22 for details). Although
this decomposition strategy is generally efficient, solution of the reduced qua-
dratic subproblems (QPs) can become a bottleneck if active set methods are used
for this purpose. The reason for this is the combinatorial problem of selecting
the active set, because bounds on all variables are present. As an alternative to
active set strategies, interior point (IP) methods have been developed for the
solution of large-scale NLP problems.58 These methods have been successfully
applied in a dynamic optimization context.38

Discretization Grid Adaptation
Analogous to the sequential approach, the accuracy, efficiency, and robustness of
the solution of a discretized dynamic optimization problem strongly depend on
the chosen discretization grids. In the simultaneous approach, this holds for the
grids for the control and state variables. In particular, the accuracy of the state
profiles depends on these grids, whereas in the sequential approach the accuracy
of the state profiles is directly controlled by the numerical integration algorithm.
Tanartkit and Biegler116 and von Stryk128 suggested a full discretization method
in which the optimizer determines the element length or spatial position of the
collocation points as additional decision variables. Biegler et al.22 presented an
extension of an interior point optimization strategy that incorporates a strategy
for finite-element movement. The multiscale-based full discretization approach
of Binder et al.28–30 allows different, adapted discretization grids for state and
control variables by solving a hierarchy of successively refined finite dimensional
problems.

9.3.1.5 Applications

In the following, some of the previously introduced concepts are illustrated by
means of a case study before we give a brief overview of some practical appli-
cations of batch process optimization.

Case Study
Let us again look at the methyl acetate production introduced in Section 9.1. We

The structure and size of the process equipment are assumed to be given. The
objective of the optimization is to maximize the amount of product D at the end
of a fixed batch time (tf = 4 hours). Thus, the final product concentration
should be at least 0.95. The degree of freedom, u(t), that can be manipulated
during the operation is the internal reflux ratio, r = R/V. 

A formulation of this problem according to the definitions introduced in
Sections 9.2 and 9.3 yields:

xD
MeAc
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(P4)

(9.53)

(9.54)

(9.55)

(9.56)

Here, Equations 9.53 and 9.54 represent a DAE model of the semibatch reactive
distillation process and the corresponding initial conditions. Note that the stage
index k is not stated explicitly as this is a single-stage problem with ns = 1. The
model is based on the following assumptions: (1) constant liquid and negligible
vapor holdups on the stages and in the condenser/reflux drum, (2) constant molar
overflow, (3) constant boil-up rate, (4) ideal gas phase, (5) start-up phase not
considered. A Wilson model is used to calculate the activity coefficients for the
vapor–liquid equilibrium. Initially, the column is filled with pure methanol. The
side feed stream of pure acetic acid is constant over time. The stripping section
of the column is comprised of seven reactive equilibrium stages, whereas the
upper part of the column has five nonreactive trays. For more details about this
separation problem, refer to Lee et al.81 The model at hand has nx = 74 differential
variables and nz = 739 algebraic variables. The problem does not have any state
path constraint but does have one endpoint constraint (Equation 9.55) to enforce
the desired product purity. The reflux ratio is bounded between its physical limits
0 and 1 (see Equation 9.56).

This problem can be solved by one of the approaches introduced in Section
9.3.1. Here, we chose the control vector parameterization approach; therefore,
the control profile r(t) is discretized according to Equation 9.37. Piecewise con-
stant functions are used for this purpose.

shows the optimal profile for the reflux ratio, r(t), discretized into 32 equidistant
intervals. The right graph depicts the trajectory for the product concentra-
tion .

The results have a physical interpretation. In the first phase of operation, the
reflux ratio is set to the upper bound 1.0, which corresponds to a full reflux in
order to increase the composition of the light component in the top of the column.
Then it switches to a lower-value profile that increases the amount of product in
the product vessel in an optimal way, such that the endpoint purity constraint will
be met. This can also be seen from the trajectory of the product concentration,
which first rises sharply (due to the full reflux regime) and then increases only
slowly to finally reach the desired value. In the last phase, the reflux jumps to a
lower value in order to exploit the high concentration of MeAC available in the
condenser at the end of the batch.
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The results of this optimization are depicted in Figure 9.8. The left graph
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Practical Applications
Whereas continuous processes have been subject to many rigorous optimization
studies, industrial batch and semibatch processes are often still operated using
recipes based on heuristics and experience; consequently, only a limited number
of studies for applications to laboratory or production scale processes can be
found in the literature. Lehtonen et al.83 reported on the optimization of reaction
conditions for an alkali fusion process in which optimal operational profiles have
been calculated using unconstrained optimization. The productivity optimization
of an industrial semibatch polymerization reactor under safety constraints was
treated by Abel et al.2 Ishikawa et al.72 determined optimal control profiles for
an industrial vapor–liquid batch reactor for the productions of dioctyl phthalate.
The process model consists of about 2000 differential–algebraic equations. The
optimization problem has been solved using the control vector parameterization
approach introduced above. Klingberg77 presented a study on the dynamic opti-
mization of an industrial batch reactive distillation column in which the model
had about 4200 DAEs. Again, this problem has been solved by control vector
parameterization. To the authors’ knowledge, no reports of the solution of

FIGURE 9.8 Optimal trajectories for reflux ratio and vapor stream.
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problems involving models of such a size using the full discretization approach
can be found in the literature.

A case study of the optimization of a multistage batch process involving a
reaction and separation task as well as recycles was presented by Charalambides
et al.41 The multistage model employed was comprised of 420 DAEs and 76
decision variables.

9.3.2 STRUCTURAL DESIGN OF BATCH PROCESSES

Besides flexibility in terms of operational strategies, batch processes allows for
a number of different design configurations, such as the middle or multivessel
design of a batch distillation process or the equipment configuration of a batch
reactor. These structural design alternatives, combined with different possible
operating modes, provide great flexibility and economic potential but result in
demanding optimization problems due to the combined discrete and continuous
nature of the degrees of freedom.76 Methods that simultaneously address the
structural design and determination of operational strategies of transient reaction
and separation processes in chemical engineering have been proposed by several
authors, including Barrera and Evans,16 Mujtaba and Macchietto,91 and Bhatia
and Biegler,21 who integrated discrete decisions into the batch design task. The
corresponding approaches address batch design problems with process models
of a different level of detail. Allgor and Barton5 and Sharif et al.110 formulated
the design problem as a mixed-integer dynamic optimization (MIDO) problem
that incorporates both process dynamics and discrete decision variables in a
superstructure model.

9.3.2.1 Mathematical Problem Formulation

In Section 9.2.3.4, we introduced multistage models with disjunctive constraints
in order to formalize structural design decisions. This superstructure model con-
tains Boolean variables, Y ∈ {True, False},nY that are related to disjunctive sets
of differential–algebraic equations and constraints. The corresponding class of
optimization problems is termed disjunctive programming and is well known in
the context of process synthesis of continuously operated processes.99

The basic ideas of disjunctive programming have been transferred to the
dynamic case.94 Here, the multistage dynamic optimization problem (P1) is
extended by disjunctive constraints, leading to the following mixed-logic dynamic
optimization (MLDO) problem:

(P5)

s.t. Equations 9.19 to 9.21, 9.24, 9.25  (9.57)
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(9.58)

(9.59)

Note that Equation 9.57 is identical to those of the multistage formulation used
in Section 9.3.1.1, whereas the objective function Φ includes an extra term that
covers the investment costs bi induced by a process part or unit i. Whereas the
differential equations (Equation 9.19), initial conditions (Equation 9.20), stage
transition conditions (Equation 9.21), and path and endpoint constraints (Equa-
tions 9.27 and 9.28) contained in Equation 9.57 and the objective function Φ
hold globally, there are further equalities qk,i, inequalities rk,i, , and stage tran-
sition conditions included in Equation 9.58 that are only enforced if the corre-
sponding Boolean variable Yi  is true. Otherwise, if Yi is false, a subset of the
state and control variables, time-invariant parameters, initial values of differential
states, and fixed investment costs (bi) for nonexisting units are set to zero, as
already introduced in Section 9.2.3.4. Commonly, the Boolean variables Y them-
selves are partly related through propositional logic constraints (Equation 9.59),
as explained in Section 9.2.3.4. Usually, a large portion of the combinatorial
complexity of the MLDO problem is governed by these logic relationships.
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9.3.2.2 Solution Strategies

The optimization problem (P5) can be solved using a number of different
approaches. The corresponding solution methods rely either on reformulation of
the mixed-logic dynamic optimization (MLDO) into a mixed-integer dynamic
optimization (MIDO) problem or on solving the MLDO problem directly.94 We
focus here on approaches based on a MIDO reformulation that have been widely
studied in the literature.

Reformulation as MIDO problem
A mixed-integer dynamic optimization problem is obtained by replacing the
Boolean variables with binary variables y ∈ {0,1}ny and by representing the
disjunctions (Equation 9.58) using big-M constraints131 or a convex-hull formu-
lation.12,99 The use of big-M constraints is illustrated by reformulation of the
inequality constraint rk,i(uk(t), t) ≤ 0 in (Equation 9.58). When Mk,i is a sufficiently
large positive constant and with bounds uk,L, uk,U for the control variables, we
obtain:

(9.60)

(9.61)

By substituting yi = 1 into Equation 9.60 we see that the constraint rk,i ≤ 0 is
enforced. Otherwise, if yi = 0, rk,i is unconstrained for an appropriate choice of
Mk,i and a subset* of the variables, uk(t) may be set to zero as shown in Equation
9.61.

Both reformulation techniques are well known in the context of mixed-integer
nonlinear programming (MINLP) for the synthesis of process flow sheets. The
basic concepts can also be applied to problems involving dynamic process models,
such as the MLDO problem stated above. Thus, by employing big-M constraints
for the disjunctions in Equation 9.58, we can state the following set of equations
involving binary variables yi  instead of Boolean variables Yi:

* The subset is defined by a part of the matrix Bk,j (see Equation 9.22) that corresponds to the variables
uk(t).

r u t t M yk i k k i i, ,, ≤ −( ( ) ) ( )1

k L i k k U iu y u t u y, ,≤ ≤( )
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(9.62)

(9.63)

  (9.64)

As shown by Türkay and Grossmann,121 propositional logic constraints for-
mulated for the mixed-logic optimization problem can be expressed in terms of
linear constraints including binary variables in a MIDO problem formulation.
Considering again the example presented in Section 9.4, where a batch reactor
is excluded from the set of alternatives when a reactive batch distillation column
is chosen (see Equation 9.17), we can state the linear inequality as:

(9.65)

or equivalently

(9.66)

in order to obtain a mathematical representation instead of a logical expression.
Note that the inequality (9.65) can be directly deduced from Equation 9.18.
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9.3.2.3  Solution Algorithms for MIDO Problems

Direct solution methods for dynamic optimization problems without discrete
variables have been discussed in the previous sections. In fact, these methods are
capable of solving a broad class of problems, including applications governed by
large-scale DAE systems.2 As mentioned in Section 9.3.1, they convert the time-
continuous dynamic optimization problem into a finite-dimensional nonlinear
programming problem (NLP) by discretization.

By using one of these direct approaches, the mixed-integer dynamic optimi-
zation problem (P5) can be converted into an algebraic problem which then forms
a mixed-integer nonlinear programming instead of an NLP. Fortunately, a number
of solution methods are available for solving MINLP problems.57 In fact, these
algorithms were shown to be suitable for solving problems of a considerable size;
however, all of them suffer from the fact that they inherently rely on the convexity
of the MINLP problem, which does not hold true for almost all practical appli-
cations.

The MINLP algorithms reported in the literature can be divided into two
classes: based on enumeration or on decomposition. The former class is comprised
of the complete enumeration of the entire discrete decision space (which is only
tractable for problems with a small number of discrete variables) and branch-
and-bound type of methods.57,92 The branch-and-bound methods relax the problem
(P5) continuously; that is, the binary variables are allowed to take values between
0 and 1. The relaxed problem is then solved in order to provide a lower bound
to the original solution. Subsequently, different strategies can be applied to fix
subsets of the binary variables in the nodes of a search tree. Parts of the search
tree can be cut off if the current solution is greater than a known upper bound to
the solution of the original problem or if the continuously relaxed binary variables
take discrete values 0 or 1. The (global) optimal solution is found when all binary
variables take discrete values {0,1} and the relaxed dynamic optimization prob-
lems have been solved to (global) optimality in all the nodes. A branch-and-bound
solution strategy for MIDO problems was recently proposed by Buss et al.36

On the other hand, decomposition methods are based on decomposing the
optimization problem into two subproblems that are solved in an iterative manner.
Outer Approximation (OA)52,56,78,127 and Generalized Benders Decomposition
(GBD)62 are two well-known decomposition algorithms that have been used by
Schweiger and Floudas108 and Bansal et al.15 to solve MIDO problems of con-
siderable size.

In the OA method, a primal subproblem, which constitutes a dynamic opti-
mization problem with fixed binary variable values, is solved to yield an upper
bound, , for the optimization problem (P5). Subsequently, a linear outer
approximation of the overall mixed-integer problem is utilized within the master
subproblem (a mixed-integer linear programming [MILP] problem) to provide a
lower bound to problem (P5) and a new set of binary variables for the next primal
subproblem. After a finite number of iterations the nondecreasing lower bound
and the minimum of all upper bounds , approach each

Zub
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other up to a specified error tolerance ε at the optimum value of the original
problem (P5), given that the problem under consideration is convex. In practical
applications, where the problem generally is assumed to be nonconvex, termina-
tion within an ε-tolerance cannot be expected and a heuristic stopping criterion
has to be employed instead, such as stopping when there is no decrease in two
successive primal solutions . To tackle this problem, an extension of the OA
algorithm, termed augmented penalty, has been proposed by Viswanathan and
Grossmann.127 Moreover, convexity tests can be applied to validate linearizations
accumulated in the master problems (for more information, we refer to Gross-
mann and Kravanja64). These extensions for the nonconvex case have been proven
to work reasonably well for a number of problems; however, in either case, there
is no guarantee that the global optimum is located in a finite number of iterations.
In order to circumvent this restriction, global solution algorithms for nonconvex
problems of a relatively small size have been developed.4 Large-scale problems
will not be tractable by these algorithms in the near future due to their high
computational burden.

Various decomposition algorithms have been applied to solve MIDO prob-
lems of considerable sizes by, for example, Bansal et al.15 and Schweiger and
Floudas.109 A logic-based decomposition approach that is applied to the MLDO
problem stated above has been proposed by Oldenburg et al.94 In the cases
mentioned here, a control vector parameterization method is used to solve the
primal subproblems due to its efficiency and robustness when dealing with large-
scale multistage process models. This choice, however, means that the treatment
of disjunctive equations qk,i (see Equation 9.58) is more complex, as in the case
when a full discretization approach is applied to solve the MLDO problem or its
MIDO transformation (see Equations 9.62 and 9.64). For more details, refer to
Avraam et al.9 This restriction would not apply to MIDO approaches based on
full discretization as proposed in Avraam et al.,9 who addressed the design of
process operations described by hybrid discrete–continuous dynamic process
models with an a priori unknown number and sequence of discrete modes.

Allgor and Barton5 proposed an alternative approach where the MIDO prob-
lem is solved by iterating between two design subproblems: recipe design and
equipment allocation. The recipe design problem constitutes a dynamic optimi-
zation problem which assumes a fixed process structure and thus fixed discrete
(binary) decision variables. However, in contrast to the approaches based on
MINLP, Allgor and Barton5 generated equipment allocation subproblems on the
basis of screening models developed using “domain-specific information gathered
from physical laws and engineering insight.” These screening models lead to
MILP problems with the desired underestimating property. The development of
these models is, however, a rather complex task.

9.3.2.4 Applications

As shown in Section 9.3.1.5, a number of batch process design applications have
been reported where the process structure has been considered to be fixed. A
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number of studies in batch process synthesis have been reported. Usually, a
superstructure is generated and an optimization problem is formulated employing
very simple models based on material balances and recovery or conversion models
only. Chakraborty and Linninger,39 for example, studied a process synthesis
problem for waste management. A detailed consideration of the physics or even
the dynamics of the process has not yet been considered. These approaches give
information on a suitable process structure on a coarse level of detail. To the
authors’ knowledge, very little work has been done on batch process design
problems with structural degrees of freedom and consideration of rigorous
dynamics. Sharif et al.110 formulated a MIDO problem for a two-stage batch
distillation system where the number of trays and the equipment sizes were
subject to optimization together with the continuous degrees of freedom reflux
ratio and vapor flow rate in each batch stage. The MIDO problem was solved
using a decomposition approach (OA) based on control vector parameterization.

The optimal structural design of a three-stage batch distillation process for
the separation of a quaternary mixture was also considered by Oldenburg et al.,94

who included a regular and inverse mode of operation and the interconnection
between the stages as discrete decisions in a superstructure MLDO model. Here,
the goal was to simultaneously determine the optimal sequence and the optimal
reflux (or reboil) policy in order to minimize the overall batch time required for
separating a quaternary mixture into pure components. The optimal batch process

operated regularly to obtain the lightest component at the top and the heaviest
component as residue of the still pot at the final time of the respective process
stages. The third stage is operated inversely to separate components two and
three. When compared to a standard multistage separation (operated with an
optimal reflux strategy) shown in the right part of Figure 9.9, the optimal batch
process achieves a 10% reduction in batch time. This also translates into energy
savings of 10% in this case, because all design options were considered with the
same constant reboiler heat duty. The optimization problem has been solved using
a logic-based solution approach together with control vector parameterization.

The application of the screening model approach to solve batch design prob-
lems has been illustrated by Allgor et al.7 as well as Allgor and Barton,6 who
presented several batch design case studies involving reaction and separation
tasks.

9.3.3 DESIGN UNDER UNCERTAINTY

After the discussion of generating the nominal optimal solution of an optimization
problem in the previous sections, the question must be considered how uncer-
tainties can be incorporated into the optimization problems (P1) to (P5). Accord-
ing to the definition in Section 9.2.4.4, optimality in the presence of uncertainties
requires flexibility; therefore, any attempt to determine an optimal process (struc-
ture, parameters, and recipes) should actively incorporate the uncertainties into
the design procedure.
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Two approaches can be distinguished. In the first case, we assume that the
uncertainty can be completely resolved by measurements available before the
batch is started. In this case, the process and its operational strategy can be adapted
according to precomputed optimal designs. The resulting problem class is referred
to as parametric programming,13 as it provides a solution for each combination
of potential uncertain parameters.

In the second approach, called robust optimization, we do not have to assume
that the uncertainties can be reduced by additional measurements; hence, a single
recipe must be calculated incorporating all possible uncertainties leading to rather
conservative designs in many cases. A variety of robust optimization problem
formulations have been proposed in the literature. An important class of these
approaches is based on feasibility and flexibility measures originally introduced
by Halemane and Grossmann.65 These measures were extended by Mohideen et
al.,90 who applied optimization-based design in the presence of uncertainty to
dynamic systems. The corresponding optimization problems involve a very large
set of DAE equations that are only required to account for the uncertainty of the
system. Hence, for practical applications, robust batch process design is an
extremely difficult task. Consequently, only a few applications of batch process
design under uncertainty have been reported.

In the next section, we focus on two comparatively simple problem formu-
lations for parametric programming and robust optimization, respectively, rather
than providing a comprehensive survey of methods for design under uncertainty.
In order to keep the notation as simple as possible, only single-stage optimization
problems (P1) with ns = 1 are discussed. As above, we assume that all model
uncertainties and disturbances are parameterized by the vector ζ.

9.3.3.1 Parametric Programming

In a parametric programming framework, the state and control trajectories x(t,ζ),
z(t, ζ), and u(t,ζ) are determined by solving the optimization problem for all the

FIGURE 9.9 Three-stage batch distillation process with regular (left), and combined
regular and inverse operation (right).
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possible values of ζ ∈ C. The results are stored in a database. If additional
information on the parameters ζ becomes available before starting the batch, the
corresponding optimal trajectory can be retrieved from the database and applied
to the process.

The set of solutions can be determined by collecting the infinite number of
optimization problems into the following parametric programming problem:

(P6)

  

Due to the infinite number of constraints a finite approximation of the set C is
mandatory. A finite sample ζp, p = 1,…,P, of all the possible combinations of ζ
∈ C is used to solve the problem. Then, the integral in the objective functional
of problem (P6) can be replaced by a finite sum. To solve this type of problem,
sophisticated techniques exist to generate an appropriate grid in the ζ space.50

The discretized dynamic optimization problem has a decoupled structure, as each
set of the degrees of freedom u(t,ζp) and p(ζp) only influences one set of model
equations and constraints. Therefore, the problem can be separated into P inde-
pendent optimization problems, which are solved by the numerical techniques
introduced above.

Note that several alternative formulations can be employed instead of problem
(P6). For example, Bansal et al.14 employed feasibility and flexibility measures
in a parametric programming approach as explicit functions of the uncertain
parameters.

9.3.3.2 Robust Optimization

In most cases, the uncertainties cannot be removed by additional measurements,
in which case all possible uncertainties have to be incorporated into one single
design. This is a fundamental difference between robust optimization and para-
metric programming. In robust optimization, the relative influence of different
parameter values and disturbances on the objective function is defined on the
basis of probabilities.
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Depending on the overall production objective for the process considered,
various possibilities exist to account for the uncertainties in the objective function
of the optimization. A convex combination of the expected cost E[Φ(·,ζ)] and the
variance of the cost Var[Φ(·,ζ)]:

(9.67)

offers a flexible means of achieving a suitable trade-off between performance and
risk.47 The parameter a (0 ≤ a ≤ 1) is a constant that weights the level of profit
(i.e., the expected value) and variation of the profit (or risk) (i.e., the variance).

If a time-invariant probability distribution F(ζ) is assumed, the dynamic
optimization problem incorporating parametric uncertainties can be formulated
as:

(P7)

  

when a = 1. The solution of problem (P7) is required to satisfy all constraints.
In many cases, such a constraint feasibility cannot be achieved for all possible

values of the uncertain parameters ζ. Hence, some constraint softening has to be
introduced. As in deterministic optimization, a penalty framework can be
employed where the expectation of the constraints is added to the objective
function. Two alternative formulations have been established.46,47 In a first
approach, the constraints are satisfied on average by bounding the expectation of
the constraint (e.g., to fulfill a required purity constraint on average):

(9.68)

which, however, does not restrict constraint violation for a single sample of ζ.
To remedy this disadvantage, a conditional representation can be used to limit
the average constraint violation according to:
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(9.69)

This formulation still ignores the frequency of constraint violation. Often, several
expectation-based constraints — such as the two presented — are used simulta-
neously to compensate for the disadvantages of a single formulation.

In a second approach, the constraint is interpreted as a random variable with
an associated probability density. The idea is then to formulate an acceptable
level of probability for the constraint violation. The probability (or chance)
constraint:

(9.70)

ensures that all of the process constraints have to be satisfied with the probability
ρ0 simultaneously. Alternatively, individual probabilities can be formulated for
each constraint gi(·):

  (9.71)

The resulting optimization problem is easier to solve but has the disadvantage
that the worst-case probability level at which a solution satisfies all of the con-
straints is equal to the product of the levels ρi, i = 1,…,ng, which is much smaller
than any ρi.

Regardless of the peculiarities of the formulation, the resulting robust (or
stochastic) optimization problems are difficult to solve, particularly if the objec-
tive and constraints are nonlinear in the uncertain parameters. All formulations
result in semi-infinite programming problems (for a comprehensive overview,
refer to Hettich and Kortanek70) that require a substantial computational effort to
achieve a sufficiently accurate solution. In particular, the decoupled solution
approach successfully applied for parametric programs is not possible for robust
optimization due to the convolution of probability density and objective functions
in problem (P7).

An approximate numerical solution of stochastic optimization problems can
be obtained by sampling of the probability density function or by application of
discretization techniques.105,118 The discretization of ζ can be chosen randomly
by Monte Carlo sampling or systematically by one of the discretization methods
described in Section 9.3. This technique is general and can be applied to almost
any type of formulation with nonlinear objectives and constraints but requires a
tremendous computational effort.

There exists a variety of different techniques to solve robust optimization
problems. A comprehensive review is beyond the scope of this contribution. The
interested reader may consult the papers of Zhang et al.,133 Darlington et al.,46,47

and Wendt et al.130 for more information.

E g x z u p g x z u p b[ ( ) ( ) ]− , , , , , , , , < ≤ζ ζ 0

P g x z u p( ), , , , ≤( ) ≥ζ ρ0 0

P g x z u p i … ni i g( ), , , , ≤( ) ≥ , = , , .ζ ρ0 1
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9.3.3.3 Applications

Only few practical applications of batch operation under uncertainty can be found
in the literature (see Terwiesch et al.120 for a review). Terwiesch et al.121 applied
robust optimization techniques to a semibatch reaction process analyzing a con-
secutive reaction system and discussed various objective functions, including risk
threshold optimization and quality variance minimization. Their aim was to
determine an optimal operation strategy under two different types of uncertainty.
Furthermore, the authors briefly analyzed to what extent structural model plant
mismatch can be covered as parametric uncertainty. Bernardo and Saraiva18 pro-
posed a robust optimization framework that is applied to a small-scale case study
of batch distillation column. Visser et al.126 solved an operation problem of a fed-
batch bioprocess with a cascaded optimization approach that ensures satisfaction
of path constraints in the presence of uncertainties.

Acevedo and Pistikopoulos3 used a mixed-integer stochastic optimization-
based algorithm to solve a process synthesis problem under uncertainty. The
problem was formulated as a multiperiod stochastic optimization problem where
the objective function represents the cost of the design selected and the expected
optimal profit under uncertainty. The process considered was described as steady-
state model. A study with similar intent and methodology has recently been
reported by Chakraborty and Linninger.40 The high computational effort to solve
optimization problems under uncertainty is typical for all applications; therefore,
the application of these techniques is currently restricted to small-size problems.

9.4 OPTIMIZATION-BASED ONLINE CONTROL 
AND OPERATION

In the previous section, we dealt with a nominal model and either no or known
disturbances. The design decisions fixed the process structure and its parameters
as well as the sequence of tasks and the time-varying control profiles during each
of these tasks in order to achieve maximum profit. The assumptions defining the
nominal (design) case usually do not hold anymore during process operation. In
reality, various types of uncertainties are unavoidably present. Consequently, the
design loses optimality and sometimes even feasibility, if a sufficient degree of
flexibility has not been accounted for in the design.

In order to cope with the process and model uncertainties as well as with
changing production objectives, we would ideally like to adjust the design
momentarily during operation in real time in order to regain feasibility as well
as optimality; however, only part of the decision variables available during the
design phase can still be manipulated during the operational phase. Typically, the
equipment parameters and most of the equipment structure are fixed. In contrast,
some stream connections, the sequence of tasks, the control profiles, and the
initial conditions can be manipulated in real time, at least in principle. The
availability of all or part of these operational degrees of freedom is largely
determined by the design of the batch plant and its instrumentation. Subsequently,
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we do not deal with structural decision variables during operation; hence, the
process structure as well as the sequence of tasks are considered to be fixed during
operation. However, the techniques presented here extend, at least in principle,
to the more general case, where some structural decision variables are also
available in real time.

When deviations from the nominal design occur, optimality and feasibility
can only be regained during operation if process and model uncertainties can be
reduced by means of measurements. In particular, we exploit the feedback of
measurements in order to reduce model uncertainty by model adaptation and to
estimate disturbances in order to cope with process uncertainty. On the basis of
such a model update, we may recompute the optimal values of the operational
degrees of freedom uk(t), p, and tk in every stage k via on-line optimization.
Typically, estimates of the states xk(t) and zk(t), the disturbances dk(t), and the
model parameters ϑk(t) have to be inferred from the measurements and a process
model to implement output feedback with high performance. This combined state,
parameter, and disturbance estimation problem has also been called dynamic data
reconciliation.26 Therefore, we have to solve not only a modification of the
multistage optimal control problem (P1) used during design but also a dynamic
data reconciliation problem to adjust the model and to compute state estimates.

The techniques that use measurements in addition to models to reduce uncer-
tainty in optimal batch process operation have recently been referred to as mea-
surement-based optimization by Srinivasan et al.112 We refer the reader to their
paper for a review of techniques to achieve optimal batch process using measure-
ments and feedback control.

of the optimization methods introduced in Section 9.3, resulting in a single-stage
batch process with a semibatch reactive distillation column together with optimal
values of the initial charge of material in the still as well as optimal feed, reflux,

implementing this process but want to account for disturbances in the feed
concentration of acetic acid and for uncertainties in the reaction kinetic parameters
of the esterification. Measurements are available for the product concentration
and the temperature at the top tray of the column. Because the actual control
moves are known, the measurements can be used to estimate the kinetic param-
eters and reconstruct the state vector and actual feed concentration. These esti-
mates can then be used to compute the next control moves to track the optimal
trajectory of the process from a prediction model.

In the following section, we first refine the previous considerations and
present a general optimization problem, the solution of which would lead to
optimal operation of a batch process when confronted by model and process
uncertainties through measurement feedback. Section 9.4.2 discusses various
solution strategies to tackle the quite complicated optimization problem. Then,
some remarks on tailoring algorithms to exploit the peculiarities of online
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For further illustration, we reconsider the methyl acetate process (see Figure
9.1). Let us assume that a nominal optimal design has been determined by means

and boil-up policies (see Section 9.3.1.5 for details). Now we are interested in
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optimization are given. We conclude this section with a discussion of case studies
to illustrate the potential of the techniques presented.

9.4.1 MATHEMATICAL PROBLEM FORMULATION

So far, the online optimization approach has been sketched only roughly. Before
we turn to the mathematical problem formulation, we have to refine the proposed
approach. In particular, we introduce the concept of moving (or receding) horizon
optimization. To simplify notation, we consider a sequence of K batches produced
in a single-stage batch process modeled by Equations 9.7 and 9.8. The model of
the sequence of single-stage batch processes is similar to the multistage model
(Equations 9.9 and 9.10) if the stage transition conditions (Equation 9.11) are
replaced by initial conditions independent of the states in the previous stage.
Obviously, we could also treat the more general case of a sequence of multistage
batch processes by introducing a multistage model with a total number of stages
given by the product of the number of stages in every individual batch and the
number of batches. Note that there would be two qualitatively different types of
stage transition conditions, which are either independent or dependent on the
states of the previous stage.

We are looking at batch (or stage) k carried out between t = tk–1 and t = tk

interval ∆k = [tk–1, tk] = [tr, tf]. The interval is subdivided by a mesh of equidistant
points tc,� = tr + �∆t, � = 1,…,L. The current time tc,� separates ∆k into two intervals:
∆r,� = [tr,tc,�] and ∆c,� = [tc,�,tf].

FIGURE 9.10 Moving horizon in one stage or batch.
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(Figure 9.10). To simplify the notation, we drop the index k and consider the
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The (first) reconciliation interval lies in the past of the current time t = tc,�,
whereas the (second) control interval refers to the future. Measurements η�(t) are
available on the reconciliation interval ∆r,� = [tr, tc,�]. For convenience, we do not
introduce discrete measurements here. The quantities η�(t) can be viewed as
interpolations of discrete measurements on ∆r,�. These past measurements can
therefore be used to solve a reconciliation problem at the current time. In general,
reconciliation is not restricted to ∆r,� of stage k. Rather, we may extend it to also
include measurements on previous stages k – κ, κ = 1,2,…. For the sake of a
simple presentation, we will not consider this case in detail.

The reconciled model and the resulting state estimates are then used to solve an
optimal control problem on the control interval ∆c,�. Again, we may not restrict the
control interval to the remainder of stage k. Rather, we could extend it to additional
future stages k + κ, κ = 1,2,…. Due to unavoidable uncertainties, the computed
controls will only be implemented on the interval [tc,�,tc,� + ∆t]. After implementation,
the current time tc,� is shifted by ∆t; that is, tc,�+1 = tc,� + ∆t. Hence, the reconciliation
interval is extended by ∆t, whereas the control interval is decreased by ∆t. In some
cases, the control interval ∆c,� does not extend to the end of the stage but is chosen
significantly shorter. Such a choice is always motivated by the insufficient prediction
quality of the model and less significant endpoint constraints at tf. In such cases, the
estimation interval may still grow in length, whereas the control interval is kept at
a constant length. The reconciliation and optimal control problems are solved repeat-
edly and a control move is implemented.

Tacitly, we have assumed that the computations can be carried out in zero time.
This is obviously a simplification. More precisely, the reconciliation and control
intervals (∆r,� and ∆c,�, respectively) are separated by ∆t, which has to be sufficiently
long to carry out the computations. For notation simplicity, we will neglect this
subtlety. Then, the moving horizon scheme can be stated in detail as follows:

1. Initialize: 
Select ∆t.
Set � = 1.

2. Compute control move:
Access measurements η�(t) on ∆r,�. (P8)
Solve the data reconciliation problem on horizon ∆r,� to update model

and state estimate at t = tc,�.
Solve the control problem (P9) on interval ∆c,� with updated model and

state estimate at t = tc,�.
Apply control move uc,�(t) for t ∈ [tc,�,tc,� + ∆t].

3. Modify horizons:
�: = � + 1
tc,�: = tc,� + ∆t
∆r,�: = ∆r,� +∆t
∆c,�: = ∆c,� +∆t
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4. Stop or loop back:
If tc,� ≠ tf, go to 2; otherwise, stop.
The dynamic data reconciliation problem referred to in the algorithm

can be formulated as follows:

(P8)

  (9.72)

(9.73)

(9.74)

 (9.75)

(9.76)

Analogously, the control problem reads as follows:

(P9)

  (9.77)

(9.78)

(9.79)

(9.80)

(9.81)

Here, we have assumed that neither the model nor the production and process
constraints are the same in the reconciliation and control problems. The notation
is the same as in problem P1 for a single stage. Here, we assume that all uncertain
quantities vary with time and replace the parameters ζ by the disturbances d(t).
The indices r and c refer to quantities in the reconciliation and control problems.
In addition, the variables yr,�(t) are the predicted outputs for which the measure-
ments η�(t) are available. The index � distinguishes the quantities in the problem
to be solved at current time tc,�. Hence, � is the horizon counter on stage k. The
Mayer-type objective function stated in problem (P8) is usually replaced by a
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least-squares objective function including some regularization term R(·) (for more
information, refer to Allgöwer et al.8). This is achieved by refining the objective
[problem (P8)], for example, by:

(9.82)

The reconciliation and control problems (P8 and P9) are not independent. The
data required to solve the reconciliation problem (P8) on horizon ∆r,� are the
control moves uc(t) applied to the process on ∆c,�–1. The solution of the control
problem (P9) requires knowledge about the states xr,�(tc,�) at the end of ∆r,� as
well as the disturbances dr,�(t) on ∆r,�, which are computed earlier from the
reconciliation problem. The predictor D[·] is forecasting the disturbances dc,�(t)
on ∆c,� using the disturbance estimates dr,�(t) on ∆r,�. In the most simple case,
constant values for the disturbances are assumed. For example, if the feed con-
centration in the methyl acetate column has been identified to deviate from the
design case, the mean deviation on ∆r,� may be taken as a prediction of the
deviation that could occur in the future on ∆c,�.

The problem structure of the combined reconciliation and control problem is
very similar to the two-stage problem (P1) with ns = 2. The way we have
formulated the problem does not account for the two-stage character because two
independent objective functions, Φr(·) and Φc(·), have been formulated. A true
two-stage formulation would result if both objectives are summed up to a single
two-stage objective (Φ = Φr + Φc) which has to be minimized simultaneously
subject to the constraints in both problems (P8) and (P9). A coupled solution of
both problems does not seem to have been analyzed in the literature for when a
higher economical performance (e.g., a smaller value of Φc) might be achieved.

Obviously, the problems on the different horizons are not independent due
to the coupling introduced by the operator U[·] in Equation 9.75. It links the
open-loop optimal control problems on adjacent horizons indexed by � – 1 and
�. In fact, this coupling is responsible for implementing feedback in the overall
receding horizon scheme.53,101 For the methyl acetate semibatch distillation col-
umn, U[·] maps the control moves of reflux R and boil-up V realized on horizon
∆r,� into the reconciliation problem (P8). After its solution, new estimates of the
states, the feed concentrations, and the reaction kinetic parameters are available
and are used to compute the control moves on horizon ∆c,�.

From a control perspective, problems (P8) and (P9) constitute an output
feedback optimal control problem with a general objective reflecting process
economics rather than deviations from reference trajectories. Because there are
no operational targets in the sense of set points or reference trajectories as in
model predictive control,101 the problem may also be interpreted from an opera-
tional perspective. Hence, the problem can be considered as a generalization
of state-of-the-art (steady-state), real-time optimization,88 which aims at estab-
lishing economically optimal transient plant operation.10,11,68 The solution of this
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operation support problem would achieve an integration of advanced (predictive
constrained) process control and economical optimization in a transient environ-
ment. The approach is not only applicable to batch but also to continuous pro-
cesses in transient regimes, for example during grade or load transitions.

9.4.2 SOLUTION STRATEGIES

The solution of the receding horizon online optimization problem is quite
involved; therefore, we are interested in simplifications that are appropriate in
certain situations or which cut down computational effort. Subsequently, we first
consider in Section 9.4.2.1 the case where measurements are not used during
batch k to reduce model or process uncertainties. Instead, measurements from
previous batches k – κ, κ = 1,2,… are exploited in the operational strategy. Next,
in Section 9.4.2.2, we discuss the direct solution of the online optimization
problem (P8 and P9) at high frequency associated with the (largest) sampling
time of the measurements. In some cases, the computational burden can be
significantly reduced if the necessary optimality conditions of the problem are
identified and used to implement the output feedback. Such a strategy, recently
suggested by Bonvin and coworkers,34 is introduced in Section 9.4.2.3. Finally,
Section 9.4.2.4 introduces decomposition strategies exploiting differing time
scales in the process.

9.4.2.1 Batch-to-Batch Optimization

If measurements are not available in real time, the online optimization problems
(P8 and P9) cannot be solved during the actual batch. Nevertheless, some kind
of model-based operation is still possible, if measurements (for example of
concentration and product quality) become available after completion of the batch.
Such a situation often occurs in industrial practice, where a detailed analysis of
samples taken during and at the end of the batch are taken to assess the quality
of the batch produced. Even though this approach is not online, it fits in the
proposed framework of measurement and model-based optimization described in
this section. 

In the situation described above, a reconciliation problem similar to problem
(P8) is solved before the actual batch k of duration ∆k is started at t = tk–1. The
objective Φr(·) is comprised of only the deviations between model predictions
yr,k–κ(t) and measurements ηk–κ(t) in previous batches k – κ, κ = 1,2,…. Obviously,
the control profiles uk–κ(t) from the completed batches, k – κ, κ = 1,2,… are also
available from historical data to set up the problem. The optimization is subject
to the model and process constraints in those previous batches, where measure-
ments are used for reconciliation. The results of the reconciliation problem,
particularly the state estimates xk(tk) and zk(tk), the parameters ϑk, and the predicted
disturbances Dk[dk–1(t), dk–2(t),…], can be used to subsequently solve an optimal
control problem for batch k. The control profile uk(t) is applied to batch k without
the opportunity to compensate any uncertainties during the batch. The base control
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system may be used to track the optimal trajectories uk(t) and yk(t). This strategy
is depicted schematically in Figure 9.11.

Such an iterative offline model reconciliation and batch optimization exploits
the repetitive nature of batch processes. Data collected during or after the batch
are used to account for parametric uncertainties and disturbances. After a model
update, the calculated optimal trajectory can be implemented in a feed-forward
sense. This procedure is referred to as batch-to-batch or run-to-run optimiza-
tion.44,90 It is particularly effective if model and process uncertainties are of a
repetitive nature and do not change very much from batch to batch. 

9.4.2.2 Direct Online Optimization

The most rigorous approach for the implementation of measurement-based opti-
mization is solution of the combined reconciliation and control problem (P8 and
P9) on a receding horizon. In this case, a single optimizing feedback control layer

mization of the economic cost function Φc on the control horizon ∆c,�, both set
by a decision maker on a higher level in the automation hierarchy (e.g., a planner

time repeatedly during operation of the batch process at a high sampling rate δc. 
Successful implementation of such a strategy requires a high-quality process

model and disturbance forecast to facilitate the prediction of the states with
sufficiently small error until the end of batch k. Note that this strategy differs
significantly from output feedback in a model-predictive control scheme,8 as the
economic objective function Φc is used directly on the control level and the
endpoint constraints are enforced. This approach is also termed online reoptimi-
zation or optimization on a shrinking horizon. The drawback of such an approach
is the high computational burden of online optimization that must be mastered

FIGURE 9.11 Batch-to-batch optimization.
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is implemented as shown in Figure 9.12. The goal of the optimization is mini-

or a scheduler; see Chapter 10). Both problems (P8) and (P9) are solved in real
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with high frequency to exploit the information in the sampled measurements
quickly, a potential lack of robustness for large-scale and strongly nonlinear
models, and lack of transparency for the operators.

In some practical cases, the computational burden can be lowered significantly
if the control problem is solved on a short horizon rather than on the horizon
∆c,�.68 Such a simplification requires a transformation of the control problem (P9)
into a short horizon optimization problem defined over the hori-
zon significantly shorter than ∆c,�. If properly chosen, the
local objective can be fully equivalent to the corresponding full horizon objective.
Such a transformation is obviously not possible in all cases, especially, if endpoint
constraints have to be met precisely. However, if a representative short horizon
problem can be formulated, not only can the computational burden be reduced
but the process model can also be rather crude as it is frequently updated by
means of online measurements. In particular, the very simple trend models intro-
duced in Section 9.2.1 are very favorable. The resulting scheme can be regarded
as an adaptive predictive controller with a suitable parameterization of the model
uncertainty. Applications of this direct short-horizon, online optimization are
discussed in Section 9.4.4.

9.4.2.3 Tracking of the Necessary Conditions of Optimality

Implementation of the direct approach is computationally demanding and requires
the robust solution of online optimization problems. An alternative solution strat-
egy has been suggested recently by Bonvin et al.34 Instead of tracking and
updating an optimal trajectory during the batch by repetitive solution of the
reconciliation and control problems (P8 and P9), these authors suggest instead

FIGURE 9.12 Direct online optimization.
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tracking the necessary conditions of optimality (NCO) (see Equations 9.33 and
9.34).

The basic assumption is that the set of active path and terminal constraints
of the real batch plant is known a priori and does not change due to process
uncertainty or modified production objectives. This solution structure has to be
determined from operating experience or by offline optimization of a (simplified
nominal) process model that is expected to have the same switching structure as
the real plant.

The structure of the solution of the control problem (P9) is determined by a
sequence of arcs separated by discontinuities. The type of arcs as well as the
position of the switching points enforce the solution to fulfill the path and endpoint
constraints and to establish a compromise between competing phenomena. The
optimal solution is characterized by scalar quantities θs related to the switching
times and by functions α(θa,t) to represent all the arcs. A characterization of the
optimal solutions shows that the decisions θs and α(θa,t) can be classified as either
constraint seeking,

-θs, -α(θa,t)
-

(which establish path or terminal constraints) or as
sensitivity seeking, θ̃s, α̃(θa,t)˜ which facilitate the compromise between compet-
ing objectives). Constraint- and sensitivity-seeking decisions are determined by
the NCO, which may depend on nonmeasurable process states and (probably)
unknown disturbances.

In summary, NCO tracking has two main features: (1) online adjustment of
θs,
- α(θa,t)- via

-
feedback control, and (2) run-to-run adjustment of θ̃s, α̃(θa,t)˜ via

feedback control. The implementation of such a scheme requires: (1) iden-
tification of the structure of the optimal control profile (preferably for the real
process) including the number of switching points and the type of arcs between
two adjacent switching points; (2) determination of the constraint- and sensitivity-
seeking decision variables; and (3) measurement (or estimation) of the constrained

With this information, it is sufficient to control the NCO to their setpoint zero
in order to determine the control variables u(t). This entails an online evaluation
of the necessary conditions of optimality without numerically solving an optimi-
zation problem online. In some cases, the problem structure is such that no model
is required to implement the strategy.34 An application of this approach is dis-
cussed in Section 9.4.4.

9.4.2.4 Decomposition Approaches for Online 
Optimization

The disadvantages of the direct online solution of the combined reconciliation
and control problem (P8 and P9) as introduced in Section 9.4.2.2 can be overcome
in many cases by exploiting multiple time-scale contributions in the disturbances
d(t) and the significant difference in the dominant time scales of different parts
of the batch process. Decomposition seems to be inevitable, particularly if we
are considering large-scale processes with many interacting process units with
cross-functional integration.10,87 Spatial or vertical decomposition addresses
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differences in the dynamics of different parts of the process, whereas horizontal
decomposition addresses the multiple time scales in the same part of the process.
If horizontal decomposition is applied, base control, predictive reference trajec-
tory tracking control, and dynamic economic optimization are typically applied
at widely differing sampling rates in the range of seconds, minutes, and hours.55

This is the case we are focusing on in this section.
According to Helbig et al.,68 the feasibility of a multiple time-scale decom-

position largely depends on the dynamic nature of the disturbances. If, for exam-
ple, the disturbance can be decomposed into at least two contributions:

d(t) = d0(t) + ∆d(t) (9.83)

that is, a slow trend, d0(t), containing slow frequency contributions and an addi-
tional zero mean contribution, ∆d(t), containing high frequencies, then some sort
of horizontal decomposition should be feasible. The slow frequency contributions
mainly affect the economics of the process and impact the generation of optimal
trajectories. In contrast, process economics are generally insensitive to high-
frequency contributions of the disturbances; however, the fast disturbances may
drive the process off the optimal trajectory. 

support system that exploits two time scales in the disturbances. The upper level
is responsible for the design of a desired optimal trajectory xc(t), uc(t), yc(t),

FIGURE 9.13 Tracking of necessary conditions of optimality.
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Figure 9.14 shows a possible structure of an optimization-based operation
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whereas the lower level is tracking the trajectory set by the upper level. Due to
the time-varying nature of the disturbances, d(t), feedback is not only necessary
to adjust the action of the tracking controller but also to adjust the optimal
trajectory design to compensate for variations in d0(t) and ∆d(t), respectively. The
control action uc(t) is the sum of the desired control trajectory and the
tracking controller output ∆u(t). Reconciliation is also based on the slow and fast
contributions η0(t) and ∆η(t), which are generated by a time-scale separation
module. Control and trajectory design are typically executed on two distinct
sampling intervals δc and δo = nδc, where an integer n >> 1. The performance of
the controller, coded by some indicator ψ,71 must be monitored and communicated
to the trajectory design level to trigger an update of the optimal trajectory in case
the controller is not able to achieve acceptable performance. Although this decom-
position scheme is largely related to so-called composite control in the singular
perturbation literature,79 the achievable performance will be determined by the
way the time-scale separator is implemented.

As compared to the direct solution of the problems (P8) and (P9), the decom-
position approach is expected to be computationally less demanding and to
provide better transparency to the operators. Further, different methods and mod-
els can be used for reconciliation and optimal control on the two time scales.

9.4.3 ALGORITHMS FOR ONLINE OPTIMIZATION

In this section, we sketch algorithmic approaches to (approximately) solve the
online optimization problem introduced in Section 9.4.2. We first briefly address

FIGURE 9.14 Decomposition approach of optimization-based operation support.
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the reconciliation problem (P8) in the next section and then return to algorithms
for general real-time dynamic optimization problems such as problems (P8) and
(P9).

9.4.3.1 Dynamic Data Reconciliation

In principle, two different approaches can be distinguished to solve the reconcil-
iation problem (P8): recursive and receding horizon estimation. The most com-
monly used representative of the recursive approach is the (extended) Kalman
filter (EKF).75,61 Here, we have to make assumptions on the stochastic nature of
the model and measurement uncertainties and neglect the path and terminal
constraints. In addition, the reconciliation interval ∆r,� has to be restricted to one
sampling time; hence, ∆r,� = [tc,� – ∆t,tc,�]. The reader is referred to Henson and
Seborg69 for an introductory exposition of these filter techniques.

In practical applications, estimators based on the extended Kalman filter have
to cope with a number of limitations.103 For nonlinear models, the theoretical
basis breaks down almost completely because the influence of past data on the
current estimate is not properly reflected by the covariance equations anymore.
Hence, tuning of the EKF to obtain good estimates may become very difficult.
Another drawback of the filter is the difficulty incorporating inequality constraints
in a rigorous manner. Especially this last drawback can limit the applicability of
these techniques and has been a motivation for development of receding horizon
estimation (RHE) methods.103

Receding horizon estimation provides a general but computationally demand-
ing alternative for solving the dynamic data reconciliation problem. Any kind of
constraints can be incorporated in the problem formulation, and no restrictive
assumption on the stochastic properties of model and measurement uncertainty
have to be introduced. Here, problem (P8) is solved repetitively on the horizon
∆r,� = [tr, tc,�]. In order to reduce the computational effort, the reconciliation
horizon is often chosen to be of fixed length shorter than
∆r,�. In this case, a key issue is correct consideration of the past data in order to
achieve estimation errors converging to zero in the limit.100 A recursive version
of a receding horizon estimator where the horizon length is restricted to one
sampling interval has been reported by Cheng et al.42

9.4.3.2 Real-Time Dynamic Optimization Algorithms

Algorithms for the solution of dynamic optimization problems such as (P8) and (P9)
were described in detail in Section 9.3. In principle, the same algorithmic framework
can be employed to devise online optimization algorithms; however, the algorithms
must be tailored specifically in order to meet the constraints on computational time.
In particular, the repetitive solution of a sequence of similar optimization problems
can be exploited. Some algorithmic ideas will be summarized below.

In order to solve problem (P8) and (P9), the methods described in Section
9.3 are in principle applicable. The advantages of this methods (e.g., handling of

r c ct t n t, , ,∆ = , − ∆� � �[ ]
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constraints, flexibility, robustness) must, however, be weighted against the real-
time requirements. In general, a run-time guarantee cannot be given for these
methods as the number of NLP iterations can neither be predicted nor limited.
Explicit time management and tracking of the status of the numerical algorithm
are therefore inevitable. Real-time implementation requires explicit time man-
agement to schedule and control the numerical calculations. Obtaining informa-
tion about the convergence of the current approximate solution and hence its
reliability must be supervised.

In the face of stringent real-time requirements, a tailoring of the offline
algorithms described in Section 9.3 has to be done. In particular, all the algorith-
mic extensions take advantage of the fact that a sequence of similar problems
has to be solved repetitively. We briefly review some strategies to initialize the
solution of the current problem � based on the results from solution � – 1. For
an in-depth treatment of the subject, refer to the survey of Binder et al.28

Initialization Strategies
If the data do not change much in the problems on two adjacent horizons � – 1
and � and if the sampling time ∆t is short compared to the dominant time constants
of the process, the solution to the optimal control and reconciliation problems
will obviously not change much. If we assume that the structure of the parame-
terization of the decision variables does not change from � – 1 to �, then the
solution on horizon � – 1 can be shifted by one sampling time to result in a first
approximation of the solution on horizon � which can be used to initialize the
optimization algorithm. Alternatively, one could reuse the solution on the over-
lapping part of both horizons to extrapolate the solution on the disjunctive time
interval to get a first approximate solution. In addition to reusing the previous
solution one can also try to reuse the information on the gradient and in particular
on the Hessian, which is expensive to compute.

Multiscale Optimization
Powerful initialization strategies are possible not only between problems on
adjacent horizons but also between two approximations within a horizon if mul-
tiscale representations of the optimization problems are used. Such a multiscale
framework with applications to control and estimation has recently been sug-
gested by Binder and coworkers.23,25,28–30 In their approach, the optimization
problem is projected to a sequence of nested spaces that provide local resolution
of the state and control variables. An adaptation strategy allows for a gradual
refinement of the optimal solution reusing information from a previous solution
step. Tailored numerical algorithms are currently under development to exploit
the multiscale properties with high computational efficiency.

Real-Time Iteration
Often these warm start strategies do not sufficiently reduce the computational
effort. Diehl48 and Diehl et al.49 proposed a drastic simplification. They suggested
a sequence of Newton-type iterations to determine the values of the degrees of
freedom in the next optimization step. This approach is based on a linearization
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of all problem functions resulting in a quadratic program of a special structure.
For least-squares objectives, the Gauss–Newton matrices can be used as an
inexpensive approximation of the exact Hessian. This iterative procedure extends
linear time-varying model predictive control and is comparable to a model pre-
dictive controller based on system linearization along the currently best predicted
trajectory.60

9.4.4 APPLICATIONS

This section concludes with a brief discussion of applications of optimal operation
of batch processes. A case study on optimization-based operation of an industrial
semibatch reactor is presented. The primary emphasis is on the applicability of
online optimization as outlined in Section 9.2 when significant uncertainty is
present. A measurement-based approach via tracking of the necessary conditions
of optimality proposed in Section 9.4.2.3 is also employed.

Case Study

45 The setup consists of a common stirred tank reactor equipped with a jacket
in which a fixed amount of heating or cooling medium is circulated. The reactor
temperature can be manipulated by adjusting the temperature of the medium by
inserting either hot or cold water into the loop through equal percentage control
valves.

The exothermic liquid-phase reaction follows the simple scheme A + B → C
+ D, where A and B are the reactants, C is the desired product, and D is a
byproduct. In addition, a solvent S and a catalyst Cat are present. The reactor is

FIGURE 9.15 Reactor schematic.

M

TI
103

GI
301

TI
303

311
UY

310
UYC

FI

201

TI

102

GI

302
TI

304

TI

101

DK3017_C009.fm  Page 365  Monday, August 15, 2005  11:44 AM

© 2006 by Taylor & Francis Group, LLC

A schematic of the batch process considered in the case study is given in Figure
9.15.



366 Batch Processes

initially filled with a fixed amount of A, S, and Cat at ambient temperature and
pressure. After the initial reactor content has been heated to the required reaction
temperature, feeding of a B/S mixture is initiated and the reaction phase begins.

f

201), the reactor temperature TR (TI 101), the jacket inlet temperature TJ,i (TI
102), the jacket outlet temperature TJ,o (TI 103), the temperature of the hot stream
Thot (TI 303), and the temperature of the cold stream Tcold (TI 304).

The control and optimization system utilizes the split-range variable  Ccon

and the feed rate Ff as manipulated variables. The first task is to heat the initial
reactor content from ambient temperature to the required reaction temperature of
70˚C and to keep temperature at this value during the subsequent reaction phase.
Feeding may only begin after the reaction temperature has been reached. A total
amount of 5000 kg has to be fed during the reaction phase. At the beginning of
the reactant feeding phase, the feed rate is constrained by a linear increase of the
feed rate, from 100 to 1000 kg/hr within half an hour. The batch ends when B
has been converted up to a remaining amount of 50 kg.

The operational objective is to minimize the duration of the reaction phase
tf by determining a suitable feed rate profile, Ff(t). Tight temperature control has
to be achieved to avoid additional unwanted side reactions. In order to safely
produce a product of desired quality, it is not sufficient to control only the reaction
temperature. The feed rate must be chosen in such a way that in case of a cooling
system failure adiabatic conversion of the current reactor content will not increase
the reaction temperature beyond a specified limit. In order to avoid runaway due
to decomposition reactions beginning at that temperature level, a path constraint
on the so-called adiabatic maximum temperature (Tad) has to be considered (see
Equation 9.95, below).114 The adiabatic end temperature is constrained for safety
reasons to be, Tad(t) ≤ 85°C. The cooling system control action Ccon has to be
between its lower and upper bounds: and , respectively. At the end of
the batch, the concentration of B or the amount MB of B in the reactor has to be
below a given value.

The mathematical formulation of the optimization problem is given by:

  (P10)

(9.84)
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Online available measurements include (see Figure 9.15) the feed rate F  (FI
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This dynamic optimization problem could readily be solved for the controls Ccon(t)
and Ff(t) if a sufficiently accurate model is available; however, this is not the case
in many industrial situations. Therefore, measurement-based optimization has to
be employed in some variant to cope with the uncertainty.

In our scenario, we assume that the reaction kinetics are unknown. Further,
there are uncertainties in the heat-transfer coefficient and in the valve positions
that send the streams of hot or cold medium into the heating or cooling circulation
loop. To address this operational problem, we will now take a look at a special
case of the direct optimization scheme introduced in Section 9.4.2.2 which is
closely related to model predictive control.

Optimizing Adaptive Calorimetric Model Predictive Control
The basic principle of the model predictive control (MPC) scheme for the opti-
mization of semibatch reaction processes is to use available degrees of freedom
on the process (such as the feed rate) to reduce the batch time while simulta-
neously solving a classical temperature control problem. For this purpose, the
optimization problem (P10) (“minimize batch time”) has to be transformed into
a local optimization problem on a finite prediction horizon that can be interpreted
as a particular form of the direct optimization scheme described in Section 9.4.2.2.

As shown in a case study of an industrial two-phase polymerization reactor,67

simple process models based on the principles of reaction calorimetry107 are
sufficient in order to solve the problem. Calorimetric state estimation techniques
can be applied in order to permanently adapt crude models to match current
process dynamics, thus allowing at least short horizon predictions even in cases
of large structural and parametric uncertainties. This strategy gives rise to the
term adaptive calorimetric model predictive control.

The design of any optimizing MPC scheme consists of three basic elements:
First, an appropriate cost function has to be chosen which drives the process along
different active constraints (see problem P9). For the above type of reaction
process, this can be achieved by extending the classical MPC controller objective
function for temperature control with an additional term maximizing the feed
rate. Second, a suitable calorimetric estimator must be derived in order to infer
unknown quantities from available measurements (see problem P8). In addition
to simple state estimation we have to deal with the uncertain reaction kinetics.
For that purpose, the heat of reaction (QR) is interpreted as an unknown input in
the energy balance:

(9.85)

The unknown heat of reaction ( QR) may be estimated on the basis of a simple
trend model such as:

(9.86)

... ...
d T

d t
QR= +

d Q

d t
R = 0
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Finally, prediction models for the estimated variables (e.g., QR) have to be for-
mulated to predict the dynamics of the unknown input for the solution of the
control problem into the future (see Equation 9.79). Application of the estimation
model as the predictor may be restricted by controllability issues in cases where
the estimated variable depends on the manipulated variables; therefore, a specific
prediction model differing from the estimation model is often inevitable.

Estimation of calorimetric state and input is implemented by means of an
extended Kalman filter (EKF) with output clipping.122 The symbols used in the

the equations are of appropriate physical dimensions resulting from the conver-
sion of watts (W) to kilowatts (kW) or seconds (s) to hours (hr). 

The mass and component balances are:

(9.87)

The energy balance for the reactor content is:

(9.88)

The energy balance of the jacket content is:

(9.89)
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following model and their meaning are compiled in Table 9.1. The numbers in
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TABLE 9.1
Symbols Used in the Model

Symbol Unit Description

Ccon % Split range
Ccold % Valve position cold stream
Chot % Valve position hot stream
cp kJ/kg/K Heat capacity reactor content
cp,f kJ/Kg/K Heat capacity feed
cp,c kJ/kg/K Heat capacity cooling medium
cp,cold kJ/kg/K Heat capacity cold stream
cp,hot kJ/kg/K Heat capacity hot stream
Ff kg/hr Feed rate
∆HR kJ/mol Reaction enthalpy
MWA kg/kmol Molar weight component A
MWB kg/kmol Molar weight component B
wB,f — Weight fraction component B
TR ˚C Temperature of reactor content
TJ,i ˚C Jacket inlet temperature
TJ,o ˚C Jacket outlet temperature
Tf ˚C Temperature of feed
Thot ˚C Temperature of hot stream
Tcold ˚C Temperature of cold stream
Tad ˚C Adiabatic temperature
M kg Mass of reactor content
MA kg Mass of component A
MB kg Mass of component B
M0 kg Initial mass of reactor content
MJ kg Mass of jacket content
MM kg Mass of medium in cooling utility
Fc kg/hr Circulation stream
α0 kW/K Heat transfer coefficient
QScold kg/hr Maximum cold stream
V Tcold — Coeffcient valve characteristic
KVS

cold — Coeffcient valve characteristic
KV 0

cold — Coeffcient valve characteristic
QShot kg/hr Maximum hot stream
V Thot — Coeffcient valve characteristic
KV S

hot — Coeffcient valve characteristic
KV 0

hot — Coeffcient valve characteristic
QR kW Heat of reaction
QREKF kW Estimated heat of reaction
∆Qc kW Error term heating/cooling utility
∆α kW/K Error term heat transfer coefficient
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The energy balance for the cooling/heating utility is:

(9.90)

The split range for the valve positioning is:

(9.91)

(9.92)

The trend models for unknown quantities are:

(9.93)

(9.94)

(9.95)

In addition to the heat of reaction (see Equation 9.95), two additional sources
of uncertainty are included. The uncertainties in the jacket heat transfer
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are handled by estimating a drifting parameter ∆α (see Equation 9.93). This
corresponds to the assumption that the coefficient α0 for the initially filled reactor
is known rather well. The complex terms in Equation (9.90) arise due to consid-
eration of the valve behavior described by equal percentage valves. Uncertainties
in these valve flows lead to a nonzero error term, ∆QC, which is assumed to be
constant over the prediction horizon (see Equation (9.94).

The optimization task is to minimize the duration of the reaction phase, which
can be accomplished by feeding the reactants as quickly as possible subject to
constraints. The following type of cost functional may be applied:

(9.96)

It contains four terms representing the temperature control task, penalties on
control moves, and a free customizable fourth term. In this application, the fourth
term depends on the feed rate. It is evaluated continuously as:

(9.97)

Here,  is the prediction horizon, where ∆t is the sampling
interval used for control and n is the number of prediction steps (see Section
9.4.2.2).

In the most streamlined version, the prediction model for the MPC includes
all equations of the EKF model. If, however, the estimated variable represents an
important process variable which itself depends on the manipulated variables
(i.e., the heat of reaction), a specific prediction model structure:

(9.98)

Φ = −

+

=

=

∑

∑

α

α

1

1

2

2

1

i

n

R i R
set

i

i

n

con

T t T t

C t

( ( ) ( ))

( ( ii con i

i

n

f i f i

C t

F t F t

) ( ))

( ( ) ( ))

−

+ −

−

−

=

−∑

1
2

3

1

1
2α

φφJ c

i ct t i t

( )∆

= + ⋅ ∆

,

,

�

�

φ αJ c
t

t

f
c

c c

F t dt( ) ( )∆ =,

+∆

,

, ,

∫�
�

� �

4

c c ct t n t, , ,∆ = , + ∆� � �[ ]

Q fR Q Q= ,...( )ϑ

DK3017_C009.fm  Page 371  Monday, August 15, 2005  11:44 AM

© 2006 by Taylor & Francis Group, LLC



372 Batch Processes

may be proposed for prediction (see Equation 9.2). The initial value of the
prediction should match the current estimate, which can be achieved by updating
some parameter ϑQ or assuming a constant error term over time.

Because the reaction is isothermal, the major prediction aspect with respect
to the heat of reaction covers the dependency on feed component B. Assuming
the reaction order to be locally of first order with respect to B, the following
realization of Equation 9.98 can be formulated:

(9.99)

The model parameter ϑQ is adapted at the beginning of each prediction step by:

(9.100)

In order to handle the safety constraint, the MPC model also contains an equation
to predict the adiabatic maximum temperature (Tad):

(9.101)

which has to be constrained over the reaction phase. 

reactor temperature for the simulated reactor (SIM) and the temperature adapted
with the extended Kalman filter (EKF). Obviously, the optimizing controller is
able to handle the temperature control task. The three diagrams at the bottom of
Figure 9.16 show the trajectories of the constrained variables. These are the
adiabatic temperature Tad(t) (top), the split range variable Ccon(t) (middle), and
the feed rate Ff(t) (bottom). Active constraints are indicated by intervals between
dashed lines. The sequence of active constraints is given by the feed rate limitation
imposed by the initial feeding ramp, limitations by the cooling utility and the
safety constraint on the adiabatic temperature. The feed rate has been determined
in such a way that the local optimal solution under consideration of all constraints
is met. Figure 9.17 shows a comparison of the unknown simulated heat of reaction
(SIM) and the estimated heat of reaction (EKF) at the top and the unknown
simulated adiabatic temperature (SIM) and estimated adiabatic temperature
(EKF) at the bottom.
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The results of this online recipe optimization are illustrated in Figure 9.16
and Figure 9.17. The top diagram of Figure 9.16 shows a comparison of the
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FIGURE 9.16 Online optimization: (top) controlled reactor temperature, and (bottom)
path-constrained feed rate, cooling capacity, and adiabatic temperature.
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FIGURE 9.17 Online optimization: (top) estimation and prediction error of heat of reac-
tion, and (bottom) adiabatic temperature.
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Online Optimization via Feedback Control
From the results of the previous section it is obvious that the optimal solution of
problem (P10) is determined by a sequence of active constraints, as shown in the

in the reaction phase, i.e., after reaching the desired reactor temperature at about
t = 1.7 hr, is given by: (1) , the feed rate limitation imposed by the initial
feeding ramp; (2) , indicating a limitation of the cooling utility; (3) , the
safety constraint; and (4) , after the desired total amount has been fed. For
this particular case study, it can even be proven113 that the optimal solution for
this reaction type is always determined by the constraints. This is a nice result
because the optimal solution can be implemented by simple proportional–integral
controllers used to adapt the feed rate Ff in order to track the sequence of active
constraints: (1) manipulate Ff to the set point given by the ramp in the initial
feeding phase, (2) manipulate Ff such that the split range variable is at its lower
bound, (3) adjust Ff in order to satisfy the safety constraint, and (4) set the set
point for Ff to .

Recall from Section 9.3 that no model of the process is required to implement
this control strategy if all constraints can be measured; however, because the
adiabatic temperature cannot be measured online, this constraint has to be esti-
mated. Comparison with Equation 9.97 shows that the only unknown quantity in
the expression for the adiabatic temperature is the am ount MB(t) of component
B; therefore, a simple regression model can be used to calculate an estimate
of MB and thus Tad. The following regression model is derived from Equations
9.87 and 9.88 under the assumption of perfect temperature control:

(9.102)

where ϑI represents a parameter associated with heat transfer, ϑII represents a
parameter related to temperature changes due to the difference in feed and reactor
temperature, and ϑIII parameterizes the initial amount of MB. Recall that the
structure of this predictive model was introduced in Section 9.2 by Equations 9.3
and 9.4.

In the first 2 hours of the reaction phase, the constraint on the adiabatic
temperature is not active. This interval can be used as reconciliation interval ∆r.
Samples of the reactor content taken during this period in order to determine the
current amount MB of component B can be used to fit the model (Equation 9.102)
to measurements ηr,� by solving problem (P8) once for the collected data.

and trajectories of the constrained variables (bottom). Again, the adiabatic
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In analogy to Figure 9.16, Figure 9.18 shows the reactor temperature (top)
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temperature, Tad(t) (top); the split range variable, Ccon(t) (middle); and the feed
rate, Ff(t) (bottom) are presented. Active constraints are indicated by intervals

from regularization with the manipulated variables in the objective function
(Equation 9.97) which prohibits drastic control moves.

Practical Applications
A significant number of applications of optimal operation of batch processes have

has gained a lot of attention in recent years. Clarke-Pringle and MacGregor44

applied a batch-to-batch optimization methodology for producing a desired
molecular-weight distribution (MWD) using an approximate model. A measure-
ment of the MWD at the end of the batch is used to update manipulated variable
trajectories for the next batch, thus iterating into a good operating policy. Srini-
vasan et al.111 used a parameterization of the inputs, updated on a run-to-run basis
using a feedback control scheme that tracks signals that are invariant under
uncertainty. The methodology was conceived to improve the cost function from
batch to batch without constraint violation. Batch-to-batch control and online
single batch control strategies were investigated by Lee et al.82 for controlling
the particle size distribution (PSD) in a precipitation process in a semibatch
reactor. A systematic integration of the two strategies has been shown to have a
complementary effect on the control performance. This approach is expected to
find more industrial applications as the computational complexity of this approach
is small and measurements are usually available after completion of a batch at
no extra cost.

and experimental systems in various ways. For example, Helbig et al.67 reported
an application with a short prediction horizon. Direct optimization with predic-
tions to the end of the horizon have been studied by Terwiesch,117 Ruppen et
al.,104 and Abel et al.1 in the context of semibatch reactors. A very special case
of direct online optimization is nonlinear model predictive control with output
feedback. In this case, the control objective is to follow a given reference trajec-
tory or a set point. For example, Prasad et al.97 applied this concept to an industrial
styrene polymerization reactor. The main goal was to control product qualities
such as average molecular weight and polydispersity as well as the production
rate. An EKF was used for estimating the states and disturbances from the
measurements, which were available for different sample times. It should be
noted, however, that a fixed recipe is assumed in this case as no economical
optimization was carried out online.

recently been introduced. Some examples are presented in the papers of Bonvin
et al.34 and Srinivasan et al.112

are still under development and have not yet been widely applied. A semibatch
reactive distillation process was considered by Kadam et al.,73 who presented
a particular aspect of the concept. Kadam et al.74 presented an example of a
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between dashed lines. The differences between Figure 9.16 and Figure 9.18 result

been reported in the literature. Batch-to-batch optimization (see Section 9.4.2.1)

Direct on-line optimization (see Section 9.4.2.2) has been applied to simulated

 Decomposition approaches (see Section 9.4.2.4)

Tracking the necessary conditions of optimality (see Section 4.2.3) has only
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FIGURE 9.18 Online optimization via feedback control: (top) controlled reactor temper-
ature, and (bottom) path-constrained feed rate, cooling capacity, and adiabatic temperature.
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decomposition approach applied to an industrial polymerization process in which
they considered an optimal grade change of a continuous process. The online
optimization was decomposed into two subproblems which were solved for
different sample times. Rigorous dynamic optimization, a Kalman filter, and a
linear time-variant model predictive controller were used to implement the various
functions.

Despite the significant potential of optimal operation of batch processes
employing a dynamic process model and the measurements available after or
during a batch, only few real applications have been reported so far. A significant
increase in industrial application is predicted in the future.

9.5 SUMMARY

Batch processes are characterized by an inherent dynamic nature that allows them
to react to market-driven fluctuations, such as changes in feedstock and product
specifications, in a flexible way; however, the unsteady nature and flexibility of
batch processes pose challenging design and operation problems. Traditional
approaches to the design of batch unit operations include short-cut methods, rules
of thumb, and design by analogy. Recent research activities have tried to come
up with more fundamental and rigorous design methodologies. Systematic meth-
ods for the synthesis and conceptual design of batch processes are a central point
of interest in these activities; thus, model-based design and optimization strategies
play a key role. They are the topic of this chapter.

Throughout this chapter we have discussed various aspects of batch process
modeling with a focus on model application in dynamic optimization. The models
governing the process behavior have to be derived from the process knowledge
available; however, unavoidable uncertainty and a lack of mechanistic under-
standing in batch process modeling often discourage potential users from pro-
ceeding with model-based techniques. In order to overcome these obstacles,
different sources of uncertainty have been classified and suggestions made regard-
ing how these uncertainties can be modeled and parameterized. Models integrated
based on fundamental mechanisms and those derived from reasoning or data are
referred to as mixed fundamental–empirical models and are in many cases ade-
quate to represent various types of uncertain model aspects.

Our analysis of model uncertainty is followed by an introduction to several
types of batch process models with increasing levels of complexity. We began
our considerations with continuous DAE models describing batch processes that
are operated in a single stage. We then generalized this class of models to
multistage models describing a batch process involving more than one processing
step. In fact, multistage models reveal a strong relationship to the far more
complex class of general discrete–continuous hybrid models. These models are
capable of describing the dynamic behavior of batch processes with explicit as
well as implicit discontinuities. Various examples are given to illustrate the
different types of discontinuities that might appear during the operation of batch
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processes. These examples further illustrate the concepts of these three model
classes.

A physicochemical process model defines a simulation problem when all
degrees of freedom describing the process structure and operation are fixed.
Instead of carrying out simulation experiments with parameter variations, we
advocate the use of optimization techniques. Given the immense complexity of
batch design, control, and operation problems, these techniques provide a means
of searching for optimal parameters in a more organized way than by trial and
error; however, such an approach requires some insight into the formulation and
solution techniques of optimization problems. We introduced the use of con-
straints and objective functions for this purpose. The discussion of solution
techniques distinguished between cases with a fixed process structure and cases
where structural design alternatives are also degrees of freedom. The former case
can be formulated as a single- or multistage dynamic optimization problem. The
most popular solution techniques for this problem type (i.e., control vector param-
eterization and full discretization) were revised. In the latter case, the incorpora-
tion of structural design alternatives gives rise to a superstructure model formu-
lation involving disjunctions for which special solution techniques such as mixed-
integer optimization methods are required. An overview of these methods is also
presented in this chapter.

After the discussion of generating nominal optimal solutions of optimization
problems we introduced the concept of optimization considering uncertainty
explicitly in the problem formulation. Two approaches can be distinguished. In
the first case, we assume that the uncertainty can be completely resolved by
measurements available before the batch is started, leading to a parametric pro-
gramming problem that provides a solution for each combination of potential
uncertain parameters. If the uncertainties cannot be removed by additional mea-
surements, all possible uncertainties have to be incorporated into one single robust
optimization problem. In robust optimization, the relative influence of various
parameter values and disturbances on the objective function is defined on the
basis of probabilities.

Batch process design and optimization not only involve nominal offline cal-
culated solutions but also must consider the application of those solutions online.
Solution of the receding horizon online optimization problem is quite involved;
therefore, we discussed several concepts appropriate in certain situations to cut
down the computational effort. All approaches exploit measurement feedback, in
contrast to the robust optimization formulation, in order to adapt the models used
in the optimization to the real plant or to evaluate the necessary conditions for
optimality directly. The methods explained differ according to the available online
information, the computational effort, and the process knowledge available or
necessary. We introduced a case where measurements are not used during the
batch to reduce model or process uncertainties in a batch-to-batch optimization
scheme. Here, measurements from previous batches are exploited in the opera-
tional strategy. Next, we discussed the direct solution of a high-frequency data
reconciliation and online optimization problem associated with the (largest)
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sampling time of the measurements. The computational burden can be signifi-
cantly reduced if the necessary optimality conditions of the problem can be
identified and used to implement an output feedback. Finally, decomposition
strategies were introduced to exploit various time scales in the process. We
concluded with some remarks on tailoring algorithms to handle the peculiarities
of online optimization.

Today, most aspects of model-based design and optimization are by no means
mature. Many open questions and points of improvement in this area are subject
to research in academia and industry. Among these are aspects of model devel-
opment and validation, as well as the immense variety of numerical solution
techniques, which are continuously being improved. Nevertheless, rigorous mod-
els and optimization-based strategies have a high potential for the future and will
remain a central focus of research.
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10.1 INTRODUCTION

 

One key topic in batch process management is planning and scheduling. Typically,
production scheduling is tactical and deals with detailed timing of specific man-
ufacturing steps, while campaign planning is more strategic and related to con-
trolling costs over longer periods of time. Both concepts are characterized by
extensive data needs, uncertainty, a large decision space (sequencing, timing,
product assignment to units, etc.), and the need for good, feasible solutions.
Optimal plans and schedules, found through numerical modeling techniques, may
not always be required to satisfy the real-world business needs even though they
might be worth the effort. Depending on the sophistication of approach used to
solve the problem, a feasible plan or schedule may be all that is considered
necessary to meet the immediate business needs.

 

Production scheduling

 

 is the short-term look (less than a week to a month)
at the requirements for each product to be made. The time scale should fit the
needs of manufacturing. Decisions that must be made at this level are: 

• How many batches required for each product
• Which equipment to use if multiple units are available
• Start and stop time of each batch on each piece of equipment (the run

length)
• Allocation of resources to support the production of those batches (e.g.,

utilities, operators, raw materials, waste facilities)

 

Campaign planning

 

, then, is a medium-term look (weeks to months) at a
series of batches of one product. Because this planning is done for a longer period
of time, performance is measured on metrics averaged over time. The time scale
for campaign planning depends on both the business and production structure.
Decisions to be made include:

• Production goals, or the total amount of each product in each campaign
and the resulting work in-process (WIP, or inventories)

• Which production line (processing train) to use if multiple lines are
available in the facility

• Sequence of campaigns on each train
• Day when each campaign starts and stops

An extra dimension to consider in campaign planning is that different inter-
mediates and final products may share production facilities but use distinct pro-
cessing trains, or they could even share certain equipment units. During the
planning process, the link between intermediate campaigns and the final product
campaign must be maintained. If equipment is shared among intermediates or
products, typically long production campaigns (on the order of weeks or months)
of single intermediates are required, and then careful 

 

turnarounds

 

 (with possible
cleanouts) are performed. Turnarounds are the time and effort needed to change
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over, and sometimes clean out, equipment for a new intermediate or product.
Because many batch chemicals are low-volume, high-value products, they may
be structurally complex and require a large number of processing steps and
complex intermediates. Thus, decision making must be sophisticated enough to
match the number of required intermediates for each product. 

Different companies, and even businesses within the same company, deter-
mine the time horizons that campaign planning and production scheduling encom-
pass in their own ways. These differences can be based on the complexity of the
process being analyzed or the detail and time frame of the solutions needed. The
distinction between campaign planning and production scheduling in batch facil-
ities has become further blurred in recent years as new process systems are being
utilized. The computational power of current software solutions allows more
detailed decisions to be made (down to the level of each batch on each unit) over
a longer time period. Thus, both timing and costs can be driven to very good or
even optimal solutions over a longer and longer planning and scheduling horizon. 

The long-term view of this decision-making process for batch plant operation
may be considered 

 

supply-chain planning

 

 with characteristic time scales of
months or years. In this case, supply planning would include selecting what
products to make in which years, choosing manufacturing sites, utilizing third
party contractors, etc. Long-range capacity and forecasting systems would also
be needed. Again, because of current software and hardware capabilities, many
of these planning systems overlap with campaign planning and even detailed
scheduling. At present, the 

 

strategic planning

 

 activities (multiyear, multilocation,
multiproduct, and multiconstraint decisions) are still at too high a level to be
automated in the same systems as planning and scheduling. How these different
levels of planning are differentiated is influenced by the management structure
of the company, so each organization may have its own terminology and planning

 

10.1.1 W

 

HY

 

 A

 

CCURATE

 

 P

 

LANNING

 

 

 

AND

 

 S

 

CHEDULING

 

 A

 

RE

 

 
N

 

EEDED

 

Due to the increased stress on profitability in all manufacturing processes and
pressure to control costs, reduce inventories, and get more product out the door
with the same resources, the job of the planner and production scheduler has
become extremely complex. In addition, the use of third-party subcontractors for
some intermediates (or final products), reduced lead times, and the increasing
global character of suppliers and customers are driving the need for advanced
planning and scheduling. Additional complexities are encountered when one
or more new products are introduced simultaneously into the marketplace. In
addition to the normal 

 

uncertainties

 

 in the day-to-day running of a production
facility (e.g., equipment breakdowns, raw material shortages, unavailability of
required labor and utilities), new product introductions include greater market
uncertainties (demand levels, demand timings, and product pricing) and produc-
tion uncertainties (cycle times and yields). Software systems or modeling tools
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are needed that can incorporate many of the uncertainties associated with planning
and shorten the time required to make longer-term supply-chain decisions. 

For production personnel, planning is necessary to help understand customer
demands and react effectively to change. If efficient production schedules and cam-
paign plans are available, management can deal with any changes soon after they
occur. In fact, what-if scenarios can be formulated beforehand to help solve issues
before they happen if a numerical tool or appropriate model is available. The cam-
paign plan improves communication among production personnel, product manag-
ers, and the sales and marketing organization. If a concrete plan is in place and
different what-if scenarios are run, production has a better chance to obtain buy-in
from the commercial side of the business. The commercial product managers will
also have more confidence that they will be able to meet customer demands.

To illustrate that a campaign plan is feasible, a detailed schedule of the tasks
within the production facility is beneficial. This schedule can help guide all
operations personnel in the daily running of the plant. Plant shutdowns, mainte-
nance, critical raw material deliveries, and waste handling should all be linked
to the schedule. Any data acquisition and modeling activity used to construct
plans and schedules will result in a better understanding of the process and any
potential causes for delays. These data and models contribute to continual process
improvement.

 

10.1.2 W

 

HERE

 

 D

 

O

 

 P

 

LANNING

 

 

 

AND

 

 S

 

CHEDULING

 

 F

 

IT

 

?

 

Batch plant planning and scheduling systems sit in between enterprise resource
planning (ERP) and manufacturing execution systems (MES). ERP encompasses
the older manufacturing resource planning concept known as MRP-II (which
encompasses when and where materials are needed, long-range planning, capacity
planning, business planning, etc.), as well as forecasting, customer order process-
ing and analysis, finance, local and global logistics, and quality control. ERP can
be considered as supply-chain management (SCM) if every operation of the value
chain is managed to minimize the cost and time of supplying products to cus-
tomers. MES acquires, manages, and reports production-related data on all plant
activities, such as raw material orders, batch tracking, quality, maintenance,
personnel, and inventory levels, as they occur. 

scheduling. The ovals represent systems, and the rectangles represent work pro-
cesses. Customer orders, or sales data, drive the forecasting process. Historic and
forecasted demands are used in supply-chain planning, which in turn feeds the
campaign planning process. In some companies, supply-chain planning may be
called sales and operations planning (S&OP). Detailed production scheduling
requires process data from the MES layer as well as logistics information about
transportation and warehousing of raw materials and products. For planning and
scheduling to make full use of all available information, these business
and process systems must be fully incorporated into a computer-integrated man-
ufacturing (CIM) system. In this case, CIM can be thought of as integrating the
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flow of all the manufacturing information in Figure 10.1 into one computer
system. As noted by Edgar,

 

1

 

 the chemical processing industry as a whole has not
reached this level of integration.

 

10.1.3 I

 

MPORTANCE

 

 

 

OF

 

 I

 

NTEGRATION

 

When ERP and MES are integrated, the feasibility of a new forecast can be
checked by updating the campaign plans and the production schedules. Rapid
feedback of production scheduling issues from production can help the product
manager decide on the need for third-party contractors or which customers will
be shorted if demands cannot be met. The sequence and timing of batches are
also passed to the MES layer so feedback can be obtained quickly on the status
of production. Having one planning and scheduling function avoids fragmentation
of the planning process that could result in several conflicting plans for
production. Challenges do exist before any planning and scheduling systems are
successfully integrated and fully utilized. With computer hardware and software
capabilities increasing rapidly, information technology is not the barrier so much
as human or organizational barriers. Shobrys and White

 

2

 

 explain how to change
these behaviors and give more thoughts on how planning and scheduling systems
work together.

 

FIGURE 10.1

 

Key information systems and processes.
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10.1.4 H
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WITHOUT
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LANNING
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 S

 

CHEDULING

 

?

 

When designing or retrofitting a batch plant, the final design may or may not
necessarily be associated with a feasible schedule. In some design optimization
cases, constraints are added to handle the planning and scheduling. Lin and
Floudas

 

3

 

 discuss this case with two small example problems. For many applica-
tions, these extra constraints may make the problem too complex to solve in a
reasonable amount of time. In this case, an iterative approach may be required;
if a feasible schedule cannot be found, then certain inputs to the design optimi-
zation are adjusted and a new design is found.

 

4

 

 Heo et al.

 

5

 

 approached this
complexity problem by using a three-step approach for multipurpose plants. Thus,
before a new plant is running or even built, planning and scheduling are necessary
to verify the feasibility of the design.

 

10.1.5 S

 

TEPS

 

 

 

FOR

 

 R

 

EAL

 

-W

 

ORLD

 

 P

 

LANNING

 

 

 

AND

 

 S

 

CHEDULING

 

The following steps have been modified from Houston and Basu,

 

6

 

 who were
concerned specifically with pharmaceutical pilot-plant management. 

1.

 

Establish the project team.

 

 The personnel involved with inputs to and
results from the scheduling and planning process must be brought
together as a team. These personnel could include product managers,
supply-chain planners, plant schedulers, information services, and
mathematical modelers. Extensive modeling expertise, which compa-
nies might not have in-house, may be required for the team to imple-
ment some of the more complex solution approaches discussed later.
However, even a simplified implementation is better than no imple-
mentation at all. 

2.

 

Document all assumptions.

 

 Assumptions must be documented so both
production and product marketing managers understand the issues and
feel part of the same team. Any uncertainties in marketing or production
data should be understood, communicated to the team, and managed.
The scope should be defined, as well. Misunderstandings will be
reduced, and, as personnel leave and join the team, they will understand
the issues more quickly and contribute more effectively. These assump-
tions must be communicated to both planning and scheduling personnel
so all decisions are consistent.

3.

 

Acquire demand data.

 

 Manufacturing and marketing managers must be
in frequent contact to keep demand forecasts (amounts and due dates)
as up to date as possible. Uncertainties in demand must be acknowledged
and the risk managed as well as possible through an integrated team.
Also, any downtime at the plant must be communicated with the com-
mercial managers so they can plan accordingly. Demand data will be
required if the production strategy is 

 

make-to-order

 

. The goal of planning
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and scheduling is to meet exact due dates for each product, whereas the
make-to-stock strategy is based on inventory levels and current capacity.

4.

 

Plan product campaigns.

 

 The amount of each product in each cam-
paign may be determined from a long-term supply-chain plan or by
campaign planning. When campaign amounts over several months
are determined, any missed customer demands can be estimated.
Difficult to obtain or long lead-time raw materials can be planned
for, and any special processing needs or short-term equipment mod-
ifications can be identified. With multiple products, either long cam-
paigns of single products or small numbers of batches interspersed
between different products may be run. Depending on how planning
and scheduling are aggregated, detailed scheduling (step 7) may be
integrated into this step to help determine how many batches to run
in each campaign. The modeling experts on the team must decide
on the appropriate planning algorithms and tools to use based on
the business requirements

5.

 

Check production capacity. 

 

The campaign plan will give manufacturing
the campaign start or end date and required amounts. With this infor-
mation, production must use their current process yields and equipment
sizes to verify that the campaigns can be completed on time. Batch
sizes, inventory levels, and planned maintenance and shutdowns must
be known as well. This capacity is the real-life output rate of the plant
based on actual batches. Typically, this is less than the 

 

design capacity

 

,
which is the ideal capacity on paper. The design capacity may never
be reached because of scheduling complexities and other obstacles to
productivity.

6.

 

Predict raw material and waste needs.

 

 Once the campaigns are
planned, ordering of raw materials can be planned, and any special
handling of the waste streams generated can be coordinated with onsite
or offsite environmental facilities. The cost to process the campaigns
can then be estimated and reported to management.

7.

 

Schedule production.

 

 If a detailed schedule is not produced in step 4,
then the start and stop time of each batch on each equipment unit must
be determined. Details on exactly when raw materials, utilities, and
operators will be needed and waste streams generated must be known.
Consistency must be maintained between the planning and scheduling
systems so that the same key assumptions and data are used. The team
must choose a suitable scheduling approach to meet the business needs.
The appropriate results of supply-chain planning must be passed down
to the lower, more detailed systems. 

8.

 

Track actual schedule and costs versus plan.

 

 Areas for continuous
process improvement can be identified if actual vs. plan are examined.

9.

 

Maintain the software and connections to external databases.

 

 The
planning and scheduling systems are usually complex software appli-
cations that require real-time process data and transactional demand
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data. As the manufacturing process is de-bottlenecked or updated and
as the customer base or market changes over time, the sophisticated
algorithms as well as the data-acquisition systems must be adapted and
maintained. Their value is lost and they will fall into disuse if they no
longer reflect the current situation.

 

10.2 DATA AND SYSTEM REQUIREMENTS

 

Regardless of how a schedule or plan is constructed, certain types of input data
are required. Most scheduling applications are data intensive and require some
or all of the following types of data:

• Sales and marketing
• Time horizon, forecast amounts, order due dates, prices

• Operations
• Manufacturing recipe (precedence of processing tasks, unit opera-

tions flowchart, task descriptions, allowable task to unit assign-
ments)

• Production facility (equipment types, capacities, rates) 
• Inventory (stock-out levels, locations, capacities)
• Raw materials (availability, amounts, and timing)
• Intermediates/products (zero wait when stability is an issue, turn-

around times)
• Resources (e.g., amounts or use rates for utilities, operators, waste

processing)

 

10.2.1 I

 

MPORTANCE

 

 

 

OF

 

 F

 

ORECAST

 

 D

 

ATA

 

For planning purposes, many batch chemical companies produce a 12-month
forecast, focusing more effort on the first 1 to 3 months. Ideally, the forecast
should include uncertainties in the demands, but at a minimum an upside and a
downside forecast should be estimated. Because of this uncertainty, actual inven-
tory levels may vary widely and some minimum stock-out level or buffer must
be set. Production scheduling must handle the risk that customer demands will
be unmet or that inventory carrying costs will be too high. The process may be
repeated several times a year or even every month. The forecast that is based on
customer sales must be disaggregated into the level of product that is manufac-
tured at the facility being scheduled. In other words, if the customer receives a
formulated product that is packaged and labeled, then the forecast for that product
must be converted into the appropriate chemical ingredients being used in this
formulation. This step is required when planning and scheduling the ingredient
plant.
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10.2.2 I

 

MPORTANCE

 

 

 

OF

 

 S

 

YSTEM

 

 A

 

RCHITECTURE

 

Forecast data are stored in various places and must be linked to a functional
scheduling system that includes a graphical user interface (GUI), model code,
and database. Maintaining the software cannot be accomplished without these
functions. The GUI is required to help visualize and modify the process flow and
the equipment networks and to display results in the form of Gantt charts, graphs
of inventory levels and resource usage, etc. Many times, the results of any
scheduling system will have to be manually adjusted because industrially sized
problems are complex enough that all constraints will never be represented fully.
This adjustment should be made user-friendly by interactive tools in the GUI.
The GUI should also help manage a number of what-if scenarios that are typically
run before the schedule or plan is finalized. Diagnosis is another important
function: determining which resources are limiting and where the bottlenecks
are, as well as sensitivity analysis of certain input variables on the results.

The model code includes both the means to represent a specific problem in
terms of a general framework and the algorithm itself used to find the solution.
Unless the system is tuned to solve one problem only, the general framework and
algorithm should be robust enough to handle many other problems. Pekny and
Reklaitis

 

7

 

 actually call for three layers of model code: representation, formulation,
and computation. Representation describes the problem to be solved, and formu-
lation translates the representation into a format that the computational engine
can act on. Computation, then, is the specific algorithm that can generate solutions
and solve the problem. This software design lends itself to a modular system
architecture, using object-oriented programming (OOP). This type of architecture
is required for a stand-alone system as well as one integrated into other informa-
tion systems. 

 

10.3 CHARACTERISTICS OF BATCH PLANTS

 

In the manufacturing of chemicals, batch plants have several characteristics that
distinguish themselves from continuous plants. The 

 

recipe

 

 (the reaction pathways
necessary to produce a chemical) is the first piece of information that is required.
The 

 

process flow

 

 (the set of processing tasks required to manufacture a chemical)
may not correspond one-to-one to the equipment units in the plant. The tasks
may be linked together in a network configuration to portray the precedence
constraints, an example of which is shown in Figure 10.2. Combining the recipe

 

FIGURE 10.2

 

Example of a recipe.

React a

React d

React b Separate Dry

React c
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and process flow together leads to a 

 

state–task network

 

 (STN).

 

8–9

 

 The STN allows
one to see the flow of resources into and out of tasks that may not be obvious
from the recipe or process flow individually. The tasks are represented as boxes,
as in the previous recipe, but now a circle represents each state (intermediate).
For example, the fact that intermediate D is isolated from E is easily seen in the
STN shown in Figure 10.3. Pantelides

 

10

 

 further refined the STN by introducing
the 

 

resource–task network

 

 (RTN). The major difference is that, where the STN
treats equipment differently than raw materials, the RTN treats them both as
resources. Figure 10.4 shows an example of what an RTN might look like for
the case when units are dedicated to specific tasks.

More than one unit in the plant may be capable of performing a given task;
thus, the first step in production scheduling is the assignment problem: Assign
each task to an equipment unit. 

 

Parallel units

 

 may be used for certain tasks to
increase capacity or throughput. The network of units needed for the recipe forms
a 

 

production line

 

. The 

 

batch size 

 

will be the amount of intermediate or product
coming out of the last unit in the production line. If 

 

batch integrity

 

 is not kept
(i.e., batches are mixed somewhere in the line), then the batch size may change
inside the production line. The line may be split by 

 

intermediate storage

 

, which
would also cause the batches to lose their identity.  

A series of batches of the same product may be run on a production line,
representing a 

 

campaign

 

 of that product. Conversely, one batch each of many

 

FIGURE 10.3

 

Example of a state–task network.

 

FIGURE 10.4

 

Example of a resource–task network.

React a

React d

React b Separate Dry

React c H
G

F

EE

D

D+EC
A

B

I

J

React a

React d

React b Separate Dry

React c H
G

F

EE

D

D+EC
A

B

I

J

Reactor 1 Reactor 2 Filter Dry

Reactor 3

Reactor 4
Reactor 1

Reactor 2

Filter Dry

Reactor 3

Reactor 4
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products could be run on the line. This feature of batch plants leads to the issue
of 

 

changeover times

 

 and the expense of transitioning from one product to the
next. Equipment cleanouts may be time consuming and expensive if cross-con-
tamination is an issue. A convenient way to illustrate these types of operation is
with a 

 

Gantt chart

 

. Time is usually represented on the 

 

x

 

-axis, and the 

 

y

 

-axis
contains a list of units or production lines dependent on whether individual

to be scheduled for one product, Figure 10.5 would represent the resulting Gantt
chart. The first three batches are shown as alternating shaded boxes; the task

etc. The batches overlap on each unit so multiple units are running at any given
time. The 

 

bottleneck

 

 can be easily identified as Reactor 2. To increase throughput,

  

how this parallel equipment can shift the bottleneck from the equipment with a
longer processing time, with five batches now illustrated.  

10.3.1 MULTIPRODUCT PLANTS

If another product is run on the same equipment, as in Figure 10.6, then the plant

chart. Four batches of product A are processed, followed by two new batches of
B. Thus, a campaign of A is followed by a campaign of B. The four batches of
A are processed in the same order as in Figure 10.6, flowing from Reactor 1 to
2a or 2b, to the filter, and then finally to the dryer. Because product B does not
require the same processing times, a second Reactor 2 is not needed for B, and
the bottleneck shifts. Product B requires all tasks in Figure 10.2. Task React c is
done on Reactor 3 and React d on Reactor 4, then the flow follows the same
route as for product A. Because scheduling and planning are also considered part
of operations research (OR), the term flowshop may be applied to multiproduct
plants where the products flow through the equipment is mostly in the same order.
In fact, the OR literature often uses the term batch manufacturing to represent a

FIGURE 10.5 A simple batch plant.

Reactor 1

Reactor 2

Filter

Dryer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

...

...

...

...

Time -> 
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batches or campaigns are being depicted. If the top four tasks in Figure 10.2 are

named React a in Figure 10.2 is performed on Reactor 1, React b on Reactor 2,

an additional reactor may be inserted out-of-phase for React b. Figure 10.6 shows

becomes multiproduct. Figure 10.7 depicts product B being added to the Gantt
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flowshop with a medium amount of nonchemical products: 10 to 30 discrete parts,
assemblies, etc.11 

With multiple products in the same equipment, the need for cleanouts and
changeovers arises. The time and cost to switch to another product may be
sequence dependent. With many products, this constraint may make the sequenc-
ing decisions much more difficult. Nevertheless, in the Gantt chart, time blocks
of varying lengths may be added between campaigns to block off changeover
times. 

FIGURE 10.6 A batch plant with parallel units.

FIGURE 10.7 A multiproduct plant.

Reactor 1

Reactor 2a

Reactor 2b

Filter

Dryer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Time -> 

...

Reactor 3

Reactor 4

Reactor 1

Reactor 2a

Reactor 2b

Filter

Dryer
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Time -> 
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10.3.2 MULTIPURPOSE PLANTS

The next step in complexity in batch plants is the multipurpose plant, where
multiple products are processed through multiple pathways through the equip-
ment. No predefined production line exists for all products. The processing of
each product may flow through the plant in various directions. Again, if a second

from the first product, then we would obtain the Gantt chart in Figure 10.8. Four
batches of product A are produced, again beginning in Reactor 1; however,
product B starts in Reactor 2a, then moves to Reactor 1, then the filter, and then
the dryer. In the OR world, a multipurpose plant may be called a jobshop,
especially when very short campaigns of many products are produced. A pilot-
plant facility would fit this description well. 

10.3.3 PERFORMANCE METRICS

When Gantt charts are produced for plant operations, certain performance metrics
are easy to demonstrate. The cycle time for a product is the time required between
successive batches (sometimes called tact time); for instance, the introduction of

time units in Figure 10.6. The residence time is the time needed to complete a
batch on all the equipment (also called throughput time).12 The residence time is
8 time units in both Figure 10.5 and Figure 10.6. Also, the makespan is the
completion time of the last batch on the last equipment unit (16 time units in
Figure 10.6 if the campaign is only five batches). The scheduling horizon is the
time window in which the entire schedule is built (a week, a month, etc.),
depending on order due dates and other business needs.

The Gantt chart helps illustrate visually that intermediate storage is needed
to decouple long production lines of many units. If the intermediate is a
solid, unlimited intermediate storage (UIS) may be used. For liquids or any

FIGURE 10.8 A multipurpose plant.

22

Reactor 1

Reactor 2a

Reactor 2b

Filter

Dryer
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product is added to Figure 10.6, but the order of the equipment is very different

the parallel reactor reduced the cycle time from 3 time units in Figure 10.5 to 2
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intermediates with limited storage, finite storage (FIS) is required. The special
case of an unstable intermediate would require zero wait (ZW), or no storage

the ZW type.

10.4 PLANNING AND SCHEDULING APPROACHES

The approach necessary for planning and scheduling can vary significantly
depending on the complexity of the problem to be solved. Approaches can include
manual solution, interactive Gantt charts, simulation, heuristic optimization, and

approaches. Either manual or automatic feedback could exist among different
levels of this hierarchy, which could allow solutions to be iteratively improved
or modified to better accommodate uncertainty or process upsets. In this section,
examples of tools that can be used for each approach as well as possible overlap
among the approaches are presented.

In many industrial applications, either the number of planning choices or the
time and resources are limited, so a very simple model is designed and used in a
matter of a few days or weeks. Typically, a manual spreadsheet or project planning

®

®

Gantt chart and calculate the material balances, inventory levels, amount of product
produced, etc. The use of an interactive Gantt chart can help speed up this manual
process by reducing the time required to modify the plan or schedule. When the
decisions become too complex or numerous, a more sophisticated technology is
sometimes used. 

Two distinct classes of sophisticated modeling technology can be used in the
scheduling and planning arena: simulation and optimization. Each has its own

FIGURE 10.9 A possible hierarchy of solution approaches.

Manual

Solution

Interactive

Gantt Chart

Simulation

Optimization (heuristic)

Optimization (rigorous)
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even for a short time in the processing unit itself. Figures 10.5 to 10.8 all show

system, such as Microsoft Excel  (Microsoft Corp.; www.microsoft.com/excel) or
QuickGantt  (AICOS Technologies AG; www.aicos.com), is used to illustrate the

rigorous optimization. Figure 10.9 shows a possible hierarchy for these

http://www.microsoft.com
http://www.aicos.com
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advantages. Batch process simulation is usually based on discrete event simulation
although Monte Carlo-based spreadsheet simulations can be used for very simple
problems. Generally, the equipment network and associated processing tasks are
first represented, and then the flow of batches through the plant is simulated. The
number of batches per time horizon (capacity driven) or the time to complete a
campaign of multiple batches of multiple products (demand driven) is usually
the performance metric that is monitored. The downside is that the user must
predetermine which tasks are assigned to which units, as well as the order and
number of batches if more than one product is being produced. In other words,
a trial-and-error approach has to be taken until a good schedule is found. The
advantage is that parameter uncertainty may be accounted for, typically unit
processing times, as well as equipment and resource availability. Also, dynamic
operating conditions can be simulated (e.g., a random 10% of the batches must
be reworked due to quality issues). Some examples of spreadsheet-based Monte

®

®

BATCHES is currently the only simulation system built specifically for multi-
product batch and semicontinuous processes. 

Optimization, on the other hand, is used to determine the best feasible (i.e.,
optimal) schedule.13 This is done by first determining a set of decision variables
that represent the decisions that must be made (e.g., batch size, start time).
Together with parameters (constants that define the process, such as processing
time and demanded quantity), constraints are generated that specify the restric-
tions on and interactions between the decision variables. A feasible solution is
any solution that satisfies all the constraints. In order to determine the optimal
solution, an objective function that quantifies the consequences of the decision
variables is needed. 

In general, optimization models are based on deterministic data. The few
formulations that attempt to include uncertainty are unable to handle processing
time uncertainty. Thus, simulation would be a good tool to evaluate a schedule
under uncertainty after an optimization algorithm has established a schedule. Two
basic types of optimization models are available: heuristics (directed search
methods and knowledge-based systems) and equation-based mathematical pro-
gramming. Directed search methods include algorithms such as simulated anneal-
ing, Tabu search, and genetic algorithms, all of which try to construct a set of
feasible schedules and then adjust them iteratively until a better solution is found.
Knowledge-based systems originated in the artificial intelligence world and rely
on a set of rules to construct the schedule. These rules are developed from
knowledge of the planners and schedulers who are familiar with the day-to-day
tasks and procedures. In the simplest case, a very simple rule may be used, such
as first in, first out (FIFO) or a product wheel (a predetermined sequencing order
for products).
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Crystal Ball  (Decisioneering, Inc.; www.decisioneering.com), and discrete event
simulation packages include Arena  (Rockwell Software, Inc.; www.arenasimu-
lation.com) and BATCHES (Batch Process Technologies, Inc.; www.bptech.com).

Carlo simulation tools include @RISK (Palisade Corp.; www.palisade.com) and

http://www.palisade.com
http://www.decisioneering.com
http://www.arenasimulation.com
http://www.arenasimulation.com
http://www.bptech.com
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Mathematical programming has been used in the OR field for many years to
plan and schedule discrete parts manufacturing in the jobshop and flowshop
setting. Because the decision variables involve sequencing in addition to resource
and equipment allocation, binary (0,1) and integer variables are required. Shah14

points out that mixed-integer nonlinear programming (MINLP) can be used to
solve the most general batch or continuous scheduling problems (multipurpose
plants). Some of these nonlinearities include learning curves, catalyst decay, and
equipment performance; however, the objective function and constraints for many
batch scheduling problems can be reformulated so the solution can be found using
a mixed-integer linear program (MILP). Solving an MILP is preferred over an
MINLP because of the robustness of the available solvers and the generally
quicker solution times for the problems. Floudas and Lin15 give a good overview
of the scheduling of multiproduct and multipurpose processes using optimization;

For detailed control over the formulation and solution of the problem, formu-

These tools allow the user to define the equations of the math program themselves
and then solve the problem using any number of MILP or MINLP solvers. CPlex

MILP solution engines, while MINOS (Stanford Business Software, Inc.;

software solvers cannot find a solution in a reasonable amount of time, specialized
algorithms must be developed and used. VirtECS Schedule (Advanced Process

®

®

solve batch planning and scheduling problems using math programming. Siletti and
Petrides16 list a few other similar systems. Use of these tools reduces the dependence
on a mathematical modeling expert, but at the loss of flexibility.

A more recent approach to solving planning and scheduling problems is con-
straint programming (CP), also known as constrained logic programming.17 CP is
a computer programming methodology that solves combinatorial optimization
problems using domain reduction techniques. Most CP implementations have been
applied to sequencing in the OR arena (e.g., see the work of Baptiste et al.18);
however, Maravelias and Grossmann19 applied a hybrid MILP/CP to the scheduling

With all these choices in modeling technology, the appropriate model type
will depend on the exact problem being solved. In fact, Reklaitis et al.20 state that
“a single, universal solution approach to all scheduling problems does not exist
(contrary to vendor claims) and it is highly unlikely that one will be ever found.”
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lation engines such as GAMS (GAMS Development Corp.; www.gams.com), OPL
Studio (ILOG, Inc.; www.ilog.com/products/oplstudio), and Xpress-Mosel (dash
optimization; www.dashoptimization.com/modeling_interfaces.html) are available.

(ILOG, Inc.; www.ilog.com/products/cplex) and Xpress-MP (dash optimization;
www.dashoptimization.com/products.html) are two of the most commonly used

www.sbsi-sol-optimize.com) and CONOPT (ARKI Consulting & Development
A/S; www.conopt.com) are commonly used for NLPs. If standard MILP or MINLP

Combinatorics, Inc.; www.combination.com), MIMI  (Aspen Technology, Inc.;
www.aspentech.com), and ModelEnterprise  (Process Systems Enterprise Ltd.;
www.psenterprise.com) are examples of third-party tools specifically developed to

of multipurpose batch plants. ILOG Scheduler (ILOG, Inc.; www.ilog.com/prod-
ucts/scheduler) is an example of a constraint-based scheduling tool.

they also categorize the approaches into discrete or continuous time formulations.

http://www.gams.com
http://www.ilog.com
http://www.dashoptimization.com
http://www.ilog.com
http://www.sbsi-sol-optimize.com
http://www.conopt.com
http://www.combination.com
http://www.aspentech.com
http://www.psenterprise.com
http://www.ilog.com
http://www.ilog.com
http://www.dashoptimization.com
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This statement is based on complexity theory and the concept of NP completeness,
which signifies that a scheduling problem that tries to optimize some performance
criterion (e.g., minimize the makespan) based on a set of feasible schedules will
have a solution time on a computer processor that may be exponential (nonpoly-
nomial, or NP) to the size of the problem. Thus, large industrial scheduling and
planning problems may take an unreasonably long time to solve on the fastest
computers available. Also, another issue exists where large differences in solution
time and quality between model types could be present for a specific scenario.
Pekny and Reklaitis7 provide more details behind this argument with three strat-
egies to get around this issue:

• Simplify the problem (relax the constraints enough to still produce a
reasonable schedule).

• Develop an exact algorithm (a mathematical program) tuned to the
type of scheduling problem at hand to get a solution in a reasonable
amount of time using the latest computer hardware.

• Develop a heuristic solution using one of the techniques mentioned
above and settle on a solution that may be feasible but not near to
optimal. In fact, the user would have no guarantee that even a feasible
solution could be found. 

To evaluate these types of models, Pekny and Reklaitis7 proposed five features
that should be compared: solution quality, usability, extensibility, robustness, and
complexity strategy. The quality of the solution is an obvious feature to understand
before any schedule is implemented in a plant. The result from the system may
be infeasible, feasible, suboptimal, or optimal. Usability refers to how user
friendly the model is, how fast the solution is found, the amount of customization
or “knobs” that the user can control to adjust the solution, etc. Extensibility and
robustness are related in that an extensible method allows a new problem to be
solved if small changes to the input are made, and a robust method allows major
changes that make the problem distinctly different. These changes in the model
input could involve parameters (such as the size of an equipment unit or a
processing time) or structure (such as an additional unit or a different recipe
structure entirely).

10.5 SINGLE-STAGE MULTIPRODUCT PLANTS 
(SEQUENCING)

The simplest planning and scheduling problems are single-stage plants. A single-
stage plant is a plant where all the tasks associated with a product are performed
on a single piece of equipment or production line with a number of jobs to be
assigned to it. The assignment of jobs to the stage is referred to as sequencing.
It is also possible to have parallel equipment or production lines that can be
sequenced independent of each other for the same products.
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The sequence in which the jobs are assigned to the stage can depend on a
number of factors such as due date, resource availability, and changeover time
and cost. Changeover involves the time and resources required to modify equip-
ment between products. These modifications could include cleaning, calibration,
and setup. Changeover costs could also be incurred due to off-spec product and
its disposal.

A common example of changeover and the effect of sequencing is a paint
production facility. Suppose one needs to formulate black, white, and gray-tinted
paints using a single mixer. Obviously, switching directly from black to white
requires significant cleaning, while going from black or white to gray or from
white to black may not require much, if any, cleaning. So a simple rule of thumb
might be to always produce at least one batch of gray paint when switching
between black and white paint. This rule of thumb describes a simplistic product
wheel for these products. Many production facilities use product wheels to help
the production schedulers decide on the order of production when issues of due
date and resource availability are not overriding. A product wheel in its simplest
form describes what order the products should be produced to minimize
changeover. These production sequences have either been determined by trial and
error or calculated offline and compiled for quick response time on the production
floor.21

Even though the description of single-stage problems is straightforward, this
by no means implies that they are simple to solve. The solution to these problems
involves obtaining a solution to a traveling salesman problem (TSP), either by
enumeration of all possible solutions, via heuristic optimization techniques such
as Tabu search,22,23 or by rigorous math-programming-based optimization.24 The
object of a TSP is to find the shortest and least expensive route that visits a
predetermined set of locations. Replacing locations with products and the route
with a schedule describes the single-stage problem. The TSP has proven to be a
difficult problem to solve, with the addition of due dates and resource availability
further complicating the solution of the problem.

10.6 MULTISTAGE MULTIPRODUCT AND 
MULTIPURPOSE PLANTS (FLOWSHOPS AND 
JOBSHOPS)

The next increase in complexity of scheduling is when products must progress
through multiple stages during production. In the chemical process industries
(CPIs), this is by far the most common situation. The tasks in a flowshop are
assigned to specific equipment, whereas a jobshop contains flexible equipment
that can perform multiple tasks. Multistage plants require sequencing of activities,
but now have the added complication that order and timing of activities at one

second batch on Reactor 1 cannot start until the batch in Reactor 2 is finished.
For a flowshop, recurrence relationships can be developed to handle this
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stage are dependent on other stages. So, as we saw in Figure 10.5 earlier, the
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dependency. A recurrence relationship simply identifies which situations must be
satisfied for another batch to be processed. This includes ensuring the completion
of the previous task and the availability of the piece of equipment assigned to
the next task. Because the assignment of tasks to equipment is known a priori
in a flowshop, these relationships are straightforward; however, in a jobshop, it
is not necessarily known which equipment will process a task until a schedule
has been developed. Introducing material balances for the resources created and
consumed at each stage (whether stored or not) enforces this dependency between
the stages for a jobshop. A material balance simply tracks what comes into a
stage vs. what comes out. Over the total time for the schedule, in must equal out. 

When dependency between stages has been introduced to a scheduling prob-
lem, the issue of how to capture this dependency in the mathematical formulation
of the problem is raised. Two approaches are to discretize time into “buckets”25

or to treat it as a continuous variable.26 Each approach has its own pros and cons.
Discretizing time into buckets requires the scheduler to divide the horizon (time
domain) into uniform or possibly nonuniform pieces (e.g., a day or an hour). This
discretization depends on the detail to which one would like to schedule. Enforc-
ing material balances for time-discretized models is done by adding a constraint
for every time bucket. The smaller the time buckets, the more constraints there
will be and the more difficult the problem will be to solve. Leaving time as
continuous means not having to sacrifice accuracy of processing times due to
rounding, but continuous time makes enforcing material balances and other time-
dependent constraints more complex. The multipurpose nature of the equipment
in a jobshop allows for increased utilization of this equipment at the expense of
greater planning and scheduling complexity.

10.7 PLANNING PROBLEMS

The issues associated with a planning problem are of a more mid- to long-term
nature than those for scheduling, with an emphasis on cost. Some of the issues
that are normally addressed by a planning problem include campaign planning,
multiplant planning, and inventory planning. Campaign planning determines the
sequence in which products will be produced on the same or parallel equipment.
This differs from single-stage, multiproduct plant scheduling in that campaign
planning does not determine the start and stop times for each task for each batch
but only the start and stop time for a block of batches to be run. Campaign
planning requires an assumption on the throughput of a facility for each product.
Multiplant planning extends campaign planning to cover facilities either at the
same geographic location or elsewhere, either in-house or third-party contractors.
Inventory planning becomes a significant issue in campaign and multiplant plan-
ning. These problems are characterized by a need to store and possibly transport
significant quantities of intermediate product or to store excess finished goods.
Many companies do strive to minimize inventories through just-in-time (JIT)
production; however, when production campaigns are planned to satisfy future
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demands, JIT is not possible. For high-valued products, the inventory that is
created can lead to significant costs. 

10.8 HOW TO HANDLE UNCERTAINTY

Large uncertainties may exist in four main types of batch planning and scheduling
data:

• Sales (demands, forecasts, pricing)
• Process (batch cycle times, yields [unit ratios], changeover times)
• Production (e.g., equipment malfunctions, unavailable raw material)
• New processes and products (ramp-up rates for cycle times and unit

ratios)

Sales and marketing data include demand amounts and timing, based on some
type of forward-looking forecast or on customer orders (make-to-order). All
demands and due dates have a certain amount of uncertainty. In some cases,
campaign planning could be affected by pricing if different products can be
produced in the facility. Higher priced products may be more beneficial to pro-

resolve the issue. Process data can be uncertain as well. The cycle time of each
batch on each unit is not always a deterministic value. Intermediate and final
yields or unit ratios may change as processing conditions are optimized in the
plant. Equipment breakdowns and unavailable resources cannot be predicted and
could affect the schedule and even the campaign plan.

10.8.1 RAPID RAMP-UP OF SPECIALTY CHEMICALS

In recent years, an added complexity to batch process management is the emphasis
on decreasing the time required to push new specialty chemicals into the mar-
ketplace. Product and process development are now being overlapped to produce
initial quantities of a chemical; for products such as agrochemicals or pharma-
ceuticals, small runs are required to prepare samples for environmental or regu-
latory studies and experimental trials prior to the product being registered and
approved for sale. Pilot-plant studies may also be reduced or even skipped. The
driver for this rapid ramp-up is that less financial risk occurs when process
development is delayed as long as possible. Also, the probability for regulatory
approval and commercial success are better known later in the development
process.

When batch chemicals are first manufactured in a regular production facility,
ramp-up is the period of time to reach normal production levels, which may be
on the order of months. The rate of ramp-up, or learning curve rate, should be
estimated to help determine the time and resources required to reach full produc-
tion.27 Ramp-up occurs because operators become better acquainted with the
process and better trained, because process problems caused by new construction
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are identified and fixed, and because chemistry problems that were not identified
in the accelerated process development are fixed. Many of these improvements
are completed in the ramp-up phase and not in process development because of
lack of time in development and greatly reduced pilot-plant work. Even if the
time to market had not been accelerated, many potential improvements could not
have been identified until production is initiated because many interactions are
too difficult to define beforehand. Instead of solving all problems on the benchtop
or in the pilot plant, the “learn by doing” mode is often employed in the full-
scale production facility.28

Timing is crucial for agrochemical and pharmaceutical products as well, as
the first major campaign should be ready to run as soon as a product becomes
approved for sale. If the product becomes registered before expected, then ramp-
up must occur even faster. With quicker ramp-up and registration, the product
can penetrate the market faster and reach higher sales numbers, and the
development costs are recouped quicker. Fast ramp-up signifies both fast gains
in productivity (kilograms out the door) and high yields (less raw material con-
sumed per kilogram of product). The result of this higher efficiency is less need
for capital investment.

10.8.2 CRITICAL ISSUES

Because of rapid ramp-up, production parameters and uncertainties are difficult
to quantify. In addition to uncertainty in process productivity and yields, the other
end of the supply chain — the market — is also difficult to predict. Both product
demands and prices are uncertain to a great degree; their estimates may be updated
as often as several times per year near the end of a 10- to 15-year development
cycle. Many individual estimates are done by market segment (usually by location
or customer segment) and are then rolled-up into global demands by a product
manager. Because of the numerous sources of the various demand and price
estimates, some values may be given as “best guess” and any predictions of
uncertainty would be difficult to quantify.

10.8.3 POSSIBLE SOLUTIONS

Optimization under uncertainty, in general, was recently reviewed by Sahinidis;29

however, specific solutions to the planning or scheduling problem that deal with
uncertainties have mostly concentrated on demands or processing times. Lee and
Malone30 used Monte Carlo sampling of demands and due dates to try to find a
flexible plan using simulated annealing. Uncertainties were also included in the
work of Vin and Ierapetritou;31 however, they adapted a mathematical optimization
method to include uncertain demands in order to schedule a multiproduct plant.
Honkomp et al.32 dealt with both uncertain processing times and equipment break-
downs. A schedule is fed into a simulator that generates uncertainties. Different
types of rescheduling methods are compared through an optimizer, and the
expected performance of the new schedules is evaluated. Also, Balasubramanian
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and Grossmann33 investigated variable processing times only. They used a branch-
and-bound algorithm to schedule a multiproduct plant, then they dealt with demand
uncertainty using a multistage stochastic MILP.34 Also, Bonfill et al.35 considered
financial risk in their scheduling model with uncertain market demands. 

10.8.4 REAL-TIME VS. OFFLINE APPLICATIONS

Uncertainties often occur because the planning or scheduling is being done
dynamically or in real time. Instead of a static or offline application, the model
is being used as changes in the manufacturing facility occur (e.g., new orders are
received, equipment breaks down); thus, rescheduling is required. Scalability
becomes important in this case because these industrial-sized problems must be
solved in a short time.

10.9 PLANNING AND SCHEDULING IN THE 
FUTURE

Sophisticated planning and scheduling systems have not been 100% successful
in an industrial setting at this time. Several reasons exist for the continued use
of manual spreadsheets and very simple heuristics. Even if a standard scheduling
optimization tool is in place, the user many times will have to adjust the results
to fit all the operating constraints that were not built into the system. Most
industrial-scale batch plants are complex enough that any automated solution can
become quite large. The typical system cannot handle the combination of con-
strained resources, inventory, uncertain demands, etc., so any resulting plan will
not be realistic enough and will have to be manually adjusted. The expertise to
build most, or all, of these issues into an automated system is not always available
in-house. As Honkomp et al.36 noted, the use of external contractors drives up
the cost and time of implementation, updates, and maintenance. 

The issue of complexity and NP completeness points to the development of
planning and scheduling systems through the use of algorithm engineering. Pekny
and Reklaitis7 stated that, as new software algorithms are written to solve more
complex scheduling issues, research must be done to extend the current algorithm
approach. As an engineering activity, new planning and scheduling software must
be more than just an algorithm. The software must also include a GUI, interfaces
to external databases, help aids, and diagnosis and debugging tools to be accept-
able to plant engineers and schedulers. As the problem proceeds through the
stages of algorithm engineering, different levels of system sophistication are
achieved:37

• Unsupported (trivial test problems)
• Demonstration (realistic test or prototype with limited scope and some

constraints)
• Engineering (realistic problem with useful results, a few key constraints

missing that allow automatic use of results)
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• Production (realistic problem with results implemented after user inter-
pretation)

• Online (realistic problem with results implemented automatically)

Current state-of-the-art automated systems are somewhere along this research
and development timeline. New implementations must be developed so they reach
production or online status to be truly useful. Much research is currently being
done in improving the efficiency and increasing the scope of current algorithms;
the extended bibliography, below, lists some of the most current research. A test
set of generic planning and scheduling problems is needed so different solution
methodologies may be compared. In fact, Honkomp et al.36 recently proposed a
set of test scenarios for scheduling consumer goods manufacturing to aid in
selecting the best solution for a specific plant. These higher-level solutions will
require new supporting tools. Grossmann and Westerberg38 identified several areas
that must be developed to make progress in this area: simulation and optimization
under uncertainty, dynamic or distributed quantitative–qualitative tools, improved
real-time modeling, improved tools to represent heuristics, and more information
management and data-mining tools. For large-scale industrial applications, Flou-
das and Lin15 noted such future research needs as better mathematical models for
short-term and medium-term scheduling; multisite production and distribution
scheduling; scheduling of semiconductor operations; uncertainty in processing
times, prices, product demands, and equipment breakdown; and, finally, integra-
tion of scheduling design, synthesis, control, and planning.15

10.10 SUMMARY

One key issue in batch process management that cannot be ignored is planning
and scheduling. Production scheduling is the short-term look at the requirements
for each product to be made, while campaign planning is a more medium-term
look at a series of batches of one product. The long-term view of this decision-
making process for batch plant operation is often called supply-chain planning,
with characteristic time scales of months or years. Each of these levels of planning
requires extensive input data concerning not only sales and marketing but also
operations. Because of the complexity of the data needs and of the decisions to
be made, the methodology must be linked into other manufacturing information
systems, such as an enterprise resource planning (ERP) system or a manufacturing
execution system (MES). 

The approach used to solve planning and scheduling problems depends on
many factors relating to the complexity of the issue, such as amount of detailed
input data on hand, amount of uncertainty, type of batch manufacturing facility
involved, and modeling expertise and real-time or offline software systems avail-
able. Similar modeling approaches may be used for different batch plants —
single-stage multiproduct, multiple-stage multiproduct, or multipurpose — but
the exact implementation of the approach may differ. For instance, the simplest
approach would be a totally manual or spreadsheet solution. An interactive Gantt
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chart may be used to help automate the planning process and study many more
scenarios than possible with a purely manual approach. For more complex prob-
lems, off-the-self or custom-built software may either simulate or optimize the
batch process using many methodologies, from discrete event simulation to heu-
ristics to mathematical programming.

Even though planning and scheduling tools continue to develop as faster,
more efficient algorithms and computers are introduced, many industrial-scale
plants are so complex that automated solutions are quite large and cumbersome.
As a result, algorithms and software systems are not universally installed, but as
research and algorithm engineering continues to progress in the future, more
realistic problems will be solved with results being implemented automatically
in the batch plant.
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11.1 INTRODUCTION

 

Providing a reasonably accessible exposition of batch process monitoring and
control is the purpose of this chapter. It is aimed at readers with a background
in batch processing who wish to broaden their perspective in the monitoring and
control technology area. The review literature on batch process control is limited
and tends to view developments from a control technology perspective; however,
several interesting methods and approaches have recently appeared and, because
these tend to converge toward a common technology, there seems to be room for
a presentation with the above-mentioned aim but which is based on a process-
property perspective rather than a control perspective. The purpose of the process-
property perspective is to provide a common framework for presenting and
discussing the different methods in a clear manner.

Batch processing management involves decision making at different layers
of the plant operation hierarchy. Such decisions include planning, scheduling,
monitoring, and control. Therefore, it is important to address the relevant layers
for solving a batch control problem. Having data available from the batch process
enables monitoring, minimizes disturbances, and reduces the influence of uncer-
tainty. In this chapter, we assume that such data are available at suitable sampling
rates, which can be high for simple measurements or infrequent for more complex
quality-related measurements.

Batch processes are used for three main reasons:

• Dividing a process into batches allows confinement of any undesired
properties or byproducts. For pharmaceutical and food industries, this
property is essential and regulated by the authorities.

• Separating a processing sequence into batches makes it possible to
produce a large number of different products and grades on the same
equipment, perhaps using different raw materials or recipes.

• Some operations are better suited for batch or fed-batch processing
than for continuous processing (e.g., to circumvent substrate inhibition
for microbial cultivations).

In all instances it is desirable to achieve reproducible operation and tight
product specifications; however, batch processing is subject to variations in raw
material properties, in start-up initialization, and in other disturbances during
batch execution. These different disturbances introduce variations in the final
product quality. Compensating for these disturbances has been difficult due to
the nonlinear and time-varying behavior of batch processing and due to the fact
that reliable on- or inline sensors for monitoring final product quality are rarely
available. However, recent developments in modeling and control technology
have triggered developments that have enabled mature first-of-batch monitoring
and also monitoring of batch control, thus it is appropriate to review these
developments here.
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To set the stage for process-property-based monitoring and control, we must
define the context of batch processing. The following text provides definitions of
elements of batch processing. These definitions then lead into how these elements
are subsequently treated as their state of art is presented in this chapter. Each
batch process may be defined as a series of operational tasks (i.e., mixing, reaction
and separation). Within each task, a set of subtasks (e.g., heating and cooling,
charging and discharging) is handled. In some cases, more than one feasible set
of operational tasks can produce the specified products; consequently, an optimal
sequence of tasks and subtasks with a defined objective needs to be determined.
This set of operational tasks is labeled the 

 

optimal batch operations model

 

. Thus,
the batch operations model combines the batch processing tasks normally spec-
ified in a recipe with the batch equipment under availability and other resource
constraints. In this chapter, a single production line is considered, as multiple
lines typically are handled at the plant scheduling level. When dealing with
multiple production lines and sharing of common resources, scheduling becomes
a major logistical issue. In industrial practice, several attempts have been made
during the past 15 years to standardize batch control systems to deal with these
issues at various levels of the plant and its equipment. Clearly, the most successful
has been the S88 (or SP88) initiative developed by the Instrument Society of
America (ISA),

 

27

 

 which now is in the IEC batch control standards

 

25,26

 

lines). These attempts seem to be rather successful as most commercial batch
control systems comply with the S88 standard. In terms of modeling batch
operations, a programming language for sequential control applications has been
developed by the IEC which is known as 

 

Grafcet

 

.

 

23,24

 

 This language has also been
adopted by several batch control system vendors, mainly at the programmable
logic controller (PLC) level, while 

 

Grafchart

 

 has been defined by Årzén

 

2

 

 for
modeling at higher levels of the control hierarchy.

This chapter is mainly concerned with batch operation of single production
lines, which represents a relevant and essential research problem as chemical
batch operation in practice is exposed to disturbances or uncertainties that make
it difficult to ensure reproducible and, to a lesser extent, optimal operation. If
disturbances did not occur during execution, batch operation would be most
reliable; however, direct implementation of the batch operations model on the
process constitutes what is often called 

 

open-loop or feedforward process control

 

,
as it provides a feedforward change in the manipulated variable to obtain a desired
process trajectory. Calculation of the desired change in the manipulated variable
is based on model knowledge or process experimentation; consequently, feedfor-
ward action is very prone to uncertainty. Such uncertainty may arise from model
inaccuracy or from uncertainty about process disturbances. Thus, in practice it
is not possible to implement a batch operations model completely as specified
due to variability in, for example, raw material composition, other operating
conditions, or equipment availability constraints.

In order to protect batch manufacturing from the influence of disturbances
or uncertainty (e.g., in timing, raw material composition, or availability of other
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resources), it is highly desirable to use simple process monitoring and fault
detection, which may become the basis for subsequent implementation of a slow
feedback in the form of manual process control. 

 

Process monitoring

 

 provides
information derived from measurements on the progression of the processing
compared to the nominally designed behavior. 

 

Fault detection

 

 takes place if the
processing deviates significantly from a desired standard trajectory. Tools for
process monitoring and fault detection enable the operator or plant engineer to
request information regarding which measurements will reveal the most useful
information regarding these deviations in order to isolate the origin of the fault.
After obtaining such information, it is normally left to the plant personnel to
analyze the underlying cause of the observed deviations. This step is known as

 

fault isolation

 

. Thus, process monitoring is in fact a preamble to implementing
manual feedback, obviously in a very slow loop as the operating personnel are
involved in the decision making and in implementing measures to counteract the
fault. However, monitoring and fault detection constitute a very effective tech-
nology to provide more consistent product quality due to taking corrective actions
between batches.

A much faster feedback effect may be obtained by using process control by
direct feedback loops in one of its many forms to reduce the influence of uncer-
tainty on batch operation. Batch process control can take many forms, as described
later in this chapter. The control action can be based upon various types of
information, most often related through a process model. For multivariable pro-
cesses, a model basis is essential for providing reliable feedback; however, to
provide insight on the ways in which feedback may be introduced, it is useful to
consider the key characteristics of batch vs. continuous processing. These char-
acteristics lead to the definition of the batch control problem. The following
definitions also comply with the above-mentioned standards. 
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Batch processing as outlined above consists of combining a recipe with available
equipment to realize a desired batch trajectory as closely as possible. When a
batch is completed, the equipment is made ready to produce a new recipe. If the
same operations model is used, the batch process may be repeated several times.
Thus, batch processing is very similar to periodic processing. For consecutive
batches, which aim at producing the same product the key characteristic is thus
a two time dimensional behavior of batch (and periodic) operation. These time
dimensions (i.e., time within a batch and batch number or index) are depicted in

types of time variation: 

 

intrabatch

 

 variation, where the states of the process follow
a set of trajectories supposedly coinciding with the desired trajectories, and

 

interbatch

 

 time variation, where attempts are made to reproduce the initial con-
ditions in subsequent batches. Consequently, the disturbances may be similarly
classified. 

 

Intrabatch disturbances

 

 occur during batch execution (e.g., as a devi-
ation of the initiator or substrate concentration from the nominal value); such
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intrabatch disturbances are batchwise uncorrelated. 

 

Interbatch disturbances

 

 occur
between batches (e.g., as variations in initial concentration values); hence, inter-
batch disturbances are batchwise correlated.

For a periodic process, the endpoint of one cycle simply is the starting point
of the next cycle; thus, the interbatch variability becomes 

 

intercycle variability

 

for periodic processes. In the following text, the operations form is referred to
as batch as a generalization. The above relatively simple concepts turn out to
be very useful both for modeling and for control of batch processes. On the
basis of the intra- and intercycle variations, the batch control problem can be
defined as follows: The 

 

batch control problem

 

 is implementation of the optimal
batch operations model to enable rejection of inter- and intrabatch disturbances.
Thus, the key characteristics of the batch (or periodic) control problem are the
time-varying characteristics. These time-varying characteristics apparently pre-
cluded theoretical progress within batch and periodic process control for many
years, until computational power allowed the development of feasible solutions.
Such solutions offer significant benefits and can be effectively used to reduce
the effects of uncertainties embedded in batch operation. The above definition
of the batch control problem is based on an optimal batch operations model
that depends on how the optimization objective function is defined. Most often,
the objective will be to ensure optimal productivity given a set of equipment
and operational constraints, but many other considerations can come into play
such as in the pharmaceutical industry, where the overriding concern is repro-
ducible operation. Furthermore, potential deviations from normal operation
traditionally render operation scheduling and plant and operation model design
conservative; consequently, to reduce this conservatism of traditional plant
design and operations model design, it is necessary to apply feedback control.
The main benefit of feedback control is that it improves the ability to reject
disturbances from nominal operation; hence, implementation of feedback

 

FIGURE 11.1

 

The three dimensions of batch operation data: output level, time within a
batch, and batch number or index. The filled circles represent sample times.
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control will increase the reliability or reproducibility and furthermore also
enable optimization of the batch process operation.

The purpose of this chapter is to present the state of art of batch process
monitoring and control, where the key trend is to implement the batch operations
model by extracting knowledge using some form of model and subsequently
using this knowledge for control design. Issues related to implementing the
(optimal) batch operations model are the thread running through this chapter. The
presentation begins with a brief introduction to the development of operations
and process models. In the latter case, the focus is on empirical process model
development. The key motivation for using models is that a representation of
available knowledge about a batch process is essential to implement control of
the production, and control is essential for rejection of disturbances. This control
may also develop into optimization control; however, optimization may also be
achieved based partially on experiments (i.e., where the explicit model capturing
step is bypassed). The following section provides a discussion of batch monitoring
before reviewing methods for the control of batch processes. In particular, we
present methods based on the application of time-series models, although aspects
of control using monitoring and solution models also are presented, and we touch
briefly on aspects of control based directly on experiments. Finally, time-series
models for an industrial bioreactor cultivation are presented, and a simulated
control example based on time-series modeling is provided. This latter example
demonstrates some of the promising capabilities of the model-based batch control
methodologies.

 

11.2 BATCH OPERATIONS AND PROCESS 
MODELING

 

The modeling task may be decomposed into two distinct types: modeling process
behavior vs. modeling external actions imposed on the process and its environ-
ment by disturbances, operating procedures, or other control actions.

 

50

 

 The pro-
cess behavior model usually is represented as a process model, while the model
for the external actions imposed on the physical system is a batch operations
model. In this section, both model types are briefly treated.
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An operations model may be developed from process knowledge (e.g., using a
process model to generate a feasible operations model). This model development
may be achieved by conceptual design and synthesis via heuristic usage of
computer-aided process engineering (CAPE

 

) 

 

tools to exploit basic process limi-
tations. This procedure may provide both the task sequence and a feasible oper-
ations model, with definitions of the important process variables for each sub-
task.

 

18

 

 The near-optimal feasible operations model may further be optimized
offline using optimization to produce an optimal batch operations model. When

 

© 2006 by Taylor & Francis Group, LLC



 

Monitoring and Control of Batch Processes

 

425

 

a model is not available, at least two different approaches are possible. An
operations model may be generated directly from multifactorial experiments; in
fact, this is the procedure often employed in industrial practice during scale-up
from laboratory to pilot and production scale. However such a procedure requires
extensive and costly experiments and suffers from potential combinatorial explo-
sion as the number of degrees of operational freedom increases. An alternative
procedure is to consider the operations model as the solution model for the optimal
control problem, where the solution model may be inferred from structural knowl-
edge of the optimization problem at hand. This solution model is uncertain, but
the uncertainty of the solution may (at least partially) be compensated for by
using decentralized control (i.e., several single-loop controllers). (Srinivasan and
Bonvin, 2004)

 

11.2.2 P

 

ROCESS

 

 M

 

ODELING

 

Ideally, mathematical models should be based on all available information regard-
ing the underlying phenomena. However, first-principles engineering models are
relatively time consuming to develop for the wide operation range covered by
many batch processes, and often they have only limited validity over this wide
operation range. When some underlying phenomenon is not well understood,
alternative approaches may be necessary; for example, if reaction kinetics are not
completely understood, a model can be developed using an approach that permits
combining available first-principles engineering knowledge with process data to
elucidate the functional form of specific phenomena models. Recently, such an
inverse modeling method based on gray-box stochastic modeling has been
reported for batch processes.

 

33

 

 If the level of 

 

a priori

 

 knowledge is even lower,
one may have to resort to purely data-driven approaches, either for monitoring
(i.e., correlation models) or for time-series modeling; both approaches seem to
be powerful for batch processes.

 

4,17

 

 The development of models from data is
described in the following section, as such models may have wide application
and appeal to many industries where the process dynamics are important.
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For processes where limited fundamental knowledge has precluded proper first-
principles modeling, as is the case for many bioreactors, an effort has been made to
develop models directly from operating data. Such models were initially developed
for monitoring purposes but have recently been demonstrated to be most useful for
control also. We first discuss how monitoring models are developed and subsequently
how time-series models can be developed from data. The time-series models are
particularly interesting because these models can use control theory developed for
time-invariant and time-varying processes. Furthermore, the methodology presented
here uses the additional batch dimension to provide a fast data-driven alternative to
first-principles modeling of batch processes.
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11.2.3.1 Modeling for Monitoring

 

Data from batch and fed-batch processes can conveniently be stored in a three-
way matrix 

 

X 

 

(

 

I

 

 

 

×

 

 

 

J

 

 

 

×

 

 

 

K

 

), where 

 

I

 

 is the number of batches, 

 

J

 

 is the number of
variables, and 

 

K

 

 is the number of samples from each batch. The size can vary by
orders of magnitude depending on the process duration, available on- and offline
measurements, and input variables. Note that these variables all form part of the

    

This two-way matrix is called (

 

X 

 

(

 

I

 

 

 

×

 

 

 

KJ

 

)). For each fermentation (a row in 

 

X

 

),
a set of quality measures is recorded and stored in matrix 

 

Y

 

. One such measured
variable could be the final product concentration, but other measures could also
be used (e.g., productivity). Each column of 

 

X

 

 corresponds to a certain variable
at a certain point in time. Note that the time dependency can be removed by
substituting time with any indicator variable that expresses or quantifies advance-
ment of the process (e.g., accumulated base addition to a yeast cultivation).

 

29,37,64

 

If the process is carried out following a predetermined batch operations model,
it is expected that the trajectories of the measurements are similar and that the
mean value of a variable at a certain point in time can be used as a reference
value for future executions. The goal of monitoring is to observe and eliminate
the cause of deviations from this reference value in future batches. Thus, to
facilitate the analysis the columns are centered and scaled to unit variance.

The matrix 

 

X

 

 is rather large, but the columns of 

 

X

 

 are not independent. They
describe similar events in the process and the dimension of the space spanned
by 

 

X

 

 is usually very low. Thus, by using a multivariate statistical technique to
reduce the dimensionality of the variable space, the problem of describing the
process becomes more manageable. 

 

Principal component analysis

 

 (PCA) is fre-
quently used for this purpose and is recommended if no quality variables are
available. When quality variables are available, one can use 

 

principal component
regression

 

 (PCR) or preferably 

 

projection to latent

 

 

 

structures

 

 (PLS), which is a
linear regression method that optimally utilizes the information in 

 

X

 

 and 

 

Y

 

 at the
same time.

 

28

 

 In general, when these methods are applied on several measurements,
a multivariate approach is used to map the behaviors into the relevant subspace;
if the multivariate aspects are stressed, this may be indicated by the use of a
capital M (e.g., MPCA).

Assuming that one or more quality variables are available for the described
process, a PLS model can be developed. PLS is defined by a bilinear model that
is used to project the relationship onto lower dimensional subspaces:

(11.1)

by maximizing the covariance between 

 

u

 

a

 

 and 

 

t

 

a

 

 where the number of components

 

A

 

 (number of columns in 

 

X

 

) is chosen such that 

 

E

 

 and 

 

F

 

 are small in some sense.
The data, in other words, are reduced to a number of scores (either 

 

T

 

 or 

 

U

 

) that

X TW E

Y UQ F
u t

= +
= +

=
�

� a a ab

 

J variables. The matrix X can be unfolded to a two-way matrix (see Figure 11.2).
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lie in a low-dimensional space of the data but describe a large fraction of the
variation of the data. Equation 11.1 can be rewritten as:

(11.2)

This expression, in many cases, is easier to work with. The regression parameter
matrix is given by:

(11.3)

where the loading matrices 

 

W

 

, 

 

P

 

, and 

 

Q 

 

are determined by the PLS algorithm.

 

22,40

 

Y

 

 can be predicted using:

(11.4)

(11.5)

 

FIGURE 11.2

 

Unfolding of a three-way matrix to form a two-way matrix. 

 

X

 

 contains the
online variables and 

 

Y

 

 some quality measure of the process (e.g., final product concentra-
tion). The principle behind process chemometrics is shown in the lower part of the figure
for a single variable. Every time a new measurement is obtained it will be compared to
the expected level. If the deviation is outside (i.e., above the upper limit [UL] or below the
lower limit [LL]), the process is behaving abnormally and the process operator should take
action.
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The model can be used for calculating a vector t (a t-score) for a new data set, Xnew:

(11.6)

This expression can be used only when all data from a batch process are available.
For online purposes, a full X matrix has to be constructed. In this chapter, X will
be constructed by using all of the available information collected up to the current
time, and the remaining part of X will be filled in with the most recently obtained
measurement. This method results in good fault detection properties and reliable
estimation of Y as well. This way of filling X corresponds to predicting what
would happen if a fault is allowed to remain unchanged for the remaining duration
of the batch and constitutes a method to evaluate the seriousness of faults. This
procedure is often justifiable because the process dynamics become increasingly
slow as the batch nears completion.

11.2.3.2 Time-Series Modeling

The periodic nature and finite horizon of batch processes from which observations
are collected from a grid of sample points in time make it possible to model the
evolution between two consecutive sample points in a batch with local linear
time-invariant (LTI) models. Such local models are valid between two consecutive
points in the sample grid and are known as grid-point models. In this fashion,
both the time variation within the characteristic regions and the transitions
between these may be approximated with a grid of grid-point models. Thus, such
a grid-point model set gives a complete description of a batch. The finite horizon
of batch processes means that the model set will be finite. The periodic way in
which the same recipe is repeated batch after batch means that several measure-
ments from individual sample points are available for identification. That is, the
time evolution of a process variable is measured or sampled at specific sample
points during the batch operation, and as the batch operation is repeated several
measurements are collected from every sample point. With multiple data points
or measurements from one specific sample point interval, a multivariable grid-
point model can be identified for that sample point interval.

Batch processes, then, are modeled with sets of dynamic grid-point LTI
models. Such a set of grid-point LTI models could also be referred to as a linear
time-varying (LTV) batch model. These grid-point LTI models can be parame-
terized in a number of ways  for example, as autoregressive models with exog-
enous inputs (ARX), finite impulse response (FIR) models, or state space (SS)
models. Here, we have chosen to use an autoregressive moving average model
with exogenous inputs (ARMAX) parameterization. This choice of parameter-
ization offers a simple multivariable system description with a moderate number
of model parameters.

Let N be the batch length in terms of number of samples, and define the input
u, output y, shifted output y0, and disturbance w profiles as:

t X W P Wnew new= .−( ( ) )� �1
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(11.7)

Note that the model variables y and u may well be basis functions of the process
variables, and not all initial conditions y0 are measurable or physically meaningful
(e.g., off-gas measurements). Thus, the ARX model set may be expressed in
matrix form:

(11.8)

where the bar denotes the reference profiles and A and B are banded lower block
triangular matrices. If it is assumed that , then A has the following
structure:

The disturbance profile w is a sequence of disturbance terms caused by bias in
the reference input profile , the effect of process upsets, modeling errors from
linear approximations, and errors due to erroneous approximations of transition
times between sets of active constraints. This means that disturbance w contains
contributions from batchwise persistent disturbances, such as recipe or input bias,
model bias, and erroneous sensor readings, as well as from random disturbances
that occur with no batchwise correlation. It thus seems reasonable to model the
disturbance profile w with a random-walk model with respect to batch index k:

(11.9)

where the increment disturbance profile ∆wk is modeled with a moving average
(MA) model with respect to time:

(11.10)

with model order nC(t) ∈ [0,…,t – 1]:

(11.11)
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In matrix form, the disturbance model is expressed as:

(11.12)

where C is a banded lower block triangular matrix, and the sequence vk = [vk,1,
vk,2,…, vk,N]′ represents batchwise nonpersistent disturbances that are assumed to
be zero mean, independent, and identically distributed. Considering the difference
between two successive batches, we obtain:

(11.13)

We have obtained a batch ARMAX (Equation 11.13) that is independent of
the reference profiles ( ) and batchwise persistent disturbances. With such a
batch ARMAX model, the path is paved for multivariable, model-based moni-
toring, control, optimization, and, of course, pure simulation.

11.2.4 APPLICATION-SPECIFIC MODELS

Depending on the task to which the batch ARMAX model (Equation 11.13) is
to be applied, it is convenient to convert the batch ARMAX model into different
representations. If the task at hand is to predict (or simulate) the behavior of a
batch before it is started, the following form is convenient:

(11.14)

Note that the disturbance matrix F models the propagation of batchwise nonper-
sistent disturbances — including batchwise nonpersistent model–plant mismatch.
The initial condition, ∆yk,0, can be considered as either an input/control variable
or a disturbance. The distinction between the two possibilities will of course
depend on the information regarding and control of the outputs prior to a batch.
The initial output deviation from the reference is also modeled as a random walk
with respect to batch index.

Equation 11.14 is also convenient for the task of classification or monitoring
(e.g., normal or not) a batch after it has been completed. Furthermore, Equation
11.14 can be used to determine open-loop optimal recipes in the sense of
optimizing an objective for the batch. If such an objective is to minimize the
deviations e = [e1,e2,…,eN], from a desired trajectory , then Equation 11.14 can
be modified to obtain:
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(11.15)

We must make two important points about the trajectory tracking model
(Equation 11.15). First, because the error profile, ek, in batch k depends on the
error profile, ek–1, from batch k – 1, the effects of the batchwise persistent
disturbances are integrated with respect to the batch index. This means that a
properly designed controller can reject the effects of the batchwise persistent
disturbances asymptotically with respect to batch index (e.g., removing the
effects of recipe and model bias). Second, given the above-mentioned asymp-
totic behavior and because the control actions generated by such a controller
are deviations from the control/input profile realized in the previous batch, the
control actions due to batchwise persistent disturbances will converge asymp-
totically to zero with respect to the batch index. It could be said that the
controller learns to reject the batchwise persistent disturbances; that is, the
resulting controller is an iterative learning control (ILC) scheme. A more
precise way of stating this is that both output and input errors are modeled
using integrators with respect to the batch index. The trajectory tracking model
(Equation 11.15) is similar to that of Lee et al.,35 but the representations differ
significantly because Equation 11.15 includes the effect of the initial conditions
(H∆yk,0) and disturbance propagation (Fvk). Another important difference is that
Equation 11.15 does not have a double dependence on the batchwise persistent
disturbances; that is, the trajectory tracking model representation (Equation
11.15) includes only the batchwise persistent disturbances as represented by
ek–1, not as both the part of ek–1 caused by the batchwise persistent disturbances
and the batchwise persistent disturbances themselves.

Equation 11.14 and Equation 11.15) of the batch ARMAX model above are
applicable to offline or interbatch applications. For online estimation, monitoring,
feedback control, and optimization, however, it is convenient to use a state–space
realization of the batch ARMAX model. To achieve such a realization, it is
necessary to simplify the batch ARMAX model structure with the assumption
that the number of outputs is constant: ny(t) = ny for t = 1,…,N. In an observer
canonical form, which is structurally a minimal realization, the state–space real-
ization is given as:

(11.16)

The SS model matrices At, Bt, Et, and C contain the corresponding block columns
in the batch ARMAX model (A, B, C).
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11.2.5 IDENTIFICATION

With the batch ARMAX model (Equation 11.13) derived above, parameterization
of the batch model is in place, but the model orders and model parameters still
have to be determined from process data. One major drawback of the proposed
parameterization is the immense dimensionality of the resulting set of models.
In practice, this immense dimensionality will render any standard least-squares
(LS) identification problem deficient, and the resulting model will generalize
poorly. It turns out, however, that the identification problem improves as the grid-
point models become progressively analogous with the grid-point models in their
neighborhood. In fact, it is this correlation between the forced similarity of
neighboring grid-point models and the predictive capability of the model set that
forms the basis for the identification framework presented below.

The first step in any modeling work should, of course, be defining the modeling
objective — what problems are to be solved, are they to be solved through monitoring
or control, how is the most value added with the least effort, etc. Once the modeling
objective is well defined, the appropriate inputs and outputs can be chosen as basis
functions of either existing process variables or new process variables introduced as
new actuators or sensors. Should the modeling objective be monitoring, control, or
optimization of product quality variables measured only sparsely offline, these mea-
surements, when resampled as necessary, can be included as online measurements.
If all the required inputs and outputs are chosen among the existing process variables,
then historical process data can be used for the model identification; otherwise, the
necessary new actuators and sensors are installed on the process and data from a
few subsequent batch runs are collected.

11.2.6 PARAMETER ESTIMATION

Several suggestions to how sets of LTI or periodic LTV models should be iden-
tified from data can be found in the literature.63 Some coefficient shrinkage or
subspace methods are employed to improve the conditioning of the identification
problem and hence reduce the variance of the model parameter estimates. Com-
parisons of some of these methods may be found in Hastie et al.21 In a modeling
framework similar to the one employed here, Dorsey and Lee13 proposed esti-
mating both a set of FIR models and a LTI SS model using principal component
analysis (PCA) and N4SID (van Overshee and de Moor)66 but such a set of
nonparametric FIR models is obviously not parsimonious and would exhibit poor
predictive capabilities.34 Simoglou et al.57 suggested estimating a set of indepen-
dent, overlapping local LTI SS models using canonical variant analysis (CVA).
Here, however, we propose estimating a set of interdependent grid-point LTI
ARMAX models using a novel interpretation of Tikhonov regularization.

The batch ARMAX model (Equation 11.13) can be formulated as a pseudo-
linear regression model:

(11.17)∆ = ∆ +y x vk k kθ
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where  is a structured regressor matrix with past outputs,
inputs, and disturbances, and θ = θ (A, B, C) is a batch ARMAX model. Based
on the linear regression model, we find that:

(11.18)

with  and where  is an estimate of the disturbance or
a one-step-ahead (OSA) prediction error profile. A multivariate weighted least-
squares (wLS) estimate of the model parameters in the linear regression model
(Equation 11.17) is found by solving the following minimization problem:

(11.19)

where ||·|| denotes the 2-norm, and W is a block diagonal weighting matrix with
symmetrical, positive definite, block elements Wt . Note that θt are the model
parameters of the local grid-point models and that they are mutually independent
in the estimation problem (Equation 11.19).

To reduce the variance of model parameter estimates without introducing
bias, as much data (of sufficiently high quality) as possible should be used for
the model parameter estimation. Typically, the available data set of

 batches is spilt up into sets of  batches for model
parameter estimation,  batches for model validation, and  batches for
model testing. The linear system (Equation 11.18) is thus augmented as:

(11.20)

Equation 11.20, however, will most likely still be rank deficient, and solving
it in a wLS sense would still produce model parameter estimates with excessive
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variance. Such excessive model parameter variance would yield models with poor
predictive capabilities.34 Thus, to improve the predictive capabilities of an esti-
mated model, additional measures must be taken to further reduce the variance
of the estimated model parameters.

A possible approach to reducing the variance of model parameter estimates
is to require that the estimated model possesses some desired model properties.
One such model property could be that neighboring grid-point models are anal-
ogous in the sense that they exhibit similar behavior. In fact, without this property,
the model would be a set of independent models and would not constitute a grid
of interdependent models. Enforcing model properties, however, inevitably intro-
duces bias into the model parameter estimates; thus, there will be a trade-off
between the bias and variance of the model parameter estimates, and this trade-
off will determine the predictive capabilities of estimated models. One coefficient
shrinkage-based parameter estimation method that can incorporate model prop-
erties into wLS estimates is Tikhonov regularization (TR). The derived regression
method20 based upon input direction selection called could in principle be an
alternative to TR, but in practice the truncated SVD would be computationally
infeasible. We thus proposed estimating the model parameters by solving the TR
problem:

(11.21)

where , W is a block diagonal matrix with block elements
W, the structured penalty matrix (L) maps the parameter vector (θ) into the desired
parameter differences, and the diagonal weighting matrix Λ weights the parameter
differences, such that the penalty ΛLθ is a column vector of weighted differences
between parameters in neighboring grid-point models. The penalty matrix L
consists of five submatrices, Lm: 

(11.22)

each of which is individual weighted by block diagonal weighting matrices Λm:

(11.23)

This set is weighted with an individual scalar weight, so we have a total of 5Nc
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• L1θ approximates the first-order time derivative of the parameters θ.
It thus incorporates the local model interdependency by penalizing the
model parameters time evolution.

• L2θ approximates the second-order time derivative of the parameters
θ. It thus incorporates the local model interdependency by penalizing
nonsmoothness of the time evolution of the model parameters.

• L3θ approximates the first-order time derivative of the impulse response
of the local models θt. It thus enforces dampened impulse responses
on the local model parameter estimates by penalizing the time evolution
of the impulse responses.

• L4θ approximates the second-order time derivative of the impulse
response of the local models θt. It thus enforces smooth impulse
responses on the local model parameter estimates by penalizing non-
smoothness of the impulse responses.

• L5θ penalizes the variance of the parameter estimates and thus
enforces minimum variance estimates — that is, L5 = I.

The estimated parameter vector is a function of the weighting
matrix ΛΛΛΛ that determines the coefficient shrinkage and hence the trade-off between
bias and variance. This means that the regularization matrix ΛΛΛΛ can be used to
tune the predictive capabilities of the model estimate. Through the particular
choice of penalty matrix L, the regularization matrix ΛΛΛΛ also determines the
interdependency between the grid-point models in the model grid. Note, if L′ΛΛΛΛ2L
is designed to be positive definite, then a unique solution to the estimation problem
(Equation 11.21) is guaranteed. In general, if the Hessian matrix H:

(11.24)

is positive definite, then Equation 11.21 has a unique solution.
As their names indicate, the models developed in this section can be used for

monitoring and for online control to reject batch-to-batch and intrabatch distur-
bances. These applications are described in the following sections, first for mon-
itoring to illustrate that process data actually do contain a significant amount of
information about the actual operation and subsequently for control to reject both
inter and intrabatch disturbances.

11.3 MONITORING

11.3.1 DEVELOPMENT OF A MONITORING MODEL

A model for monitoring normal process operation is developed below using an
industrial case as an example. Models for monitoring other types of behavior can
be developed in an analogous manner. First, the available data are classified into
different types of process behavior using MPCA. After selecting the desired class

θ̂

ˆ ( ˆ )θTR V, ,W ΛΛ
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of behavior to be modeled, the batches representing this type of behavior are
subdivided into two groups; one group, usually the larger, is used for model
development, and the other is used for cross-validation of the model (i.e., inves-
tigating the reliability of the model). Industrial cultivation results are presented
to illustrate modeling for monitoring. A model has been developed by carefully
selecting data sets from the historical database that reflect the normal desired
operation of the fermentations. This has been done by first discarding any batch
that has substantial undesired or unusual behavior compared to the desired batch
behavior (e.g., because of experiments in unfavorable operating regions or infec-
tions). Batches that are very short or very long are also discarded. The data
suitable for the model development are truncated such that 114 time samples are
included in the model. As mentioned, the dynamics of the process becomes slower
toward the end of the batch, and few corrective measures can be taken if a fault
occurs near the end of a batch. An initial model is estimated, and batches are
removed from the modeling data set if they are outside a 99% confidence bound
in a score plot using ellipses as confidence bounds. The procedure is repeated
iteratively until almost all the remaining batches fall within the 99% confidence
bound. It is important here to identify why a batch does not lie within the
confidence bound in order to make sure that only batches that are really not
conforming are eliminated from the normal data set.

After this reduction, 25 data sets are used for model development and 13 for
validation of the model. Using the prediction error sum of squares (PRESS) as
our validation criterion, two components are found to be sufficient for describing
the relationship between X and Y. The obtained model uses only 28% of the
information in X but explains 80% of the variation of Y. The low percentage of
used variation in X is due to the inclusion of controlled variables that have low
variation (e.g., pH and temperature). These variables are known to have a large
influence on the product formation which is why they are controlled. If the
influence of the controlled variables on the product formation is to be modeled
by the PLS model, these variables must be perturbed in designed experiments.
These experiments have not been performed because doing so would be expected
to lead to a decrease in product formation, and gross variation in these variables
is not encountered due to the control. If the PLS model was to be used entirely
for prediction purposes and if it can be assumed that control is perfect, then the
corresponding model performance could be improved by excluding the controlled
variables from the model. In our case, fault diagnosis of the controlled variables
is of interest, hence these controlled variables remain in the model. 

11.3.1.1 Online Estimation of Final Product Concentration

Using Equation 11.4, Equation 11.5, and Equation 11.6, the final product con-

this method for a low-producing fermentation. The data from this batch were
used for model validation but not for the modeling itself and are used in the
following sections. The final product concentration is 0.40, whereas the average

© 2006 by Taylor & Francis Group, LLC
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value for the batches used for model development was 0.46. Figure 11.3 shows
that the model is able to predict the final product concentration to within 10%
during most of the fermentation except during the interval from 70 to 80, where
there is a large deviation due to a process fault. The accuracy of the estimation
is similar to the accuracy provided by the lab when chemical analyses are per-
formed. This deviation can be interpreted further by fault diagnosis, as described
in the following section.

11.3.1.2 Fault Diagnosis

Fault diagnosis is most useful not only for the detection of faults as a batch
progresses but also for revealing whether or not a specific batch belongs to the
desired or normal behavior (e.g., whether the particular batch should be included
in the set of data used for modeling a particular desired behavior). Fault diagnosis
consists of three steps: fault detection, isolation, and identification (FDII). The
methods presented in this section will readily detect faults and isolate the mea-
surements that are behaving abnormally, and the methods may also facilitate
identification of the fault (i.e., determine the physical origin of the fault in the
process).

For fault detection, two statistics, the and the standard prediction error,
can be calculated. The statistic (based on the Hotelling T2 statistic39) is calcu-
lated using the scores:

FIGURE 11.3 Prediction of the final product concentration. The dotted line indicates the
actual product concentration as it was measured at the end of the batch. If the large fault
at t = 70 was allowed to persist throughout the fermentation, the product concentration
was estimated to be much lower than the one actually obtained.
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(11.25)

where S is the covariance matrix of the t-scores contained in the matrix T
calculated during the model development,62 I is the number of batches used for
modeling, and A is the number of components. F represents the F distribution.
The statistic reveals faults that can be described by the model.

The squared prediction error (SPE) is calculated by:

(11.26)

where er is the rth column of the matrix . In the simple case
where we are considering only one new batch, E is a row vector, er is a scalar,
and condenses into . The distribution of the SPE can be approximated by
a weighted χ2 distribution, , where mk and vk are the mean
and variance of the SPE obtained for the data set used for the model development
at time instant k.46 The SPE will show if a totally new event is occurring in the
process. This measure includes, for example, unusual variation of the controlled
variables stabilized by simple control.

A fault is detected whenever the statistic or the SPE exceeds a confidence
limit. The 95% limit is usually taken to be a warning level only, and action is
taken when the statistic exceeds a 99% limit.

The

from t = 70 to t = 80. The slow drift of the that can be noted is difficult to
detect looking at the raw measurements. It has already been indicated (in Figure
11.3) that this process drift results in a much lower than average product con-
centration at the end of the fermentation. Figure 11.3 illustrates the importance
of this type of monitoring for predicting the consequences of deviations. The SPE

almost throughout the entire fermentation.
Contribution plots, which indicate the variables that are contributing the most

to the statistic or the SPE, can easily be constructed and can thus be used in
the fault identification.42,47 Contribution plots can be used to find the change in
the contribution from one point in time to another or the contribution plot can
be used to find the deviation of the current batch when compared to the normal
batch behavior described by the model. Here, we choose to look at the fault that

of the variables from a point in time just before the fault could be detected in
the SPE and plots (t = 67) to the point where the fault is at its highest (t =
73). The figure shows that there is a large change in the contribution of the CO2
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statistic in Figure 11.4, plotted as a function of time for the same
batch as in Figure 11.3, shows that this particular batch has a large deviation

in Figure 11.5 indicates that this process is deviating from the average process

has been detected around t = 70. Figure 11.6 shows the change in contribution
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FIGURE 11.4  statistic; dash and dotted lines indicate 95% and 99% confidence limits,
respectively.

FIGURE 11.5 Squared prediction error (SPE). Maximum peak value when t = 20 is about
1400. The dash-dotted line is the 95% confidence limit, and the dotted line is the 99%
confidence limits.
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and O2 measurements. Thus, the task of isolating faulty measurement has been
reduced to following only a few plots that display if a fault has occurred and
subsequently investigating the contribution plots to identify which variables con-
tributed most to the fault.

11.3.1.3 Score Plots

The process can also be monitored using the scores in a so-called score plot.
Usually, the number of components is low (two to three) so a single plot is usually
sufficient to display the state of the process. If the model contains more than two
components, one can either construct three-dimensional plots or make several
two-dimensional plots to show the variation. The relation between the score plot

sample point in time.
A score plot can be used to monitor the process. When the variable space is

compressed using either PCA or PLS, the process behavior can be monitored in
a low-dimensional space using simple plots.46,47 Because the example model

monitor the major variations of a normally operating batch. The figure shows the
variation of the process in the reduced space of the two components. The score
plot describes the current state of the process and allows the operator to follow
and interpret the development of the process. It must be emphasized that the
scores usually lack any direct physical meaning, as they combine many physical

FIGURE 11.6 Contribution plot showing the change in the process from t = 67 to t =
73. It is seen that the variables CO2 and O2 contribute most to the fault and that they are
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lower than normal. From the plot of the predicted final product concentration (Figure
11.5) it can be seen that the fault has a negative effect on the quality.

and the squared prediction error is illustrated in Figure 11.7 for an abnormal

contains only two components, the score plot in Figure 11.8 is sufficient to
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FIGURE 11.7 Three-dimensional score plot. The score plot illustrates the quantification
of an abnormal sample instance, both in terms of distance in the two-dimensional plane
to its origin as measured by the T2 statistics and in terms of the level of unmodeled
behavior, as indicated by the squared prediction error (i.e., the distance above the two-
dimensional plane).

FIGURE 11.8 Score plot for a faulty batch illustrating the development of the process in
a reduced space. The beginning of the fermentation is marked with a “˚”. The time interval
[69,77] (starting with a “*”) is shown as solid lines. The score t1 varies, primarily when
large oscillations in the temperature occur; t2 varies primarily when the CO2 and O2

measurements change.
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effects. One way of interpreting the score plot is to ascribe different phenomena
to specific timewise movement of the scores. For example, the example model
shows large variation of the t2 score when deviations in the O2 uptake and CO2

production occur. Another way of finding a physical relationship is to investigate
the loading matrices, which directly show the relationship between the measure-
ments and the scores. Both interpretations can be useful when the behavior of a
batch is to be described and current or future faults are to be eliminated.

Equation 11.5 shows the relationship between the scores and the dependent
variable y as . Because in this case Q = [0.05, 0.08], it can be inferred
that batches will have a higher than average product concentration at the end of
the batch when the score values all are positive (i.e., the scores are moving around
in the upper right-hand quadrant of the score plot).

Score plots can furthermore be used as a fingerprint of the batch. Instead of
investigating plots of the different measured variables, we can use a score plot
for an entire batch to investigate if something unusual has happened during the
fermentation. Figure 11.9 shows such a score plot of a well-behaved batch. The
scores stay in this figure close to the point (0,0) which indicates that this batch
did not have any faults that affected the product concentration. It would have
been much more difficult to interpret the original measurements due to their time-
varying nature.

When a new batch is monitored we can then investigate if the batch is
operating within the window of the desired behavior given by the model. If the
batch deviates significantly, a fault has occurred, and corrective action must be

FIGURE 11.9 Score plot for a well-behaved batch. The scores remain near the point (0,0),
suggesting that the product concentration will end on the average value of the batches that
were used to form the model. Confidence limits on both figures are kernel density estimates.
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taken. As the model has been built on historical data where process faults have
not been treated, faults unfortunately may be allowed to persist. The goal is that,
when fault diagnosis has been implemented and the process variation has been
reduced, a new and better model for monitoring should be developed.

11.4 BATCH CONTROL PROBLEM SOLUTIONS

In the following sections, various implementations of batch operations models
are reviewed and methods based on time-series models are discussed in more
detail.

11.4.1 BATCH CONTROL REVIEW

Despite the fairly difficult nature of the nonlinear and time-varying control prob-
lem of batch processes, a number of approaches to online control of batch
processes have been presented in literature. This is consistent with the significant
attention drawn to batch manufacturing in other areas (e.g., robotics and semi-
conductor manufacturing).43 With regard to the control of batch chemical pro-
cessing, the suggested methods may be distinguished between those using first-
principles engineering models and those using empirically based models. For
first-principles models, two methods have been advocated, one based on nonlinear
differential geometric control and the other on online optimization.

In the differential geometry approaches,30–32 a nonlinear model is used to
perform a feedback transformation that renders the transformed system linear,
such that linear control theory can be applied. In the online optimization
approaches, the optimal batch operations models are periodically updated during
the batch execution at selected instances to optimize some quality or performance
measure.10,11,53 In these methods, sequential quadratic programming may be used
to determine the control actions; however, the required first-principles engineering
models are only seldom available for many chemical engineering processes. An
interesting approach to circumvent this problem was suggested by Lübbert and
Jørgensen,38 who took a hybrid modeling approach to overcome the shortcoming
of simple unstructured biomass models for biotechnical processes. Using such a
hybrid approach it has been possible to achieve optimizing control in a number
of cases.56

More general empirical model knowledge has been applied by a number of
groups to achieve methods for control of batch processes since it was recognized
that usage of detailed first-principles models for control and optimization often
is unrealistic in industrial applications. Bonvin et al.7 and Srinivasan et al.60,61

determined a sequence of approximate input trajectories using approximate mod-
els and subsequently used batch plant measurements to refine the input trajectories
through tracking the necessary conditions for optimality (NCO). Their procedure
can track both path and terminal conditions, thus leading to a combined intra-
and interbatch control. Given the limited availability of models, they aim at
experimental adaptation (optimization) of the batch operations model through

© 2006 by Taylor & Francis Group, LLC



444 Batch Processes

tracking the NCO. The resulting procedure uses the interesting concept of a model
of the optimal solution, hence their resulting optimal batch operations model is
referred to as the solutions model.59 Another empirical approach was taken by
Åkesson et al.,1 who utilized the knowledge that optimal batch operation consists
of a sequence of operations wherein each sequence is constrained by some
physical aspect of the process system. This information is revealed through
perturbing selected process actuators to determine the currently most constrained
variable. This method was implemented on a substrate- and oxygen-supply-
limited bioreactor to provide near-optimal operation. The principle has also been
extended to a heat-transfer-limited operation by de Maré et al.12

The above works may be viewed as primarily addressing problems related
to implementing the batch operations model. Several of the studies mentioned
do, however, depend on the availability of a process model, which indeed may
be available for some processes but in other cases may be difficult or expensive
to develop. Therefore, significant attention should be devoted to developing
methods for modeling from data and investigating how such methods can exploit
control developments for batch process control.

One such data-driven approach is based on experiences gained from moni-
toring, wherein predictions of end-of-run properties are made.15,16,65 These pre-
dictions are used for control of end-of-run quality properties, where the control
action is restricted to only a few changes in the manipulated variable during the
batch operation. However, if the operation requires a more frequent adjustment,
then the manipulated variable trajectories may be discretized into a limited num-
ber of segments, within which the manipulated variables follow a zero or first-
order hold.8,17,54,55 Such a staircase approach, however, may be undesirable in
practice when a smoother progression may be desirable, simply because a too
coarse staircase may give rise to undesirable high-frequency disturbances. An
advantage of the monitoring methodology is the inherent mapping of the high-
dimensional variables into a low-dimensional variation space of a few latent
variables, which are determined using principal component analysis (PCA) or
partial least squares (PLS) methods. A further advantage of these methods is that
all measured variable trajectories can be mapped into the latent variable space,
so all control calculations can be performed and then mapped back into the
manipulated variables.

Another data-driven approach is also inspired by the ability of monitoring
methods to predict endpoint qualities by utilizing monitoring models; however,
this inspiration led to the realization that it should be possible to reconstruct
approximate time-series models from available process measurement data. Such
a reconstruction was realized by Gregersen and Jørgensen19 and Bonné and
Jørgensen,4,6 who utilized a large number of local models on a grid of time points
to approximate the measured process behavior as described in the modeling
section of this chapter. These models are referred to as grid of linear models
(GoLMs). The resulting model may be represented as being linear time invariant
between batches and linear time varying within a batch, thus relatively well-
known methods can be used to control these systems, even though the models
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contain a high number of parameters. A key point in the identification of the
models is the usage of regularization to ensure a well-conditioned estimation
problem, as described above. Thus, the methodology is essentially equivalent to
the projection methods to lower dimensional spaces as mentioned during our
discussion of monitoring models.

The development of numerous solutions to the batch control problem has
been reported in recent years; therefore, it seems worthwhile to view the devel-
opments from the perspective of their implementation in the control hierarchy.

11.4.2 BATCH CONTROL PROBLEM

Conceptual design and synthesis of batch processes18 provides both the task
sequence and a feasible operations model, as well as definitions of the important
process variables for each subtask. The feasible operations model may be opti-
mized offline to produce an optimal batch operations model. Implementation of
this operations model may be achieved by defining control loops to ensure that
the desired trajectory is followed; however, this implementation may be utilized
in many different ways, depending on the models used and approaches taken to
use experimental information. This section describes an operations model and
discusses ways to implement such operations models. Two extreme ways to
implement an operations model can be defined, with several hybrid forms in
between.

One implementation, in which the prescribed actions of the operations model
are implemented directly on the plant for the precalculated duration, is termed
open-loop (or offline) optimization. For this type of operation, the uncertainty
caused by disturbances will result directly in variable product quality and pro-
ductivity; however, in practice, this open-loop implementation has been one of
the most utilized. Consequently, there is ample room for improvement by using
one of the solutions described below. 

In another type of implementation, the actions are downloaded as setpoint
trajectories to a set of controllers which then change the manipulated variables
such that the controlled variables can follow the prescribed trajectories with the
designed performance. This implementation is termed closed-loop (or online)
optimization. Various examples of closed-loop optimizing control are investigated
below.

11.4.3 CLOSED-LOOP OPTIMIZING CONTROL

When feedback control is applied to reduce the influence of the process and
market disturbances on the batch operations model (i.e., to reject both inter- and
intrabatch disturbances), several different implementations are possible. These
may be classified according to a combination of the number and type of control
layers between the optimization layer and the process and of the control design
methodology.
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11.4.3.1 Single-Variable Control Layer

When the setpoints or their trajectories are downloaded directly to a single-
variable control layer, an improved ability to reject disturbances is obtained. The
usage of feedback for implementation of the batch operations model improves
the achievable performance to the extent that disturbances may be rejected by
the selected control loops in the single-variable layer. The batch operations model
will remain optimal if such disturbance rejection is perfectly achievable. In the
case of continuous plants, it is in some cases possible to develop a control structure
that is insensitive to uncertainty such that the setpoints may be kept constant even
during disturbances. The case where this is possible is known as a self-optimizing
control structure.58 For batch plants, however, the setpoints usually will be time
varying, as specified by the batch operations model.

The control loops are related to the synthesis of a batch operation through
the degrees of freedom for the process operation. Some of these degrees of
freedom are used by the process actuators in the control loops. Thus, the decision
as to which degrees of freedom to provide for the control loops is very important,
as is which measurements to combine or pair with each degree of freedom into
a control loop. The combined set of control loops for a processing task is a control
structure. It is clear that the available degrees of freedom change as the status of
the constraints change during the batch operation. Thus, when operating on one
set of constraints, the corresponding degrees of freedom are not available as
control handles, whereas when operation switches to a new set of constraints a
new set of degrees of freedom becomes available. Batch operation can be viewed
as execution of a sequence of control structures on a plant with the purpose of
moving the plant in such a way that available resources are utilized maximally
under the given conditions. Clearly, the timing or execution of this sequence
becomes important for achieving optimum performance (i.e., realizing the batch
operations model). From the perspective of the control hierarchy, a coordinating
layer above the single-loop control layer can be introduced to handle the coor-
dination or switching between the different multiloop control structures, each of
which usually is implemented as several single loops.

The principal control synthesis problem, then, is to develop basic control
structures for the different phases during a batch and to develop procedures for
switching between the different control structures. One interesting systematic
methodology for implementing the optimal batch operations model solution is
under development. This methodology determines a set of controllers that are
designed to track the necessary conditions of optimality (NCO), thereby enabling
direct adaptation to uncertainty.59–61 The resulting sequence of control structures
and their switching times implements the batch operations model. Each controller
or switching time is related to satisfying one specific nominal condition of
optimality. This methodology may provide useful insight into the optimal batch
operations model and its relation to the process design. Several aspects are still
under development so a systematic procedure using this methodology is not yet
available. Currently, it is assumed that the structural aspects of the solution model
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are invariant to uncertainty. Furthermore, the operations model is not unique, and
particular choices strongly influence the control structure. For these reasons, it
may be relevant to investigate what the introduction of a full multivariable layer
in addition to the coordination layer offers. This question is obviously relevant
because the batch control problem implies coordination of several different con-
trol loops under the influence of process constraints. In reality, this problem
clearly is multivariable at the outset.

At one extreme, one could consider the case where it is not possible to achieve
a time separation between the optimization and single-variable control layers,
thus a tight integration between the optimization and control layers would be
desirable. Achieving this requires solving the Hamilton–Jacobi–Bellmann equa-
tion, which is computationally infeasible; instead, a repeated optimization may
be executed. Such a repeated optimization may be carried out by solving a finite-
horizon optimization problem at each sample interval in the multivariable control
layer,14,48,52 which would directly imply a multivariable layer. A different approach
has been taken by Cruse et al.,11 who solved an output feedback optimal control
problem by minimizing a general objective reflecting process economics rather
than deviations from a batch operations model trajectory. Thus, this procedure
can be considered an online optimization of the batch operations model. This
approach is a generalization of state-of-the-art, steady-state, real-time optimiza-
tion aimed at establishing economically optimal transient plant operation.3 Here,
however, our attention is focused on the introduction of a multivariable control
layer.

11.4.3.2 Multi- and Single-Variable Control Layers

In fact, a multivariable layer may often be most suitable for implementation of
the batch operations model simply due to the required switching between control
structures in order to exploit different resource and equipment constraints. The
multivariable aspects may be relevant for tracking the setpoint profiles from the
optimization layer, where it may be appropriate to keep a careful balance between
different actuators to maintain the plant on a desired trajectory. During tracking
of setpoint trajectories, the multivariable aspects have two manifestations, where
one is related to rejection of intrabatch disturbances and the other to rejection of
interbatch disturbances. Preventing intrabatch disturbances from having a dete-
riorating effect on the ability to follow the desired time-varying optimal batch
operations model will in general have to be handled as a time-varying control
problem. Thus, one method that could be most suitable is model predictive
control, provided a model is available. Model predictive control has the clear
additional advantage that it smoothly switches between control structures as
constraints become active or inactive. Preventing interbatch disturbances from
having a deteriorating effect on the ability to reproduce a batch of the same type,
whenever this might occur, may be viewed as a task of learning as much as
possible from the previous batch round, including learning from the disturbances
actually encountered. For this purpose, iterative learning control is convenient.
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11.4.3.3 Iterative Learning Control

Iterative learning control, or ILC, is a well-established technique that can be used
to overcome some of the traditional difficulties associated with ensuring control
performance for time-varying systems.43 Specifically, ILC is a technique for
improving the transient response and tracking performance of processes, equip-
ment, or systems that execute the same trajectory, motion, or operation over and
over, starting from essentially the same initial conditions each time. In these
situations, iterative learning control can be used to improve the system response.
The approach is motivated by the observation that, if the system controller is
fixed and if the process operating conditions are the same each time it executes,
then any errors in the output response will be repeated during each operation.
These errors can be recorded during operation and can then be used to compute
modifications to the operations model (i.e., the input signal that will be applied
to the system during the next operation, or trial, of the system). In iterative
learning control, refinements are made to the input signal after each trial until
the desired performance level is reached. Note that the word iterative is used here
because of the recursive nature of the system operation, and the word learning
is used because of the refinement of the control input based on past performance
executing a task or trajectory. Iterative learning control depends on the design of
algorithms to update the control input. Because the control input in general is
multivariable, then iterative learning control should take place at the multivariable
layer or higher up in the control hierarchy. In the semiconductor industry and in
robotics, run-to-run control has been applied extensively.43 Most often, these
applications focus upon the interbatch disturbances and do not handle the intra-
batch aspects. In chemical plants, the batch duration often is long, thus significant
benefit may be gained by handling intrabatch disturbances and it may be worth-
while to combine the multivariable and iterative learning controls. Such an inte-
gration has been investigated by Lee et al.,35 and Bonné and Jørgensen.5

In this chapter, a multivariable layer with model predictive control and iter-
ative learning control is used to illustrate the possible benefits for implementation
of the batch operations model. The purpose of the demonstration is to reveal the
straightforward application of MPC plus ILC when an identified model represen-
tation is available. First, however, the benefits of this combination are illustrated
and discussed.

11.4.4 MODEL PREDICTIVE AND ITERATIVE LEARNING CONTROL

Approximating nonlinear batch processes with sets of linear time-series models
provides a model that facilitates application of linear-model-based control. One
such model-based control algorithm is model predictive control (MPC), which
has been comprehensively covered in the literature.9,41,44,45,51 Model predictive
control based on model-based predictions of future process behavior will provide
an optimal sequence of actuator signals which will bring the process to a desired
operation point within a given time horizon. The actuator sequence will be optimal
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in the sense that it will optimize a specified control objective. This control
objective could be minimum deviation from a desired (optimal) batch operations
model, minimum operation costs, or maximum production rate. Further motiva-
tion for application of MPC is that it offers optimal specification tracking while
considering multivariable dynamic correlations and actuator limitations together
with safety and quality constraints on the process variables and potentially also

constraint handling abilities of MPC may be built on an existing basic (propor-
tional–integral–derivative, or PID) control system. When the final product quality
depends on several batch units operated in parallel, the multivariable facets of
MPC may also be applied for coordinative control of the separate batch units,

For batch processes the MPC control objective is typically specified as a
trade-off between minimum expected deviation ( ) from the desired opera-
tional path given measurements up to time t and minimum controller intervention
(∆uk,t) in the remaining part of the batch:

(11.27)

where Q and R are weighting matrices. The control objective is optimized at
every time step t when only ∆u(t) is implemented. When utilizing the batch-to-
batch transition model (Equation 11.15), the resulting control algorithm may be

in Equation 11.27 can be formulated as a quadratic programming (QP) problem:

(11.28)

which can be solved with commercial QP-solvers. By proper configuration of A
and B, both the process variables and the actuators may be constrained.

Considering the repetitive fashion in which batch processes are usually oper-
ated, control of these processes will improve when the experience gathered during
operation of the previous batches (for a specific grade or product) is utilized
before and during operation of a new batch. Having completed a batch run with
control, we could then pose the question: What were the lessons learned? 

• Lesson 1. We learned how disturbances encountered during the batch
run were rejected. This knowledge about the control profile can be
used to improve the nominal control profile, giving better rejection of
disturbances in the next batch run.
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on equipment availability. As depicted in Figure 11.10, the multivariable and

keeping the final product quality at its desired level as illustrated in Figure 11.11.

represented by the block diagram shown in Figure 11.12. The quadratic objective
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FIGURE 11.10 Conceptual sketch of how the multivariable and constraint handling features of model predictive control (MPC) may be utilized as
an add-on to an existing decentralized basic control system.
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• Lesson 2. We learned which disturbances to expect in the next batch
and when. This knowledge about the disturbance profile can be used
to improve our prediction of the behavior in the next batch.

• Lesson 3. We learned how well the behavior was predicted. This knowl-
edge about the predictive capabilities can be used to improve both the
performance and the robustness of the controller for a batch run as a
whole (i.e., to obtain better but also safer disturbance rejection).

concept of benefiting from experience gathered during operation of past batches
is what is captured in iterative learning control, as illustrated in Figure 11.13. Thus
far, ILC has been applied between batches as the only control scheme, offering no
corrective actions during operation of a single batch; however, merging ILC and
MPC offers the learning capabilities of ILC in a MPC framework.5,35 This merger

FIGURE 11.11 Conceptual sketch of mixed product quality tracking with coordinative
control.

FIGURE 11.12 Block diagram of the model predictive control (MPC) imbedded iterative
learning control (ILC) algorithm. The block diagram illustrates how the initial estimate of
the error profile and the nominal input profile are refined from batch to batch as well as
how the prediction error covariance (P) is used for controller tuning.
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These three lessons are depicted in Figure 11.12 and Figure 11.13. This
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provides a MPC framework that asymptotically rejects the effects of batchwise
persistent disturbances, including the effects of model bias introduced by the
linear process approximation. The time-series modeling framework presented in
this chapter fully supports an iterative learning MPC framework.

11.5 RESULTS

To illustrate the applicability of the proposed data-driven time-series modeling
approach, two fed-batch fermentation processes are considered. First, the mod-
eling framework is applied to data from an industrial case. Subsequently, the
performance improvement that may be achieved using the data-driven predictive
time-series models for intra- and interbatch control is demonstrated on a simulated
cultivation example.

FIGURE 11.13 Concept of iterative learning control (ILC).
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11.5.1 MODELING FOR PREDICTION AND CONTROL

11.5.1.1 Industrial Pilot Plant

In collaboration with an industrial partner, historical data from pilot-plant, fed-
batch fermentors were investigated for the purpose of modeling.4 For the sake of
simplicity, only online carbon dioxide evolution rate (CER), oxygen uptake rate
(OUR), substrate feed rate, and offline product activity measurements were con-
sidered. The substrate feed rate was selected as the input or manipulated variable,
and the outputs (i.e., the carbon dioxide evolution rate, oxygen consumption rate,
and product activity measurements) were correlated to the input in two scenarios:

• Model 1: Using data from ten fed-batch runs with high diversity and
cross-validation on data from three different fed-batch runs

• Model 2: Using data from two fed-batch runs with very similar behav-
ior and cross-validation on data from one fed-batch run

The first model showed very good fit of the validation data; therefore, these
are not shown here. For the second case, it can be seen in Figure 11.14 that a

FIGURE 11.14 Model validation for an industrial pilot-plant fermentation. The model
convincingly predicts a decrease in product activity from one batch to the next correspond-
ing to 50%.
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50% decrease in product activity for the validation batch could be predicted using
model 2 and that the experimental costs could have been avoided. Note that the

very limited information was available because no inputs were used except for
the starting values (i.e., initial conditions). Note also that the available data for
this case were very limited and that more data or even designed experiments
should be carried out in which the inputs are perturbed at points in time where
control action might be desired.

11.5.1.2 Simulated Production of Yeast

To simulate fed-batch cultivation of yeast, a biochemically structured model
developed by Lei et al.37 was used to represent the process. This model describes
aerobic growth of Saccharomyces cerevisiae on glucose and ethanol and focuses
on the pyruvate and acetaldehyde branch points in the metabolic pathways, where
overflow metabolism occurs when the growth changes from oxidative to
oxido–reductive. In the designed process operation, it was assumed that the
cultivation was fed with glucose as substrate while the feed flow rate was manip-
ulated as the input variable. In the simulation, it was assumed that the ethanol
(EtOH) concentration, oxygen uptake rate (OUR), and carbon dioxide evolution
rate (CER) were measured online without time delay. From the online measure-
ments of OUR and CER, the respiratory quotient (RQ) was calculated (RQ =
CER/OUR). To characterize the performance of this fed-batch cultivation, the
following dimensionless measures were defined:

• Quality  final yeast biomass concentration – final ethanol concentration
(∞1000) and substrate concentration (×200), normalized by the con-
centration unit (1 g/L).

• Yield of produced biomass (yeast) divided by the fed substrate on a
mass basis.

The weights on the ethanol and substrate concentration in the quality measure
could be based on costs of downstream processing relative to the sales price of
yeast, but here they are set such that variations in yeast, ethanol, and substrate
concentrations are represented equally in the quality variation.

For simplicity the cultivation was modeled with EtOH, OUR, CER, and RQ
as output variables without any other quality-related variables. RQ was treated
as a measurement to test if the dynamic behavior could be modeled with the
proposed modeling approach. To study the applicability of the proposed modeling
approach to processes where initial conditions are not obtainable, the dynamics
in Gini were not included in the modeling. A set of data-driven models was
identified in the following scenario:

© 2006 by Taylor & Francis Group, LLC

poor predictive performance in the initial phase of the batch depicted in Figure
11.14 is caused by a batch phase preceding the fed-batch phase during which
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• The measurement noise was approximated by white noise with a stan-
dard deviation equal to one third of the maximum noise level. Maxi-
mum measurement noise: EtOH, ±3%; OUR, ±2%; CER, ±2%; RQ,
±2%; u, ±1%, where the individual noise levels are based on laboratory
experiments of industrial data.

• The initial conditions were uniformly perturbed by a maximum of
±10% in every batch.

• The identification was based on data from ten realizations of normal
runs.

• The identification was in this case optimized by testing possible com-
binations of the regularization weights λ1 * I = L1 and λ2 * I = L2 only.
The combination that minimized the mean (in terms of the set of
validation batch data sets) prediction error when the estimated model
set is cross-validated on independent data is selected. The optimal
regularization weights are shown in Table 11.1 and Table 11.2, along
with their respective mean prediction fits.

• The model validation was based on three other normal batch data sets. 

TABLE 11.1
Optimal Regularization Weights 
and Relative Prediction Fit for 
Noise-Free Identification

Output Variable λλλλ1 λλλλ2 Fit

∆EtOH 1.18 0.04 0.0157
∆OUR 0.05 0.01 0.0192
∆CER 0.05 0.01 0.0178
∆RQ 0.02 0.01 0.0163

TABLE 11.2
Optimal Regularization Weights 
and Relative Prediction Fit for 
Noisy Identification

Output Variable λ1 λ2 Fit

∆EtOH 1.18 0.05 0.0157
∆OUR 0.05 0.01 0.0242
∆CER 0.05 0.01 0.0205
∆RQ 0.26 0.02 0.0239
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To facilitate the identification task a fairly exciting input sequence was chosen.
The input sequence was constructed by adding a pseudo-random binary sequence
(PRBS) onto the nominal input trajectory. At each sample, the PRBS was uni-
formly scaled by a maximum of  ±10% of the nominal trajectory. Note that input
sequences are not system friendly and thus seldom applicable in practice.49

Because the basic assumption of this interbatch modeling approach is that tra-
jectories vary only slightly from batch to batch, the validation batch data sets
were generated with input trajectories similar to those used for identification (i.e.,
data sets similar to the identification data but not used for the identification).

from noise-free data for all the outputs with relative prediction fits less than
2∞10–2

be obtained from noisy data without prefiltering. One of the three model cross-
validations from the noisy identification is shown in Figure 11.15.

The control simulations were designed to accentuate the ILC feature and
study the relation between trajectory control and reproducibility. The performance
of a single input/multiple output (SIMO) ILC algorithm without quality control
was investigated by randomly perturbing the initial conditions a maximum of
±10% in every batch run and introducing a persistent bias in the input trajectory

FIGURE 11.15 Validation of noisy identification in batch-incremented variables. True
batch difference: solid line; predicted batch difference: dotted line.
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From Table 11.1, it can be seen that quite reasonable models can be obtained

. Furthermore, as indicated in Table 11.2, models of similar quality can
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by lowering the feed substrate concentration 10%. The benchmark against which
the performance was tested was open-loop operation with no control. From the
noisy SIMO tracking in Figure 11.16, it is apparent that the control algorithm
reduces the summed squared error sequence (SSES) approximately 80% in
the first batch run. Furthermore, after having been trained on the first three batch
runs, the control algorithm reduced SSES more than 94% in subsequent batch
runs except for batch run 6. By coincidence, the direction of the initial perturba-
tion in batch run 6, which corresponds to starved yeast, was unique to batch run
6 and particularly difficult to handle by control. However, the performance of the
control algorithm in batch run 7 does not suffer from the performance drop. Note,
however, that, still, almost 60% of the total SSES was rejected by control in batch
run 6. Although the SIMO tracking did not ensure reproducible operation in terms
of quality, the quality was improved by output tracking alone (i.e., without
including a quality measure in the control objective). It is also evident that the
yield decreased slightly when control was imposed. This decrease was caused by
aggressive controller movements that resulted in feed pulsing, which induced
production of ethanol and carbon dioxide. Thus, the cost of a much improved
output tracking performance was an insignificantly lower yield.

FIGURE 11.16 The batchwise evolution of summed squared error sequence, quality, and
yield in noisy tracking of EtOH, OUR, CER, and RQ. No control corresponds to 100%.
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11.6 DISCUSSION AND CONCLUSIONS

The chapter formulates the batch control problem as implementation of the
optimal batch operations model. A key ingredient in this implementation is
application of knowledge of the behavior of the plant which is represented in the
form of models. Such knowledge may originate from first-principles knowledge
or from data. Data-driven modeling is emphasized in this chapter. One type of
data-driven modeling is modeling for monitoring batch processes. It has been
demonstrated that data-driven modeling is feasible for the development of time-
series models for batch processes leading to LTV models within the batch and
LTI models from batch to batch. The moderate number of parameters in the
locally linear time-series models are estimated through extensive use of regular-
ization. The models have shown remarkable ability to predict batch cultivations
before they have actually been carried out.

Both of the two fundamentally different data-driven modeling approaches
presented in this chapter have been shown to possess the property of being able
to predict the entire batch process behavior in pure simulation (i.e., before the
batch is started). Time-series-based predictive models may be developed from a
relatively low number of batches due to the extensive use of regularization; hence,
such time-series models hold promise for the development of monitoring tools
and learning model predictive control of batch processes. For a new production
or new strain, such development could conceivably be based on data from pilot-
plant optimization runs. Such data could also enable development of models for
other types of products produced using related methods (e.g., cultivation of the
same strains of microorganisms).

Monitoring of batch processes is most useful for detection and diagnosis of
faults in batch process operation; however, another important use of monitoring
is the verification of process performance relative to the behavior represented in
the plant model used for control design. When such verification has been obtained,
it is reasonable to proceed to further implementation of the optimal batch oper-
ations model. In practice, such verification should be carried out at every sample
instant before more advanced control action is executed.

We reviewed recent progress in the control of batch processes by presenting
the formulation of the batch control problem. Different implementations of the
optimal batch operations model were discussed in relation to the control hierarchy
and to disturbances affecting the operation. Implementations based on a single-
variable control layer designed to reject disturbances were shown to require a
coordination layer to ensure proper timing when switching between the different
control structures in the single-variable control layer. A methodology to system-
atically develop these controllers and the coordinated switching is under devel-
opment based on satisfying the necessary conditions for optimality. This method
depends on knowledge of the solutions model (i.e., knowledge of how the optimal
solution influences the necessary conditions for optimality). Another type of
implementation employs a multivariable control layer with model predictive
control that can ensure a smooth transition between control structures to track
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the process constraints optimally and can also ensure coordinated utilization of
actuators to handle multivariable issues, including constraints. A straightforward
implementation will enable rejection of intrabatch disturbances. In addition, learn-
ing control may be incorporated to enable rejection of interbatch disturbances
and ensure optimization of the batch operations model.

The intent of this chapter was to demonstrate that the area of batch control is
finally maturing and that several methods are under development for practical
implementation of the batch control problem. Several applications of these methods
have also been reported. Clearly, many aspects of the various methods require
further development; however, if proper validation is carried out then several of the
methods may be used in their current state of development. It is noteworthy that
most methodologies are based on qualitative or data-driven modeling methods.

Given the methods presented here, it can be expected that batch monitoring
and control will lead to significant improvements in batch operations and their
optimization, improvements that currently are being exploited in the multivariable
control of many continuous plants. Due to the extensive use of open-loop opti-
mization in the implementation of the time-varying optimal batch operations
model, however, it is expected that the achievable benefits of closed-loop opti-
mization are substantially greater than those seen for continuous operation.
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12.1 INTRODUCTION

12.1.1 D
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A supply chain encompasses a firm’s or several firms’ facilities and resources
and the relationships between the facilities and resources required to plan, man-
age, and execute:

•
• The making of intermediate and final products
• The delivery of end products to customers

as “All interlinked resources and activities required to create and deliver products
and services to customers.” (See Figure 12.1.)

 

FIGURE 12.1

 

Example of a supply chain.
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The term 

 

supply-chain management

 

 (SCM) has been broadly used in the literature
with various meanings due to the development of the philosophy from various
perspectives: purchasing and supply, transportation and logistics, marketing, and
level of coordination. Though different in origin, these theories have now merged
into a holistic and strategic approach to 

 

operations, materials, and logistics

  

SCM is a strategy where business partners jointly commit to work closely together,
to bring greater value to the consumer and/or their customers for the least possible
overall supply cost. This coordination includes that of order generation, order taking
and order fulfillment/distribution of products, services or information. Effective
supply chain management enables business to make informed decisions along the
entire supply chain, from acquiring raw materials to manufacturing products to
distributing finished goods to the consumers. At each link, businesses need to make
the best choices about what their customers need and how they can meet those
requirements at the lowest possible cost.

 

In other words, the purpose of SCM is to deal effectively with external
strategic changes, such as globalization, and operational uncertainties, such as
demand fluctuations, in order to take advantage of any new opportunities and to
drive down the overall supply costs. This is achieved through effective manage-
ment of production, inventories, and distribution.

Supply-chain management is sometimes confused with logistics. The Council
of Logistics Management supplies this definition to make the distinction clear:

 

1

 

Logistics is that part of the supply chain process that plans, implements and controls
the efficient, effective flow and storage of goods, services, and related information
from point-of-origin to the point-of-consumption in order to meet customer
requirements.

 

Anderson et al.

 

2

 

 identified seven key principles of supply-chain management:

1. Segment customers based on the service needs of distinct groups and
adapt the supply chain to meet the needs of these segments profitably.
For example, “type A” customers might be blue-chip companies that
buy large quantities of product often. Stocks should always be available
for their products. Type B might be medium-size companies that buy
smaller amounts often. Stocks should be available, say, 95% of the
time, and material might be made available within a week if they are
not immediately available. Type C might be independent distributors
(who might hold their own stocks). Stock should be available, say, 90%
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of the time for them and available within 2 weeks if not immediately
available.

2. Customize the supply-chain and logistics network to the service
requirements and profitability of customer segments; for example, it is
not necessary to use air freight for type C customers.

3. Monitor market signals and align demand planning accordingly across
the entire supply chain (i.e., make all information available upstream)
to ensure consistent forecasts and optimal resource allocation.

4. Differentiate the product as close to the customer as possible (a good
example is paint mixing kits at do-it-yourself stores) and speed up
conversion across the supply chain.

5. Manage sources of supply strategically to reduce the total cost of
owning materials and services; for example, it is not necessary to hold
vast stocks of raw materials if a supplier can provide daily deliveries
reliably.

6. Develop a supply-chain-wide technology strategy that supports multi-
ple levels of decision making and gives a clear view of the flow of
products, service, and information. Visibility is important if good-
quality decisions are to be made.

7. Adopt channel-spanning performance measures to gauge collective
success in reaching the end user effectively and efficiently. Often,
performance measures traditionally used at individual nodes of the
chain are in conflict with each other.

The main elements of supply-chain management, using the Supply Chain Oper-

•

 

Plan.

 

 Strategic or tactical — work out how the enterprise is going to
meet demand for the product.

•

 

Source.

 

 Select suppliers and ensure raw material availabilities; define
relationships and develop inbound logistics procedures.

•

 

Make.

 

 Coordinate the interlinked manufacturing activities often involv-
ing complex balancing of resources to manufacture the products and

•

 

Deliver.

 

 Coordinate activities from manufacturing site to customers
through the logistics (storage and transportation) infrastructure.

•

 

Return.

 

 Receive faulty products from customers (best avoided but
occasionally unavoidable). 

 

12.1.3 P

 

ROCESS

 

 I

 

NDUSTRY

 

 S

 

UPPLY

 

 C

 

HAINS

 

Process companies often sit in the middle of wider supply chains and as a result
traditionally perform differently from companies operating at the final consumer

industry end up. In our experience, supply-chain benchmarks for the process
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scheduling flexible facilities (see Chapter 10 of this book).

end of the chain. Figure 12.2 indicates where products of the European chemical

ations Reference (SCOR) model (see www.supply-chain.org) are:

http://www.supply-chain.org
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industries do not measure up well when compared with other sectors (e.g.,
automotive, computers). Examples of such benchmarks in the batch processing
sector include: 

• Stock levels in the entire chain (“pipeline stocks”) typically amount to
30 to 90% of annual demand, and the chain usually contains 4 to 24
weeks’ worth of finished good stocks.

• Supply-chain cycle times (defined as elapsed time between material
entering as raw material and leaving as product) tend to lie between
1000 and 8000 hours, of which only 0.3 to 5% involve value-adding
operations.

• Material efficiencies are low, with only a small proportion of material
entering the supply chain ending up as product (particularly fine chem-
icals and pharmaceuticals, where this figure is 1 to 10%).

Further benchmarks are provided in Section 12.6.
Process industry supply chains, involving manufacturers, suppliers, retailers,

and distributors, are therefore striving to improve efficiency and responsiveness.
For world-class performance, both the network and the individual components
must be designed appropriately, and the allocation of resources over the resulting
infrastructure must be performed effectively. The process industries have been
hampered in this quest by both intrinsic factors (e.g., the need to influence
processes at the molecular level, wide distributions of asset ages) and technolog-
ical factors (e.g., availability of tools for supply-chain analysis). Many of the
reasons for poor performance relate to details of process and plant design and
the prevailing economic orthodoxies when key decisions have been made. It is
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FIGURE 12.2 Process industry supply chains. (Data obtained from www.cefic.be.)

http://www.cefic.be
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often difficult to effect large improvements simply by changing logistics and
transactional processes; fundamental changes at the process and plant level and
at the interfaces between the different constituents of the value chain, from
product discovery to manufacture and distribution, are often required.

Additionally, some features specific to batch processes that influence supply-
chain performance include:

• Multistage production of complex chemicals is often the norm. This
implies long lead times from raw materials to products, which makes
it difficult for the supply chain to track volatile demands efficiently.

• Plants often produce relatively low volumes of each product and must
produce multiple products to be economic. Such flexible plants require
effective planning and scheduling. Cleaning or changeover activities
may be required when switching products which leads to campaign
operation, which in turn again limits responsiveness.

These two features mean that a quick response is difficult, as is make-to-
order production, which places pressure on forecasting and planning and limits
supply-chain performance. Some companies get around this limitation by making
final products (e.g., formulations) to order but making intermediates to forecast.

The process industries will also face new challenges in the future, including:

• Moving from a product-oriented business to a service-oriented business
that provides life-cycle solutions for customers

• More dynamic markets and greater competition, with shorter product
life-cycles

• Mass customization (trying to deliver specialty products at commodity
costs)

• The need to evaluate, report, and improve sustainability and environ-
mental and social impacts throughout the supply chain and aiming to
anticipate and respond to future regulation and compliance require-
ments (e.g., recovery and recycling of consumer products at end of use)

 

12.1.4 D

 

IFFERENT
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C
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First of all, it makes sense to define what is meant by the process industry supply
chain. Most companies, and indeed researchers, tend to employ a company-centric
view of the supply chain, where the supply chain is seen as consisting of the
enterprise in question as a central entity, possibly together with some peripheral
partners, typically first-tier suppliers and customers.

 

3

 

 These views involve the
integration of production and logistics planning across the enterprise, value-chain
management, global network planning, and investment appraisal. Much less work
has been reported on the “extended” supply chain, where the view is much broader
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in that it encompasses the suppliers’ suppliers and the customers’ customers. This
is almost certainly due to:

• The relative youth of the discipline and the fact that considerable
benefits can be achieved simply by the use of company-centric views
of the supply chain

• A wariness of supply-chain “partners” and a lack of data sharing

 

12.1.5 T

 

YPICAL

 

 S

 

UPPLY

 

-C

 

HAIN

 

 P

 

ROBLEMS

 

Supply-chain problems may be divided into three categories:

• Supply-chain infrastructure (network) design and strategy
• Supply-chain planning
• Supply-chain operations and execution

The first two categories are essentially offline activities associated with estab-
lishing the best way to configure and manage the supply-chain network. The last
category involves deciding how to operate the network to respond best to the
external conditions faced by the supply chain. 

To different people, “supply-chain problems” can mean different things. The
family of problems in these three categories can be mapped onto a two-dimen-

The horizontal dimension intends to depict the customer-facing part of the supply
chain at the rightmost end and the provision of primary resources at the leftmost
end; the instances displayed are indicative and will differ from company to
company (this example reflects a pharmaceutical supply chain). From the per-
spective of the firm, classes of problem may be defined by regions 1 to 15 or
combinations of regions. Examples include:

• Redesign of the logistics network (regions 4 and 5) (i.e., a strategic
activity looking primarily at warehouses and customers)

• Campaign planning at a primary manufacturing site (region 7)
• Real-time supply-chain management and control (regions 11 to 15)
• Negotiation of long-term supply contracts (region 1)
• Long-term manufacturing capacity planning and value-chain manage-

ment (regions 1, 2, 3)

This chapter reviews important classes of problems in this domain, describes
techniques reported for dealing with such problems, and highlights interesting
applications using industrial case studies. Both “hard” technical and “soft”
managerial and business process issues are described. The chapter then concludes
with a view on future developments and challenges.
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sional domain as shown in Figure 12.3. The vertical dimension is self-explanatory.
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12.2 SUPPLY-CHAIN NETWORK DESIGN AND 
STRATEGY

 

The concept of supply-chain network design is very broad and means different
things to different enterprises; however, it generally refers to a strategic activity
that will lead to making one or more of the following decisions:

• Where to locate new facilities (e.g., production, storage, logistics)
• Significant changes to existing facilities (e.g., expansion, contraction,

closure)
• Sourcing decisions (which suppliers and what supply base to use for

each facility)
• Allocation decisions (e.g., what products should be produced at each

production facility, which markets should be served by which ware-
houses)

These decisions aim in some way to increase shareholder value. This means
that models are employed to try to exploit potential trade-offs. These models may
consider:

• Differences in regional production costs
• Distribution costs of raw materials, intermediates, and products
• Differences in regional taxation and duty structures
• Exchange rate variations

 

FIGURE 12.3
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• Manufacturing complexity and efficiency (related to the number of
different products being produced at any one site)

• Network complexity (related to the number of different possible path-
ways from raw materials to ultimate consumers)

Most companies do not aim to quantify the latter two explicitly but rather
employ policies (e.g., single sourcing of customer zones, exclusive product–plant
allocation) to simplify operations to the desired degree.

A relatively rare instance of this class of problems is the “greenfield” design
of a new supply chain where no significant assets exist at the time of the analysis
(e.g., design of a future hydrogen infrastructure). A more common instance occurs
when part of the infrastructure already exists and a retrofit activity is being under-
taken, during which products may be reallocated between sites, manufacturing
resources may be restructured, the logistics network may be restructured, etc.

Models may be steady state or dynamic and may be deterministic or deal
with uncertainties (particularly in product demands). Research in this field started
very early on, with location-allocation problems forming part of the early set of

 

4

 

and distribution center-customer allocation. It was recognized early on that sys-
tematic, optimization-based approaches should be used, and that common-sense
heuristics might lead to poor solutions.

 

5

 

 These early models tended to focus on
the logistics aspects. Clearly, much more benefit could be achieved by simulta-
neously considering the production aspects.

An early example of a production–distribution network optimization study
in the process industries was given by Brown et al.,

 

6

 

 who considered the biscuit
division of Nabisco. Their model involves the opening or closing of plants, the
assignment of facilities to plants, and the assignment of production to facilities.
The production model is based on the relative product–facility “yields.” A thor-
ough review of the work in this area was presented by Vidal and
Goetschalckx,

 

7

 

 who categorized previous work according to a number of charac-
teristics, including:

• Treatment of uncertainties and dynamics and production and supplier
capacity

• Ability to include single-sourcing restrictions
• Customer service and inventory features
• “International” features (e.g., taxes, duties)
• Number of echelons considered (see below)
• Cost nonlinearities, model size, and solution techniques

They concluded that features that are not well treated include stochastic
elements, accurate descriptions of manufacturing processes (and hence capacity),
international aspects, extended and multiple-enterprise networks, and solution
techniques.
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“classical” operations research problems; see, for example, Geoffrion and
Graves,  who considered the problem of distribution system layout and sizing
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In general, the works reviewed above use fairly simple representations of
capacity and treat all data as deterministic. Given that many of the plants under
consideration are flexible and multipurpose with a wide product slate, a better
representation of capacity and demand uncertainty is required for more accurate
solutions. In general, the infrastructure design problem is posed as a mathematical
optimization problem. The key variables include:

• Binary variables to represent the establishment or not of nodes at
candidate locations

• Binary variables representing links between nodes (e.g., from factories
to warehouses)

• Binary variables representing allocations of products to factories
• Binary variables reflecting the choice of manufacturing resources at

each site
• Continuous variables reflecting the capacities of storage locations
• Continuous variables reflecting the production in each product over

each period at each manufacturing site
• Continuous variables reflecting the inventories of each material at each

node over each period
• Continuous variables reflecting the total flow of each material between

every pair of nodes over each period

The key constraints include:

• Logical constraints ensuring that links only exist between nodes that
are selected to exist

• Constraints on the total flow between nodes
• Resource constraints at each manufacturing site, ensuring that the

production of materials over each period is constrained by the resources
available

• Material balances for each material at each node, reflecting contribu-
tions due to production, receipts, and deliveries

• Warehouse capacity constraints

The optimization procedure requires an objective function that usually takes
the form of cost minimization or net present value (NPV) maximization. It
includes terms such as:

• Fixed infrastructure costs (fixed costs of establishment of facilities at
candidate locations)

• Variable infrastructure costs (costs that depend on the scale of the
facilities and their resource configuration)

• Manufacturing costs
• Material handling costs
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• Transportation costs
• Sales revenues

Much work has been reported in the academic literature. Kallrath

 

8

 

 addressed
the issue of process and plant representation and described a tool for simultaneous
strategic and operational planning in a multisite production network. Counter-
intuitive but credible plans were developed that resulted in cost savings of several
millions of dollars. Sensitivity analyses showed that the key decisions were not
too sensitive to demand uncertainty.

Sabri and Beamon

 

9

 

 have also developed a combined strategic–operational
design and planning model, with two interesting features: a multi-objective opti-
mization procedure is used because of the difficulty of trading off very different
types of objectives, and uncertainties in lead times as well as demands are treated.
Tsiakis et al.

 

10

 

 showed how demand uncertainty can be introduced in a multiperiod
model. They argue that future uncertainties can be captured well through a
scenario tree, where each scenario represents a different discrete future outcome
(see next section). These scenarios should correspond to significant future events
rather than just minor variations in demand. In their multipurpose production
model, flexible production capacity is allocated among different products to
determine the optimal layout and flow allocations of the distribution network.

All of the above works rely on the concept of fixed 

 

echelons

 

; that is, they
assume a given fundamental structure for the network in terms of the echelons
involved (e.g., suppliers, manufacturing plants, warehouses, distribution centers,
customers). Thus, a rather rigid structure is imposed on the supply chain, and the
design procedure focuses on determination of the number of components in each
echelon and the connectivity between components in adjacent echelons. However,
changes in the fundamental structure of the network (e.g., the introduction of
additional echelons or removal or partial bypassing of existing ones) may some-
times lead to economic benefits that far exceed what can be achieved merely by
changing the number of components or the connectivity within an existing struc-
ture. Tsiakis et al.

 

11

 

 extended this body of work by developing a general frame-
work that integrates the different components of a supply chain without any 

 

a
priori

 

 assumption as to the fundamental structure of the network. The framework
uses the concept of a flexible, generalized production/warehousing (PW) node.
These PW nodes can be located at any one of a set of candidate locations; they
produce one or more products using one or more shared resources, hold inven-
tories of the above products as well as any other material in the network, and
exchange material with other PW or external nodes. The functions of these nodes,
therefore, are not specified 

 

a priori

 

 nor is any flow network superimposed; rather,
the node functionalities (production, storage, or both) and the flows between
nodes are determined as part of the optimization. This approach tends to result
in leaner networks, where storage capacity is established only where necessary.
The flexible network structure also provides more scope for exploiting economies
of scale in transportation.
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CENARIOS

 

Process industry companies operate a wide variety of assets, with widely varying
ages and expected lifetimes. At any given time, the decisions relating to invest-
ment in infrastructure include how best to configure assets at existing sites and
whether or not to establish new sites. These are tied in with production and
inventory planning. The main issue associated with investment planning is that
capacity-related decisions have impacts far beyond the time period over which
confidence in data exists. Hence, decisions must be made in the face of significant
uncertainty relating in particular to the economic circumstances that will prevail
in the future. 

 

12.2.1.1 Traditional Approaches

 

Most companies approach capacity planning through the use of NPV-based anal-
ysis. The data used in this kind of analysis are essentially the 

 

expected

 

 values of
key parameters (e.g., product demands and life-cycles, product and raw material
prices). The NPV approach is used to define the benefits of a 

 

nominal

 

 plan. This
nominal plan is then subjected to sensitivity analysis where each of the key
parameters is perturbed and its effect on the project assessed. Any problems
identified through the sensitivity analysis are removed as far as possible. A slightly
more sophisticated approach develops separate optimal plans for a number of
possible scenarios. It then selects the plan that relates to the most likely scenario
or performs reasonably across all scenarios. These approaches have a number of
serious problems:

• Risks are not clearly identified and evaluated.
• It is assumed that all the decisions must be made up front; no provision

is made for contingent decisions that may be made at a later stage in
light of additional information that may become available by then.
Even less so does it consider a proper accounting for the interactions
between present and future decisions; for example, whether or not extra
plant capacity will have to be added in 5 years’ time is a decision that
does not actually have to be made right now; rather, it can wait until
future information on product demand becomes available. On the other
hand, decisions on whether or not to actually establish the plant and
on its initial capacity may have to be taken immediately. However,
these immediate decisions may depend on the flexibility to add extra
capacity at later stages. 

• The future scenarios are very often not thought through clearly and in
a systematic manner that covers all major eventualities.

• In practice, the “best” plan is often not optimal with respect to any one
scenario but reflects a compromise between risk and expected return;
hence, this approach will not identify the best plan.
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12.2.1.2 The Scenario-Based Approach to Infrastructure 
Planning

 

The scenario-based approach takes systematic account of the uncertainty inherent
in medium- and long-term decision making in capacity planning and the associ-
ated capital investments. Coupled with a sufficiently detailed model of the man-
ufacturing processes involved, it allows a rational evaluation of the complex trade-
offs between current and future decisions, taking account of all relevant capital
and operating costs. The scenario-based approach divides the planning horizon
into a number of stages. The boundaries between successive stages reflect points
in time where important uncertainties will be resolved. These often relate to
important external events (e.g., economic, geopolitical) or important internal
events (e.g., launches of new products, patent losses on existing products). Nor-
mally, the number of scenarios is kept small, the aim being to capture only the
most important events. Schoemaker

 

12

 

 explains how to construct scenarios.

 

12.2.1.3 An Illustrative Example

 

Suppose, for example, that a company produces a particular polymer. A major
consideration in planning investment decisions is the market demand for this
product:

• In the near future (i.e., for the first 2 years), the level of demand (

 

D

 

)
is fairly steady. 

• After about 2 years, there is a 50% chance that legislation will be
introduced that will make the polymer an important component of the
automobile industry. This will increase demand by 50%. 

• After a further 2 years, however, there is a 50% probability that a
similar polymer will be produced by a competitor. If this happens, this
will take up about half the increased demand from the automobile
sector. 

The above situation gives rise to a multistage scenario tree as illustrated in
Figure 12.4, where each branch is characterized by: 

 

FIGURE 12.4

 

Scenario tree for polymer demand.
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• A probability of occurrence; 
• An expected annual level of demand.

We now have three important sets of decisions associated with each decision-
making time period and each branch on the tree:

• Whether or not to invest in new capacity and, if so, how much
• How much material to produce
• How much inventory to carry over to the next period

In some decision-making models, the amounts produced over each branch
are assumed to be equal to demand; this effectively removes the inventory deci-
sions and the additional flexibility of action available to the decision maker. If a
maintenance strategy is important, then maintenance decisions and their effect
on equipment availability would be included.

The main advantages of these types of models include the following:

• Although all possible decisions are considered, only the decisions
that must be made immediately (e.g., the initial capacity investment
and production plan for the near future) have to be made; other
decisions are automatically deferred until more information becomes
available.

• Risk measures can be introduced and enforced.
• More appropriate optimization metrics can be used (e.g., expected

NPV).

 

12.2.1.4 Data Required by the Scenario-Based Approach

 

The scenario-based approach requires the following data:

• A manufacturing model of the processes that is of sufficient detail to
predict: 
• The relationship between the availability of manufacturing

resources (e.g., production equipment, utilities) and the production
capacity of the plant

• The influence of the main operating decisions (e.g., throughput) on
operating cost and on the important (e.g., operability and environ-
mental) constraints that the plant operation has to satisfy

• Major current and future uncertainties confronting the plant and cor-
responding scenario tree data (e.g., market sizes, expected sales value)

• Initial plant configuration
• Possible alternatives for investment in additional plant equipment and

associated data (e.g., capital costs, internal rates of return)
• Where relevant, the expected degradation of equipment over its lifetime
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12.2.1.5 Objectives of the Scenario-Based Approach

 

The objective of the scenario-based approach is to optimize some performance
measure that explicitly takes account of the inherent uncertainty as expressed in
terms of the postulated scenarios. A popular objective is maximization of the

 

expected

 

 NPV; however, pursuing this objective may result in decisions that are
excessively risky — for example, involving a very considerable downside under
certain reasonably probable scenarios. It is therefore advisable to impose addi-
tional constraints reflecting risk. For example, it may be demanded that the
probability of an NPV less than a certain (acceptable) value does not exceed 0.1.
Thus, the scenario-based approach provides a powerful tool for the decision maker
to make informed decisions on the trade-offs between potential reward vs. risk.
From the mathematical point of view, the scenario-based approach results in a
mathematical programming optimization problem. The complexity of the latter
depends primarily on:

• The complexity of the underlying process model; for example, nonlin-
ear models are more complex than linear ones, and models involving
discrete decisions (as is often the case with flexible multipurpose
plants) are even more complex

• The number of postulated scenarios

 

12.2.1.6 Results Produced by the Scenario-Based Approach

 

The scenario-based approach determines simultaneously:

• The optimal capital investment in new capacity that must be put in
place by the start of each planning stage under each and every scenario

• The optimal operating policy (e.g., plant throughput) and sales volume
throughout each planning stage of every scenario

• The inventory amounts that should be carried over from one stage to
the next in each branch of the scenario tree

• Where relevant, the maintenance strategies for different items of equip-
ment.

Note that, while the (postulated) product demand during any particular stage
provides an upper bound on the (optimal) sales volume, the two are not necessarily
equal. Moreover, the sales volume during a certain stage is not necessarily equal
to the production rate given the possibility of inventory carryover from earlier
stages. 

 

12.2.1.7 A Case Study from the Pharmaceutical Industry

 

The pharmaceutical industry has a pipeline of potential new products. Some may
be close to launch and some may be in the early stages of clinical trials. Consid-
erable uncertainty exists as to whether products in clinical trials will ever be
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launched. Due to the low production volumes, it is unusual to dedicate plants to
products; multipurpose plants are used instead. The key problem, then, is to
develop a capacity expansion plan for a multipurpose plant given the nature of
products in current production and potential products in the pipeline.

The scenario tree for the case of four products is shown in Figure 12.5.
Product C1 is in manufacture already; product C2 will be the first to complete
clinical trials (at time period 10). The trials have four possible outcomes, each
of which will imply a different demand profile for the product. The trials for
product C3 are complete at time period 20 and so on. A total of 64 scenarios are
identified, as shown in Figure 12.5.

The optimal solution is obtained with the scenario-based approach, as outlined
in Section 12.2.1.2 above. This is arrived at by maximizing the expected value
of NPV, subject to some constraints on the worst possible downside. It is inter-
esting to consider the distribution of NPVs for the 64 scenarios that were con-

symmetrical or of a Gaussian form; this is quite typical and provides part of the
reason why simple risk measures such as variance are not appropriate. For
example, it can be seen that:

• The expected

 

 

 

NPV is $120 million.
• The slight chance of losses of up to $110 million on an NPV basis

(the leftmost bar) is the downside of the proposed investment plan.
• The reasonable chance of an NPV above $250 million is the upside of

the proposed investment plan.

 

FIGURE 12.5

 

Scenario tree for pharmaceuticals case study.
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An industrial application was described by Camm et al.,

 

13

 

 who worked on the
restructuring of Procter and Gamble’s North American supply chain. A year-long
project involving integer programming, network optimization, and geographical
information systems (GISs) was responsible for streamlining the U.S. manufac-
turing and distribution operations with annual savings of $200 million. The initial
network was comprised of 50 product lines, 60 plants, 10 distribution centers,
and hundreds of customer zones. A number of factors made this initiative par-
ticularly timely, including deregulation, brand globalization for production econ-
omies, higher plant reliabilities and throughputs, and excess capacity from a series
of acquisitions.

Product 

 

sourcing

 

 (i.e., the allocation of products to manufacturing sites) was
the focus of the study by Camm et al., who also addressed distribution network
design. Rather than develop a single comprehensive production–distribution opti-
mization model, they decomposed the problem into a product–plant allocation
problem and a distribution network design problem. Raw material and manufac-
turing costs tended to dominate, so the product sourcing problem was the more
important of the two and was relatively independent of the distribution network
design because 80 to 90% of production is shipped directly to customers rather
than passing through P&G’s distribution network. A family of solutions to the
distribution network design problem is then made available to the product sourc-
ing model. This simply allocates production to plants to minimize overall costs.
The problem is solved as a capacitated network flow problem, with a very crude
production model (each plant simply constrained in terms of total annual pro-
duction across all products). The authors made the point that being able to
visualize the outputs of large-scale models (via GISs, in this case) is important
for their credibility. Even with such a simple representation of site capacity, large

 

FIGURE 12.6
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savings (particularly in terms of manufacturing costs and the removal of excess
capacity) were identified. 

 

12.2.3 R

 

EMARKS

 

It is clear that a very large amount of work has been undertaken to address the
infrastructure design problem. The results of this work have made their way into
software tools provided by a variety of vendors, including Advanced Process

ongoing research and technology development include:

• It has not really been concluded what an adequate description of
manufacturing processes is at this level and what the potential benefits
of including more detail on the manufacturing process might be. In the
case study above, significant benefits were achieved with a low level
of resolution; subsequent studies may require more detail.

• The issue of complexity vs. productivity has not been dealt with effec-
tively. Generally speaking, as a manufacturing site becomes more

resource, the productivity of the manufacturing resources decreases.
• The international nature of many supply chains provides additional

opportunities for optimization, especially when considering features
such as transfer prices, taxes, royalties, and duties. Combined financial

 

14

 

 review of strategic planning).

tions. Coordinated optimization across the extended supply chain

 

15

 

).
• The full range of uncertainty is not explored (e.g., raw material avail-

abilities and prices, product prices, international aspects)
• Perhaps most importantly, from the process engineering perspective,

is that no connection has been made between process design and
supply-chain operation. We have seen many examples where process
design has compromised supply-chain operation (see, for example,

16). Backx et al.17 concur, and have introduced the concept of
supply-chain conscious process operation. Process design for supply-
chain efficiency will be an important future research area. For example,
attempting to operate processes at or near intrinsic rates will increase
manufacturing velocities significantly and improve supply-chain

book can be used to support this activity. 
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Combinatorics (www.combination.com), Aspen Technology (www.aspen-
tech.com), SAP (www.sap.com), i2 (www.i2.com), Gensym (www.gensym.com),
Manugistics (www.manugistics.com), and Process Systems Enterprise
(www.psenterprise.com). However, outstanding issues that provide challenges for

• Most research still has the enterprise envelope as the boundary condi-

complex in terms of numbers of products per unit of manufacturing

and production–distribution models should be considered (see Sha-
piro’s

should result in significant benefits (see, for example, Lin et al.

Shah

responsiveness. Some of the methods described in Section II of this

http://www.combination.com
http://www.aspentech.com
http://www.aspentech.com
http://www.sap.com
http://www.i2.com
http://www.gensym.com
http://www.manugistics.com
http://www.psenterprise.com
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12.3 PLANNING PROBLEMS 

Supply-chain planning is concerned with making sure that the right product is
available at the right place at the right time with the right quality and in an
economic fashion. It considers a fixed infrastructure over the short to medium
term and is therefore concerned with the coordinated planning of the manufacture
of intermediate and final products, distribution of material, and management of
inventories.

12.3.1 ELEMENTS OF SUPPLY-CHAIN PLANNING 

The main elements of supply-chain planning are:

• Demand management — Estimating and even influencing the demands
for products in each region where the firm operates

• Inventory management — Determining strategies to supply customers
and replenish stocks

• Production and distribution planning — Making products in the right
place and time and sending them to the right place at the right time

The objectives of planning are quantified through metrics. These are usually
economic or service based. Typical economic metrics include the following goals:

• Maximize profit or economic value added (EVA) throughout the net-
work. This requires considerable data; supply-chain-wide, activity-

18).
• Maximize inventory turns (measured as annual turnover/average inven-

tory). This is a measure that focuses on working capital. Values of, say,
2 to 8 would be considered poor and values greater than, say, 16 would
be considered good.

• Maximize return on assets (combining both fixed and working capital).

Typical customer service-level measures include:

• Minimizing the percentage of due dates missed (or maximizing the
number of orders met on time in full)

• Maximizing the fill rate, where customer orders are filled on time, but
the amounts may fall short (total amounts filled divided by the total
amounts requested)

• Maximizing the availability of the product in a particular location (days
available divided by total number of days)
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12.3.2 DEMAND MANAGEMENT

Demand management means the planning and execution of activities related to
getting final products to the customers. The two different ways of operating the
demand management process are:

• Order driven — Products are made or customized according to actual
orders and the demand management process is all about a quick
response to actual orders.

• Forecast driven — When it would take too long to make things in
response to orders they must be made according to some forecasts and
placed in storage; here, the demand management process is all about
accurate forecasts and clever inventory management policies.

The order-driven mode is primarily relevant toward the final customer end
of the chain in the process industries and is probably the less common of the two
in this sector. The latter tends to dominate, either due to the lack of visible order
data or long in-process times requiring demand satisfaction from stock to avoid
long lead times. Demand forecasting is therefore a very important component of
supply-chain planning in the process industries and is briefly covered next.

12.3.2.1 Forecasting

The accurate forecasting of future demands is a critical element of supply-chain
planning. It does not matter how efficient production and distribution plans are
with respect to their use of resources if they are aligned against forecasts that are
inaccurate. Demand forecasting is not an exact science, but the application of
systematic methods can give rise to forecasts with an accuracy of greater than
90% in many sectors if applied wisely. Quantitative forecasting methods are
divided into autoprojection and explanatory methods. Autoprojection assumes
that the past is a good predictor of the future and uses some function of past
demands to predict future demands. Explanatory methods assume that a model
of the demand process can be built and its parameters estimated. The details of
these methods are beyond the scope of this chapter. Texts such as that by
Makridakis and Wheelwright19 provide excellent details. Most enterprise resource
planning (ERP) systems include demand management modules. Specialist pro-

12.3.2.2 Performance Measurement for Demand 
Management

Because demand forecasting represents one of the most important and central
activities in the process industries, key elements that must be present in a suc-
cessful business process are accountability for the quality of the forecast, a robust
process for measurement of forecast accuracy, and active monitoring of

DK3017_C012.fm  Page 482  Friday, August 5, 2005  1:38 PM

© 2006 by Taylor & Francis Group, LLC

Prescient (www.prescient.com), and txt (www.txt.com).
viders include Manugistics (www.manugistics.com), Mercia (www.mercia.com),

http://www.manugistics.com
http://www.prescient.com
http://www.txt.com
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performance in order to drive continuous improvement. It is surprising to observe
how often these basic building blocks are weak or missing in industrial practice,
especially given the critical influence forecasting has on a large number of
business decisions. Many different methods are used to measure forecast accuracy,
and some of them employed in practice are flawed. A plot of the forecast vs.
shipments should ideally show points scattered along the 45˚ line. Consider an
example where we have shipped 100 units of a single product in a given time
period, and we are measuring percentage forecast error. A represents the actual
quantity shipped equal to 100, and F is the forecast for that period. Here are
some measures of percentage forecast error used in practice:

As can be seen, a very common error is to use the units forecasted in the
denominator. Those advocating this approach desire a measure bounded within
±100%; however, we are then measuring forecast error against a variable within
the control of the business. Also, for situations where the forecast is far greater
than the quantity shipped, the error will be understated and will not scale well
as the error increases. 

sure of forecast error for a single product where the actual shipments in a period
were 100 units. It can be seen that the first measure above, the mean absolute
percentage error (MAPE), is linear over a wide range of forecasts, and punishes
over-forecasting in a uniform manner. The other measures do not significantly
punish severe over-forecasting (forecasts above twice the level of shipments). For
example, the error measure is 67% when 300 units are forecast and 75% for 400
units, using the first equation. If we plot the forecast accuracy (100% – weighted
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To illustrate these concepts, observe Figure 12.7, which plots different mea-
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forecast error), then we can see that, for significant over-forecasting situations,
the MAPE measures are –100% and –200% when we have over-forecasted by
twice and three times the level and shipments, respectively. This is one of the
reasons why the other measures are preferred over MAPE in practice, as a
conceptual struggle can arise with regard to accepting a negative forecast accuracy
measurement, even though it means merely that we are over-forecasting by at
least a factor of 2. 

The above was developed for a single product. Now, we will focus on a
measure suitable for an entire business with many products, markets, and cus-
tomers. First, we must determine the attributes for which forecast accuracy will
be measured. An attribute might be a product group or a stock-keeping unit
(SKU); a country or a continent; a market segment or a corporate division. Second,
we must determine how far forward the forecast will be made. The total supply-
chain lead time is the most important element in this decision; therefore, for an
agrochemical with a year of manufacturing lead time, an appropriate measure
would be the forecast made one year in advance, but, for the manager of a drug
distribution center, the best measure may be the SKU forecast made one week
in the future. Obviously, many combinations of attributes and look-ahead periods
could generate a large number of measures of forecast accuracy. A disciplined
process of pruning should be enforced so the metrics are not devalued due to
their excess.

The error for a forecast made t – n periods ago for period t with a defined
set of attributes (a) is:

FIGURE 12.7 Forecast errors using different measures.
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For a business with a wide portfolio of products and markets, an appropriate
measure of performance is the weighted mean absolute percentage error
(wMAPE):

where a represents any attribute such as product, geography, market segment.
Note that a can easily include a set of time periods, allowing meaningful measures
to be taken over some time horizon. For example, we may select month, product,
and region as our set of attributes to measure forecast accuracy. As long as we
measure the error at this level of attributes, we can measure forecast accuracy at
higher levels of aggregation; therefore, if we wish to know how accurate our
monthly forecasts were last year, the error at the monthly level is measured, and
the error for each month is summed over the entire year.

Weighted MAPE, therefore, represents the best measure of forecast accuracy.
Forecast accuracy can then be calculated as:

Once the measurement has been decided, then the metric must be made a highly
visible one, and approaches developed to continuously improve it. 

Other key measures are forecast bias and percentage forecast bias. These bias
measures reveal if we are consistently over- or under-forecasting. For businesses
without an adequate measurement and monitoring process, the probability is
greater that bias will be present. It is defined for a set of selected attributes (a)
for the unscaled and scaled case, respectively, as:

Because bias may be negative or positive, it is difficult to produce meaningful
measures for a business in total, given that the bias at the attribute level may
cancel out when added up across all levels. In this case, a useful plot is that of
percentage bias by item plotted in order of decreasing volume. 

Another key indicator of difficulty in forecasting is the coefficient of vari-
ability, defined as:
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We can calculate this in two ways. The first is simply to take counts of actual
shipments in each time period and evaluate the mean (µ) and standard deviation
(σ) of the data. This measure of cv reflects demand volatility. As a rough rule of
thumb, values of cv for actual shipments greater than 1 indicate highly variable
shipment patterns that will represent a challenge to forecast using either naïve or
causal models.

The other calculation involves the same value for the mean (i.e., the average
demand), while σ is taken to be the standard deviation of the forecast errors (i.e.,
Eat above). Generally speaking, values of 0.2 and lower for this measure indicate
reasonably accurate forecasts.

Another measure is the tracking signal, which helps track the quality of the
forecast we are making. It is defined as:

Values for the tracking signal that are outside some arbitrarily chosen range then
indicate that forecasting must improve for a particular item. Some authors use
the mean absolute deviation instead of the standard deviation. In a real-world
business environment, it may be difficult to tell when a tracking signal is giving
useful alarm information or whether data artifacts have impacted its applicability.
In principle, it does provide the impetus to explore further what is driving the
signal.

12.3.2.3 Beyond “Passive” Demand Management

Traditionally, demand forecasts have been based on historical patterns. These are
the best estimate of what would happen to the products when the firm does not
take any additional action (“baseline forecasts”). The trend today is toward active
demand management. The details of this approach are beyond the scope of this
chapter but relate closely to marketing and economics. If, for example, it is found
that the baseline forecasts result in an optimal balance of supply and demand
from a fixed and variable cost perspective, it makes sense to use these. If, on the
other hand, there is an anticipated oversupply, then a strategy involving either
promotion or price reduction or both might be employed to optimize the overall
performance of the business. Similarly, for excess demand, an optimal pricing
strategy might be employed that in turn relies on a reasonable model of demand
elasticity. Of course, these tactics can then be deployed at a regional level as well
and might have to consider the activities of competitors. Some firms (e.g., those
operating petrol forecourts or retailers of consumer goods) employ such dynamic

cv = σ
µ

TS
BIAS

a
a

a

=
σ
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pricing strategies almost on a daily basis. Additionally, leading-edge supply-chain
partners now undertake collaborative forecasting, where real-time data on the
latest forecasts at the customer-facing end of the chain are shared throughout the
chain, removing much of the guesswork involved on the part of the nodes at the
upstream part of the chain.

12.3.3 INVENTORY MANAGEMENT 

The next stage of demand management is to identify how to relate the forecasts
to the amounts of material available. For finished goods, this means identifying
how demand forecasts will affect future amounts of stock and whether production
is required. For intermediates it means working back from products to identify
production requirements. For raw materials, it means working back to identify
purchasing requirements.

12.3.3.1 Finished Goods Inventory Management

Assuming that demand is met from stock, a process of finished-goods inventory
management would take place at the storage locations (warehouses/distribution
centers) and would usually be along the following lines:

• First set safety stock levels and review periods.
• At each review period, consider current stock levels, forward demand

forecasts, and current manufacturing plans to update the demands
placed on the plant for future manufacturing plans.

12.3.3.2 Production Campaign Optimization

The simple economic order quantity (EOQ) concept is commonly used to deter-
mine the optimal batch size in equipment run semicontinuously by balancing
changeover and inventory holding costs. While it can be a powerful tool, it is
typically controversial when it comes to actual application. One of the primary
issues in this regard is that it is trying to find the optimal trade-off between the
balance sheet (working capital) and the income statement (plant transition costs).
In this section, we show how this trade-off can be highlighted for management
so appropriate decisions can be made for the corporation’s specific needs at a
specific point in time. Some have advocated abandoning the EOQ approach, and
it is agreed that it never should be used in isolation but should only be viewed
as a guide to production planning. 

Higher changeover costs mean the product wheels run faster and inventory
levels are lower. On the other hand, if we make fewer product transitions, then
average inventory levels will rise. The EOQ formula is given as:

EOQ
dC

h d R
=

−
2

1( )
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where:
EOQ = economic order quantity, the number of units to produce during each 

run (i.e., lot-size).
d = forecasted period (e.g., 6 months) demand by SKU, expressed as 

units per unit time.
R = rate of product on a machine expressed in the same per time unit as 

d (for example, for demand per day, R = rate per day).

The critical parameters from a financial perspective are:

• Changeover cost (C) and any incremental costs that can be associated
with the order, made up of such items as:
• Foregone contribution margin (revenue–waste revenue), if capacity

is constrained. 
• Production scrap (variable–waste revenue), directly associated with

the machine setup if capacity is not constrained. 
• A common error here might be to allocate the cost of fixed labor to a

transition. Only incremental costs relevant to the decision at hand
should be included. 

• Carrying costs per unit per day (h):
• Interest paid on loans (which could be repaid if inventory was

reduced to free up cash) or, if the corporation is debt free, the
estimated return that could be obtained if the money tied up in
inventory was invested; however, many practitioners believe that the
proper cost is the return on investment that management expects on
all forms of capital (i.e., the firm’s cost of capital).

• Costs of insurance directly related to the total value of the inventory.
• Any taxes that must be paid on the value of the inventory.
• Storage costs, which include only costs that are variable based on

inventory levels; if storage space reductions would not result in
further inventory decreases, then all storage costs would be included
in the EOQ calculation. 

• Risk factors associated with obsolescence, damage, and theft if they
are incremental or the result of an increase in inventory levels.

An issue with EOQ is that it determines a single point at which a machine
should be run; however, the cost curves for EOQ are often very flat in the region
of the optimum. If we decide we wish to run within, say, 5% of the optimum,
then we can see that we now have a very wide range in which we can run our
campaigns without leading to excessive business costs. In fact, plant transition
costs and working capital costs are split equally at the EOQ. The only difference
as we move in either direction from the optimum is the relative makeup of these
two costs on the objective function. It, therefore, can be presented to the decision
maker as a trade-off curve. At different points in time, either objective will match
better or worse with the corporate one; for example, at year end, a business may
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lean toward reducing working capital levels. The trade-off curve can help decide
how far we can cut inventory before plant transition costs will start to ramp up
unacceptably. 

12.3.3.2.1 Valuation of Inventory for EOQ
Other potential benefits that could result from inventory reduction include:

• Reduced warehouse fixed cost
• Reduced waste due to reductions in aging out of inventory or inventory

no longer needed
• Reduced freight costs
• Reduced plant manufacturing cost, if any

12.3.3.3 Setting Safety Stock Levels

Safety stock of a product is held at a location for three reasons:

1. To cover the time between an order for a replenishment being raised
and the order being received (often referred to as cycle stock)

2. To buffer against uncertainties in the forecast
3. To buffer against supply unreliability

Items (1) and (3) can be considered together. Suppose that it notionally takes n
days to replenish a warehouse with a product when an order is raised by the
warehouse. Suppose also that the average demand is d, and that sometimes a
delay occurs of about a day over and above the value of n. Then, the amount of
cycle stock held may be (n + 1) × d. This is the amount that would normally be

for other products and customers for which one or two days of stockout might
be tolerated from time to time.

The amount of stock to hold to buffer against demand uncertainty again
depends on the class of product. It might well be zero for a type C customer. For
a type B customer, it might be zero if the uncertainty, which can be estimated

historical errors between forecasts and actual demands. For example, for a type
A customer, the following relationship between forecast error and safety stock is
recommended:

safety stock = nd + kσdn0.5

20)
and σd is the standard deviation of the forecast errors. It should be noted that a
common error in practice is to use the standard deviation of actual shipments to
calculate safety stock. This should only be used in situations where we are not

DK3017_C012.fm  Page 489  Friday, August 5, 2005  1:38 PM

© 2006 by Taylor & Francis Group, LLC

where the value of k is chosen to guarantee a certain level of service (see Lewis

either from the random component of the forecast (see Section 12.3.1.2) or from

held for a type A product/customer (see Section 1.2). Lower stocks might be held
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able to calculate the forecast error. When variability in the lead time is significant,
safety stock is determined as follows.

For the case of a supply chain with long lead times, an elementary inventory
model can be developed. Let d represent the demand per day at a distribution
center (DC); f is the frequency of replenishment per planning period from the
supply node to the DC; L is the lead time in days from the supply node to DC;
and P is the length of the planning period in days. The average DC stock is then
given as:

The more often we replenish, the lower the average inventory level will be. The
average pipeline stock, which only depends on the lead time, is also given as:

Lower and upper control limits can be developed for this scenario. If we define
the time between replenishments (TBR) as P/f and the number of times a shipment
arrives through the lead time as φ = LT/TBR, then the lower control limit (LCL)
and upper control limit (UCL) are:

12.3.3.3.1 Estimating Forward Demands on the Plant
A very common way of estimating forward demands comes under the general
heading of distribution requirements planning (DRP). First, the time horizon is
discretized into a number of equally spaced intervals (e.g., weeks). Basically, at
each storage location on the supply chain, the following material balance calcu-
lation is then performed:

Ipt = Ip,t-1 + Rpt – Fpt ∀ p, t

where
Ipt = inventory of product p over interval t.
Rpt = Planned receipts at storage location from upstream node of product 

p over interval t.
Fpt = Demand forecast for product p over interval t.
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It can be seen that, unless there are already many planned receipts (which are
essentially orders placed by the storage node on an upstream storage or manu-
facturing node), Ipt will progressively fall. Eventually, it will fall below the safety
stock (I*p). A new planned receipt must be triggered to arrive at this point, thus
placing a new order on the upstream node. The size of this order will be based
on three factors: the amount below the safety stock that Ipt has fallen to, a
minimum order quantity (MOQ), or the EOQ as calculated in Section 12.3.3.2
and an order increment (OI). If MOQ > I*p – Ipt then the order size is the MOQ;
otherwise, the order size is MOQ + n × OI, where n is the smallest integer such
that the order size + Ipt > I*p.

This new order is inserted as a planned receipt, and the material balance
calculation proceeds from this time period until the stock falls below the safety
stock, when a new order is generated. When the process is complete, a complete
set of orders is ready for the upstream node. Sometimes the planning horizon is
large and the orders are divided into firm (in the near future and fixed) and planned
(in the more distant future and flexible; may be updated as demand forecasts
improve).

A less sophisticated approach to managing inventories is based on reorder
points and reorder quantities. Here, there is no forward prediction of material
inventories; rather, material inventories are monitored periodically and if any is
found to be below a set level (the reorder point), a new order is generated. The
size of the order is determined by other parameters, typically either a standard
reorder quantity or an “order-up to” level. These might be adjusted to fit order
increments as above. The next step in the supply-chain planning process is to
make sure the orders placed by the customer-facing nodes on the upstream nodes
are actually met.

12.3.4 PRODUCTION AND DISTRIBUTION PLANNING

We now know what must be shipped to the extreme nodes in the supply  chain.
We must now determine what is produced, in what amounts, and how it will be
shipped to storage locations. At this stage, we use planning models (which are
essentially simplifications of the detailed single-site scheduling models such as

Optimization methods have found considerable application here. A feature
of these problems is that the representation of the production process depends
on the gross margin of the business. Businesses with reasonable to large gross
margins (e.g., consumer goods, specialties) tend to use recipe-based representa-
tions, where processes are operated at fixed conditions and to fixed recipes.
Recipes may also be fixed by regulation (e.g., pharmaceuticals) or because of
poor process knowledge (e.g., food processing). This is typical of the batch
processing sector.

In academic research, process descriptions based on fixed recipes have been
used to optimize production, distribution, and storage across multiple sites, nor-
mally using mixed-integer linear program (MILP) models. Wilkinson et al.21
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described a continent-wide industrial case study that involved optimally planning
the production and distribution of a system with three factories, 14 market ware-
houses, and over 100 products. It was found that the ability of the model to
capture effects such as multipurpose operation, intermediate storage, and
changeovers gave rise to counter-intuitive results, such as producing materials
farther away from demand points than would be expected. Such an approach
balances the complexity associated with producing many products in each factory
with the extra distribution costs incurred by concentrating the manufacture of
specific products at specific sites.

McDonald and Karimi22 described a similar problem for multiple facilities
that produce products on single-stage continuous lines for a number of geograph-
ically distributed customers. Their model is of multiperiod form and takes account
of capacity constraints, transportation costs, and shortage costs. An approximation
is used for the inventory costs, and product transitions are not modeled. They
include a number of additional supply-chain-related constraints such as single
sourcing, internal sourcing, and transportation times.

Kallrath23 presented a comprehensive review on planning and scheduling in
the process industry. He identified the need for careful model formulation for the
solution of complex problems in reasonable computational times and described
briefly how careful modeling and algorithm design can enable the solution of a
30-day integrated refinery scheduling problem.

Berning et al.24 described a multisite planning–scheduling application that
uses genetic algorithms for detailed scheduling at each site and a collaborative
planning tool to coordinate plans across sites. The plants all operate batchwise
and may supply each other with intermediates, thus creating interdependencies
in the plan. The scale of the problem is large, involving about 600 different
process recipes and 1000 resources.

Timpe and Kallrath25 presented a mixed-integer, optimization-based multisite
planning model that aims to give accurate representations of production capacity.
It is a multiperiod model, where (as in Kallrath8) each unit is assumed to be in
one mode per period, which enables the formulation of tight changeover con-
straints. An interesting feature of the model is that the grid spacings are shorter
at the start of the horizon (closer to scheduling) and longer later on (closer to
planning). The problem solved involved four sites in three geographical regions. 

The approaches above assume deterministic demands. Gupta and Maranas26

and Gupta et al.27 considered the problem of mid-term supply-chain planning
under demand uncertainty. Gupta and Maranas26 utilized a two-stage stochastic
programming approach, where production is chosen here and now while distri-
bution decisions are optimized in a wait-and-see fashion. This makes sense, as
production tends to be the main contributor to lead times. Gupta et al.27 investi-
gated the trade-offs between customer demand satisfaction and production costs
by using a chance-constrained approach applied to the problem of McDonald and
Karimi.22
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12.3.4.1 Planning Models for Production and Distribution

As discussed above, many different planning models are available to solve this
type of problem. Here, we will use a typical example.

12.3.4.1.1 Time Discretization
The time is discretized into a number of intervals of even duration. These are
much longer than those used at the scheduling level (e.g., one week).

12.3.4.1.2 Degrees of Freedom
The key degrees of freedom are:

• The amount of each product produced at each location over each period
• The amount of each product shipped from one location to another over

each period

When these have been fixed, the other variables can be deduced and the
performance of the plan assessed.

12.3.4.1.3 Resource Constraints and Availability
Of course, the ability to produce and ship products is constrained by the resources
available. Detailed scheduling models use the concept of equipment items that
are used one at a time and utilities that are used up to a certain level to make
sure that processing tasks do not consume more resource than available. At the
planning level, a simpler concept is used. This is based on a unit amount of
product being produced requiring a number of resource-hours of a set of
resources. 

To illustrate this further, consider the simple state–task network (STN) in

represent the processing time required to produce each state, and the fractions
reflect the relative amounts of each material produced. A reactor of 10 tonnes is
available for the React task, and a column with a capacity of 15 tonnes is available
for the Distil task. Adequate storage is available for B. To produce, say, 100
tonnes of C would require 100/0.9 = 111 tonnes of B, which implies 12 batches
of React, which in turn will occupy the reactor for 36 hours. Similarly, 111 tonnes
must be processed in the column, which means that 8 batches of Distil must be
produced. The column will be occupied for 32 hours.

FIGURE 12.8 Sample state–task network.
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Figure 12.8. The circles represent materials and the rectangles tasks. The times
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Inverting this information, we get the following parameters:

uC,reactor = 36/100 = 0.36 hr/t

uC,column = 32/100 = 0.32 hr/t

In general, uplr is the time utilized of resource r to produce a unit amount of
product p at location l. To ensure that resource availability is accounted for, the
number of hours a resource is available over a discrete time interval must be
specified. For a piece of equipment with 100% availability and which operates
all the time, the hours available will be equal to the duration of the interval. In
other cases, the available hours will be less than this value.

Transportation resources may also be constrained in a similar fashion:

vpll’r = time utilized of resource r to ship a unit amount of p from l to l’

12.3.4.1.4 Cost Elements
The cost models can be more or less sophisticated. Here, we will assume that
the main costs are variable and correspond to the cost of producing a unit amount
of p at location l (CPpl), the cost of storing p at location l (CSpl), and the cost of
transporting p from l to l′ (CTpll′). The latter may depend on the amount shipped,
reflecting economies of scale in transportation. 

12.3.4.1.5 Overall Model
The overall model is then formulated as follows:

• Variables:
Pplt = amount of product p produced at location l over period t
Splt = amount of product p stored at location l over period t
Tpll′t = amount of product p transported from l to l′ over period t

• Manufacturing resource constraints: The amounts of each product
produced must not cause more resources to be used than are available.
We write constraints for each resource and time period as follows:

where Rrl is the availability (usually in terms of hours) of resource r at location l.

• Inventory balance constraints: The amount of p stored at location l
over interval t is equal to that from the previous interval, plus any
amounts shipped from other locations less that shipped to other loca-
tions. Because locations may be far apart, a transportation lead time
from location l′ to l, (τl′l) must be taken into account:

u P R r l tplr plr rl

p

≤ ∀∑ , ,
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• where Dplt is the demand (actual order or forecast) of product p at
location l and time t. It is likely that many of the locations in Lc do
not actually have production capabilities, so it is the inbound transpor-
tation terms that will ensure that the correct amounts of material are
available.

• Objective function: The cost elements have been described above. The
objective is to meet the demands at the lowest possible cost. The
objective is therefore to minimize:

12.3.5 SUPPLY-CHAIN PLANNING: AN INDUSTRIAL EXAMPLE

Brown et al.28 described a planning system used at the Kellogg Company that
has two components:

• An operational one, which runs at a weekly level of detail and allocates
production products to plants and optimizes distribution of materials
between plants and from plants to distribution centers

• A tactical one, which operates at a monthly level of resolution and
which sets plant budgets and guides capacity expansion and consoli-
dation decisions

The Kellogg Planning System (KPS) covers the United States and Canada.
It models the production of all the major products at Kellogg sites (five plants)
and third-party sites (15 plants), as well as distribution to and storage at seven
distribution centers (DCs). The system requires accurate manufacturing and trans-
portation costs. Demands for products are met from DCs and plants. Complex
rules govern the allocation of products to plants and the flow of products between
plants. A large-scale linear program (LP) of the form shown in Section 12.3.4.1
is used for operational planning; constraints that balance the flows between the
“making” and the “packing” parts of the process are also required. The forecasts
are assumed to be deterministic, and safety stocks (usually 2 weeks’ cover at the
SKU level) are used to cope with demand uncertainty. A rolling horizon scheme
is used whereby a 28-week horizon model is solved, with week 1 decisions already
fixed, week 2 decisions being optimized for implementation, and weeks 3 to 28
subject to revision after a week of operation. This avoids the typical end-effects
of cost-based optimization whereby production and stocks can fall to unsustain-
ably low levels at the end of the planning horizon. Overall, the operational system

S S P T Tplt pl t plt pl lt
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l l
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is estimated to save $4.5m per annum in production, distribution, and inventory
costs, and the tactical system has supported a capacity consolidation exercise that
will lead to savings of about $35m per annum.  

12.3.6 REMARKS

Supply-chain planning is maturing, and a number of tools are available from such
process-industry-focused companies as Advanced Process Combinatorics

• Financial and supply-chain planning must be integrated, especially in
a global context.

• Most planning activities are still intra-enterprise. More work should
be undertaken on multiple-enterprise (extended) supply-chain plan-
ning. For illustration, Figure 12.9 shows an order profile for a product
of one of our collaborators. The dynamics are generated by their
customer’s reordering policy. What would be better: an optimized plan
trying to meet hundreds of order profiles like this or a collaborative
plan driven by smoother end-user demands?

12.4 SUPPLY-CHAIN OPERATION: EXECUTION 
AND CONTROL 

The execution and control layer of the hierarchy is all about establishing effective
systems and policies to ensure that the supply-chain operates effectively in real
time and that the right product is indeed in the right place at the right time. Most
companies now have in place transactional information technology (IT) systems
(typically, ERP systems). These ensure that, once the key SCM decisions have
been made, they are implemented smoothly and all relevant data are visible.

FIGURE 12.9 Order profile for one product.
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(www.combination.com), Aspen Technology (www.aspentech.com), Finmatica
(www.finmatica.com), and Process Systems Enterprise (www.psenterprise.com),
as well as generic solution providers such as i2 (www.i2.com), Manugistics
(www.manugistics.com), PeopleSoft (www.peoplesoft.com), and SAP
(www.sap.com). Challenges for the future include:

http://www.combination.com
http://www.aspentech.com
http://www.finmatica.com
http://www.psenterprise.com
http://www.manugistics.com
http://www.peoplesoft.com
http://www.i2.com
http://www.sap.com
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However, the availability and quality of the decision-making components (so-
called analytical IT) is much more variable. For example, it is very likely that
the most commonly used SCM decision-making tool is Microsoft’s Excel®, which
may be used for making forecasting, inventory management, production, and
distribution decisions. Issues such as organizational design and operational prac-
tice are important. Some ongoing debates in this sector include:

• Leanness vs. agility and robustness — The concept of leanness comes
from the discrete manufacturing world and arises through pressures to
reduce non-value-adding activities and keep working capital low. The
objective is to aim for standard practices. This causes conflicts with
another objective common in batch processes, which is to retain a high
degree of flexibility so any product could in principle be made in short
order. Hence, leanness can reduce agility and flexibility and compro-
mise robustness. An emerging trend in the sector is to try to be lean
at the front end, where significant volumes of intermediate materials
are made, and to be agile at the back end, where lower individual
volumes of a wide range of products are made.

• Centralized vs. decentralized control — Some supply chains (e.g., that
of CISCO) have been successfully very tightly integrated and effec-
tively centralized through technology; however, it is generally accepted
in the process industries that robust, adaptive, real-time responses
require a degree of decentralization with local decision making and
control. Policies must be designed to control the storage, release, and
replenishment of materials (based on the replenishment policies) and
the sequence and timing of manufacturing batches at some local level,
with periodic central supervision of the entire chain.

It is necessary to gain an understanding of how these local control actions
affect overall supply-chain performance through the study of supply-chain
dynamics and policy assessment, discussed below.

12.4.1 SUPPLY-CHAIN DYNAMICS, SIMULATION, AND POLICY 
ANALYSIS

Supply-chain dynamics have become part of industrial lore. As illustrated as far
back as 1958 by Forrester,29 the processes used at different nodes of the supply
chain result in a variety of different dynamic behaviors, often to the detriment of
overall performance. Typically, standard control actions taken at a node (respond
to demand signals by supplying from stock and then sending new demand signals
upstream as stocks become depleted) cause amplification of the original demand
signal from the market to a much larger demand signal at the upstream parts of
the supply chain. This approach results in excessive stocks in the chain, operation
under stress, and overcapacity of manufacturing and logistics.
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Dynamic process simulation has long been recognized as a useful tool for
understanding and improving processes. Similarly, supply-chain simulation is
becoming a popular tool to formulate policy. Simulation is useful in identifying
the potential dynamic performance of the supply chain as a function of various
operating policies, ahead of actual implementation of any one policy. In most
cases, the simulations are stochastic in that they repetitively sample from distri-
butions of uncertain parameters to build up distributions of performance measures,
rather than point values.

Many companies have undertaken some form of simulation study to under-
stand the extent to which internal and external policies generate unnecessarily
volatile behavior. The tools used for such analyses are normally commercially

®

warehouses store materials and are depleted by demand signals (which can be
stochastic). The warehouses request replenishments from factories based on their
inventory-control policies, and the factories are represented by their key resources
and the rules for processing the queues of orders that build up behind the
resources. Often, models of this nature can be used to study and resolve the high
level dynamics. In many cases, sharing of demand data and making demand
signals visible across the chain (which allows dynamic responses to real-time
data across the chain through reforecasting) are the single most important steps
for reducing unintentional supply-chain dynamics.

Dynamic supply-chain models can be also be used to identify operational
improvements. Sensitivity analyses can locate the reasons for poor performance.
Examples of such reasons from our studies include long changeover times, long
and poorly managed quality control activities, highly variable processing times,
and poor forecast accuracies. Projects such as changeover reductions achieved
through single-minute exchange of die (SMED) techniques can then be imple-
mented to improve performance. Another use of such models is to test the
robustness of the system — for example, evaluating its ability to deal with demand
surges or equipment failures.

A considerable amount of research in academia has also taken place in this
field. Beamon30 presented a review of supply-chain models and partitioned them
into analytical (i.e., purely declarative) and simulation (i.e., including procedural
elements). Analytical models are used to optimize high-level decisions involving
unknown configurations by taking an aggregate view of the dynamics and details
of operation (e.g., supply-chain network design). On the other hand, simulation
models can be used to study the detailed dynamic operation of a fixed configu-
ration under operational uncertainty and can be used to evaluate expected per-
formance measures for the fixed configuration to a high level of accuracy.
Although the field of industrial dynamics is very large, it tends to concentrate on
logistics and inventory planning and normally ignores production or has a very
simplistic representation of production; therefore, we will concentrate on research
with a significant production element here.
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available, discrete-event simulation tools such as, for example, Witness (www.lan-

tion.com). With such tools, users can initially build up high-level models where
ner.com), Extend™ (www.imaginethatinc.com), and Arena  (www.arenasimula-

http://www.lanner.com
http://www.lanner.com
http://www.imaginethatinc.com
http://www.arenasimulation.com
http://www.arenasimulation.com


Supply-Chain Management 499

Bose and Pekny31 used a model predictive control (MPC) framework to
understand the dynamic behavior of a consumer-goods supply chain. They studied
various levels of coordination between the supply and demand entities. They also
considered forecasting techniques, particularly for promotional demands. The
forecasting model sets desired inventory targets that the scheduling model (based
on MILP optimization) tries to meet. This is performed in a repetitive, rolling
horizon approach. This model allows clear conclusions to be drawn regarding
promotion and inventory management and the benefits and drawbacks of different
degrees of coordination.

Perea-Lopez et al.32 studied a polymer supply chain in which the manufac-
turing process was a single-stage batch multiproduct reactor supplying a ware-
house, distribution network, and retailers. They captured the supply-chain dynam-
ics by the balance of inventories and the balance of orders in terms of ordinary
differential equations, together with the definition of shipping rates to the down-
stream product nodes, subject to some physical bounds and initial conditions for
the inventory and order values. The model therefore assumes that the material
and order flows are continuous. They evaluated a variety of different supply-chain
control policies based on a decentralized decision-making framework and iden-
tified the policies that best mitigate perturbations. They extended this work33 to
include MILP-based scheduling within an MPC framework, whereby regular
solutions are generated based on the current state and portions of the solution
implemented. They contrasted a centralized approach, where all decisions are
made simultaneously by a coordinator, with a decentralized approach, where each
entity makes decisions independently. The benefits of central coordination are
clear, as increases in profits of up to 15% were observed in the case study
presented.

Supply chains can be thought of as distributed systems with somewhat decen-
tralized decision making (especially for short-term decisions). The multiple-
agent-based approach is a powerful technique for simulating this sort of system.
Agent-based simulation techniques have been reported by Gjerdrum et al.34 and
García-Flores and Wang.35 In both cases, the different players in the supply chain
are represented by agents who are able to make autonomous decisions based on
the information they have available and messages they receive. The agents include
warehouses, customers, plants, and logistics functions. In the work of Gjerdrum
et al.34 and García-Flores and Wang,35 the plant decision making involved pro-
duction scheduling; the plant agent used a commercial schedule optimization
package (agent-based systems have the advantage of being able to provide wrap-
pers to existing software). The other agents used a variety of rules (e.g., to generate
orders or to manage inventory). Agents are able to negotiate solutions from
different starting points. García-Flores and Wang presented a single plant supply
chain and evaluated various inventory management policies, while Gjerdrum et
al. evaluated two plants and the effect of different product sourcing rules. Overall,
the agent-based approach has proven to be a good framework for the abstraction
and modular development of supply-chain models and is supported by some good
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software development tools that have been widely used in other sectors (e.g.,
telecoms).

Hung et al.36 developed a flexible, object-oriented approach to the modeling
of dynamic supply chains that is based on a generic node that has inbound material
management, material conversion, and outbound material management capabili-
ties and can be specialized to describe plants, warehouses, etc. Both physical
processes (e.g., manufacturing, distribution, warehousing) and business processes
are modeled. By the latter, we mean how decisions are taken at the different
nodes of the chain, who makes them, what tools and methods are used, etc. This
means that the logic of software tools used for decision making at various nodes
(e.g., DRP and MRP) is replicated in the simulation tool. The aim of this approach
is to suggest noninvasive improvements to the operation of the supply chain. Such
improvements may come about through changes in parameters (e.g., safety
stocks) or business processes (e.g., relationships between agents). In order to
assess future performance, uncertainties must be taken into account. These include
product demands, process yields, processing times, and transportation lead times.
A stochastic simulation approach that samples from the uncertain parameters is
a useful way of determining expected future performance as well as confidence
limits on future performance measures. Because the uncertainty space is very
large and uncertainties are time varying, Hung et al.37 developed a very efficient
(quasi–Monte Carlo) sampling procedure.

Shah16 described two pharmaceutical studies based on this dynamic modeling
approach. In the first study, a peculiar dynamic behavior was seen in the market
warehouse. Although the background demand for the product was very stable,
the manufacturer’s warehouse experienced highly fluctuating demands and
needed to hold considerable inventories to buffer against this. Upon some inves-
tigation, the reason related to a pricing cycle that caused wholesalers to try to
anticipate price increases and request large preemptive orders. Of course, when
these are received, the wholesaler will not order material again for some time.
We used singular-value decomposition techniques to extract the historical dynam-
ics and used them to generate forward forecasts. We compared the future supply-
chain performance using this model against a model that used collaborative
planning between manufacturer and wholesaler. The key metric was the amount
of finished goods safety stock cover the manufacturer required to meet a certain
customer service level (defined in this case as the fill rate, which is equal to the
amount shipped divided by the amount requested). The results may be compared

The “weeks cover” dimension indicates how many weeks’ worth of stock of
final product is used as the safety stock figure. To achieve the target service level,
the finished goods stock can be approximately halved in the collaborative case.
It is clear that significant benefits are possible through an alternative way of
running the supply chain. Conservative estimates would put these at $30 million
in one-off inventory savings and $3.6m per annum savings. Of course, all the
relevant reasons for holding stock (e.g., cycle times, manufacturing facility reli-
ability, forecast accuracies) must be included in such models. 
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Another study considered the effects not of the production or inventory
aspects but of the quality control (QC) procedures. As mentioned earlier, a
prevalence of QC activities can be found in the industry, although they are not
really necessary at all the points where they are currently used. These steps
account for significant dead time in the process, often of the order of 1 to 2
weeks, when all the intervening processes are considered. We developed a model
of a process that has five primary synthesis stages and two secondary manufac-
turing sites. The as-is (AI) process has QC activities at the end of each primary
stage and for the final product. The modified process has a QC step for the AI
and a QC step for the final product. The results for one of the products are
compared below. 

C is quite smooth. The lower confidence limit (95%) on the profile is still positive,

FIGURE 12.10 Variation of service level with finished goods safety stock for the non-
collaborative case.

FIGURE 12.11 Variation of service level with finished goods safety stock for the collab-
orative case.
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In Figure 12.12, the forward prediction of finished goods inventory of pack

giving confidence that stockouts are very unlikely. In Figure 12.13, which shows



502 Batch Processes

FIGURE 12.12 Time profile of expected inventory of finished goods, including confi-
dence intervals, for quality control at only two points.

FIGURE 12.13 Time profile of expected inventory of finished goods, including confi-
dence intervals, for quality control at all stages.
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QC at all stages, there is much less certainty in the inventory (the variance grows
significantly with time) and the lower confidence level goes to zero. In terms of
customer service performance measures, over a 2-year period the average service
level in the case with QC is 91% and the probability of a stockout in any week
is 5%. On the other hand, in the low QC case, these figures are 100% and 0%
respectively. Clearly, as process development and design advance, the comfort
provided by QC at so many stages in the supply chain will not be required, and
the dynamic behavior will improve markedly.

An area where stochastic simulation is finding increased use is in refining
the results of relatively coarse optimization models. In this case, optimization
models are used to determine important structural and parametric decisions, and
simulation is used to evaluate the distributions of performance measures and
constraints more accurately. This has been reported by Karabakal et al.,38 who
studied the Volkswagen (VW) distribution network in the United States, and
Gnoni et al.,39 who developed a robust planning procedure for a multisite auto-
motive components facility.

Blau et al.40 considered the value-chain problem of risk management at the
development stage in the pharmaceutical industry. This is a long, costly, and
inherently risky process with a large up-front commitment. The aim of their work
was to support the process of product selection and test planning while managing
risk effectively. The development activities are modeled as a probabilistic activity
network, where each activity has a time, precedence relations, resource require-
ments, and probability of success. The risk of a set of decisions must be balanced
against the potential reward. The risk/reward ratio can then be used to compare
different drug candidates. A screening process removes any obviously unprom-
ising candidates, and the remainder must be sequenced through the development
pipeline. A heuristic approach using simulation with local rules in response to
trigger events (e.g., failure of a test) is employed. This approach aims to process
tasks as quickly as possible and, although there is no guarantee of not violating
resource constraints, these violations are usually not large.

Subramanian et al.41,42 extended this work to take explicit account of the
resource requirements of the problem. They make the point that a single-level
mathematical programming problem cannot hope to capture all these features.
On the other hand, simulation techniques cope well with the stochastic elements
but require local, myopic rules to resolve conflicts or make choices as they arise.
Subramanian et al. therefore developed an integrated optimization-simulation
framework (SIM-OPT) in which a simulator reverts to an optimization layer (with
different degrees of optimization) to resolve conflicts or make choices such as
task sequencing. The results show that using optimization far outperforms the
typical local rules used in classical simulation. By repetitive simulation, the
statistical trends can be tracked and corporate policy (particularly in relation to
risk and resourcing) can be analyzed. Also, data from the inner simulation loop
can be used to update parameters in the optimization loop.
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12.4.2 AN INDUSTRIAL APPLICATION

The polymers and resins business of Rohm and Haas was being squeezed by
powerful customers and suppliers, and they had not been able to increase the
prices of key products between 1992 and 1997.43 An ERP system was rolled out
between 1992 and 1995, but because underlying processes did not change the
expected productivity improvements did not materialize. The division therefore
undertook a study to try to improve supply-chain margins. Prior to the study, the
policy was quite chaotic, aiming to serve all customers equally with constant
disruptions to production plans. The study involved: (1) a review of customer
service policy, (2) a review of product demand management, and (3) a review of
production planning and manufacturing management.

The review of customer service policy recognized that treating all customers
uniformly was not a good idea and placed unnecessary stress on the supply chain.
The customer base was then arranged into four tiers, where the first tier reflected
very important customers responsible for a significant proportion of demand and
the fourth tier represented the long tail of very low-volume customers with erratic
demands. This fourth tier was then not serviced directly but rather through
distributors who managed stock themselves.

No formal demand management policy existed prior to the study, and most
products were made to stock with a view to supplying on short lead times. In the
study, products were categorized into four quadrants based on demand volume
and demand variability. The contribution of products in each quadrant to the
prevailing inventory costs was found to be very different. This resulted in a new
strategy, whereby some capacity was dedicated to high-volume, low-variability
products, which were made to stock for low lead times. This resulted in far fewer
changeovers. The low-volume, high-variability products were to be made to order,
so these customers would have to expect longer lead times and would be expected
to order in production batch multiples.

In order to identify how to allocate products to production capacity and to
estimate the new lead times, a discrete-event supply-chain simulation model was
developed. Various rules for make-to-stock and make-to-order products were
evaluated, and it was found that segregating the resources for these classes of
products was beneficial. Overall, an estimated improvement in throughput of 15%
was achieved, and millions of dollars were saved while operating a more predict-
able, less stressful system. Again, the simulation model is not very complicated
but still identifies significant benefits.

12.4.3 REMARKS

The use of dynamic supply-chain simulation is very much an emerging area, and
one which is expected to expand rapidly. One key issue is the integration of
business process modeling with the physical aspects (e.g., recipes, resources).
No consensus has yet been reached on frameworks for addressing this. A simu-
lation engine must be able to replicate or incorporate algorithms used at certain
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parts of the supply chain. The emerging frameworks appear to be agent based
and object oriented, attributes that are suited to modeling complex systems with
degrees of distributed decision making. These complex, stochastic, discrete-event
models contain adjustable parameters. The application of optimization procedures
(probably gradient free) to select good values for these is another interesting
avenue to pursue. In the meantime, some real-time supply-chain management
solutions are being made available by some of the larger vendors (e.g.,

12.5 ORGANIZATIONAL SYSTEMS AND IT ISSUES

The role of the supply-chain function in the organization differs widely between
enterprises. In some cases, it is simply seen as a vehicle for demand fulfillment,
while in others it is tightly integrated into the overall business strategy. As
highlighted by Kavanaugh and Matthews,44 the role of the supply-chain organi-
zation in the company is partly dictated by the external environment. They
identified five levels of involvement:

• Stable supplier — In an environment of stable demand of simple
products, the supply-chain function is normally limited to cost-effective
supply of product.

• Reactive supplier — Here, significant market dynamics exist over
which the enterprise has no control. The supply-chain function chases
demand, without necessarily understanding the cost implications of
attempting to fulfill all orders. Little coordination with other related
functions (e.g., marketing, product innovation) occurs.

• Efficient reactive supplier — The supply-chain function is still effec-
tively reactive to the external environment but is better integrated with
other functions in the enterprise (e.g., manufacturing and inventory
planning are coordinated).

• Efficient proactive supplier — The supply-chain function is also
involved in sales and marketing and in influencing and managing
demand to make it more predictable and therefore supporting planning
of operations, rather than simply responding to external events. Com-
panies employing vendor-managed inventory policies fit into this cat-
egory.

• Revenue and margin drivers — The enterprise is built around the
supply-chain function, which is integral to the heart of its strategy. The
supply-chain function often operates on a inter-company basis with
visibility of information across supply-chain partners. Dell’s build-to-
order personal computer supply chain with its tiers of integrated sup-
pliers is a good example of such a chain. A key feature of these chains
is that they are truly demand driven.
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A sensible approach, therefore, is first to decide on what role the company
sees for its supply-chain function, then design business processes that support
this, and then finally invest in appropriate IT systems. Historically, investments
in IT systems have not always followed such a rigorous analysis. Many books
and articles are available that provide advice on designing the business process
and supporting organizational elements.

Rogers45 described six elements of superior design for an effective supply-
chain organization:

• Tasks/process — Define the key internal-facing and external-facing
tasks; organize and integrate these.

• People/skills — Develop the workforce to undertake the tasks success-
fully; recognize that different skills are needed for internal- and exter-
nal-facing activities.

• Information/information flow — The three main flows are external
flows between companies, internal flows across internal boundaries,
and intra-flows within divisions; people should have easy access to all
the relevant information to support decision making.

• Decision making — Determine what decisions are to be made where
in the system and by whom; decide on the methods and metrics that
will guide decision making.

• Rewards — Keep rewards in line with corporate strategy and encourage
supply-chain performance; functional elements must operate in the best
interests of the enterprise and indeed the chain as a whole.

• Structure — Design the “extra” structure that interfaces with the exter-
nal world, the “inter” structure that works across functions, and the
“intra” structure.

12.5.1 TOOLS AND MODELS 

Because of its importance and the huge financial potential benefits, numerous
research activities on supply-chain modeling have been reported in the literature,
and abundant software packages present themselves as supply-chain solutions on
the commercial market. Enterprise resource planning (ERP) systems and e-com-
merce software packages improve supply-chain management by communicating
real-time data regarding companies’ supply-chain activities and providing more
efficient transactions between supply-chain members. These tools are effective
in coordinating diverse business processes across the supply chain, from raw
material purchasing to issuing invoices to customers. They therefore support the
execution part of supply-chain management. These tools are not, however, nec-
essarily sufficient for decision making to support significant supply-chain
improvements because they only deal with current transactions and compile
historical data. Models that guide decision making by considering supply-chain-
wide activities in a forward-looking context are needed. Besides models devel-
oped in academia, certain commercial supply-chain software packages, marketed
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by vendors such as i2, SAP, Oracle, and Manugistics, also provide this type of
functionality. To achieve the purported benefits and substantially better decisions,
it is crucial that underneath the user-friendly features the models used are accurate
(i.e., represent the supply chain realistically. According to Ingalls,46 the supply-
chain algorithms in commercial software are not much different from the tech-
niques available in academia. 

The decision-guiding models can be classified into three main types: (1)
analytical models, (2) simulation models, and (3) combined simulation and opti-
mization models. Analytical models are optimization models that maximize cer-
tain benefits by choosing the best set of decision variables of a supply chain
subject to the constraints that represent the features of the supply chain and
management decisions in the form of mathematical descriptions. In contrast,
simulation models emulate supply-chain activities and predict performance mea-
sures. The third type of supply-chain models attempt to combine the strengths of
simulation and optimization. 

In addition to the above classification, supply-chain models can be described
according to several other aspects as well: 

• Static vs. dynamic — This aspect denotes whether time contributes to
the dimensionality of the model concerned. In a static model, the
passage of time is not considered in the evaluation, whereas in a
dynamic model the supply chain is represented as it evolves over time.

• Discrete vs. continuous — This aspect can have two meanings. First,
it often describes the type of numerical values that the variables can
take in the models. In discrete-variable models, all variables are inte-
gers or limited to some specified integral values, such as (0,1) (binary)
variables, whereas in continuous-variable models all variables can take
any values within the permitted ranges. Hybrid models contain both
discrete and continuous variables and are also referred to as mixed
integer. This first differentiation is often required for analytical models
for selecting the most efficient optimization solution method. Second,
for dynamic models this aspect also signifies how the variables change
with respect to time. In discrete-time models, variables change their
values at certain fixed points in time, such as when an event occurs,
whereas in continuous-time models variables can change their values
at any time. Models in which variables change their value only when
events occur are also referred to as discrete-event models.

• Deterministic vs. stochastic — This aspect indicates the absence or
presence of uncertain factors in the models. In deterministic models,
no uncertainty is considered. Stochastic models evaluate the effects of
uncertain factors on the supply-chain performance. The uncertain fac-
tors are usually represented in terms of probability distributions to give
the expected performance measures. Alternatively, fuzzy-set theory is
used in some simulation models where statistics are unreliable.47 For
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analytical models, scenario analysis48 or polytope integration49 can also
be used for approximation of the effects of uncertainties. 

• Strategic vs. operational — This aspect determines the scope, time
scale, and level of details of the models, which are chosen according
to the objective of the particular problems at hand. Strategic models
can involve the determination of suppliers and market segments to
serve; the number, location, capacity, and type of a company’s facilities;
the amount of various materials to produce and hold at different supply-
chain members and to be shipped among them; and the routing of
material flows. With regard to operational models, the aspects con-
cerned can be inventory management at various points along
the supply-chain network or production planning and scheduling. In
addition, some models are tactical if their scopes are somewhere
between strategic and operational.

12.6 PERFORMANCE MEASURES AND 
BENCHMARKING 

Supply-chain benchmarking has become a popular activity. It helps identify gaps
between a company’s performance and that of its best peers. These gaps may be
translated into financial opportunities and identify improvement projects. Some
examples of benchmark figures are given below: 

PRTM 2001 Study50

Item Median (days) Best in Class (days)

Inventory 74 35
Cash-to-cash cycle 84 36
Response time for 20% rise in demand 20 9

Note: The inventory is the number of days’ worth of average demand which exists
in the chain.

CIO51 Benchmarks
Item Median Best in Class

SCM costs (e.g., costs of planning, IT, acquiring 
materials, managing orders and inventory)

8–12% of sales 4–5% of sales

Cash-to-cash cycle 100 days 30 days
OTIF 69–81% 94%

Note: OTIF (on time in full) reflects the percentage of time that orders are met on time in full.
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The UK Process Industries Center for Manufacturing Excellence (PICME) has
published the following benchmarks: 

Ahmad and Benson52 have published the following manufacturing-oriented
benchmarks: 

Supply-chain benchmarks should be used with some caution. The types of
benchmarks listed above, according to Lambert and Pohlen,53 are really “internal
logistics” metrics and do not reflect channel-spanning measures. These authors
recommend monitoring the sorts of metrics that help determine the relationship
between corporate and supply-chain performance. They proposed a framework
that initially focuses on each supplier–customer link in the chain and developed
metrics (e.g., profit and loss) for these. The framework can then be extended to
develop channel-spanning measures.

12.6.1 BENEFITS OF MODELING APPROACH TO SUPPLY-CHAIN 
MANAGEMENT

In our view, modeling based approaches to supply-chain management should
realize the following benefits:

Metric U.K. Plants
Britain’s Best

Process Factory World Class

OTIF (%) 93.1 94.5 >99.5
Complaints (%) 3.1 0.29 <0.001
Equipment utilization (%) 71.3 80 >85
Changeovers (% of capacity) 11.3 0 <0.05
Finished goods days of cover — 16 0.03
Raw material days of cover 33.9 — 5

Measure
Average of
Worst Five

Average of
Others

Average of
Best Five World Class

OTIF (%) 40 90 99.9 >99.9
Customer complaints (%) 6 1 0.01 <0.01
Availability (%) 70 85 96 >97
Equipment utilization (%) 20 60 94 —
Stock turns 4 12 19 >25
Simple changeover (min) 480 240 5 <5

Note: Stock turns are essentially equal to (annual sales volume)/(average stock levels).
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• Throughput should be increased by 3 to 15%.
• Stock should be reduced by 15 to 30%.
• Value-added time percentage should be increased by 30%.
• Chain costs should be reduced by at least 7%.

All of the above should be achievable without capital investment. The fol-
lowing authors have made the following claims associated with supply-chain
studies:

• Evans et al.54 reported a savings of £50,000 per day due to a reduction
in the chain cycle time for United Health.

• Davis55 reported a 25 to 50% reduction in stocks for Hewlett Packard
by strategic redistribution of stocks.

• Schmidt56 reported that,  according to Phillips (USA), 10 to 15% of
annual revenues can be released through better operation.

• Child et al.57 claim that 10 to 40% of total supply-chain costs are due
to unnecessary complexity that can be eliminated through streamlining
of associated processes.

• Arntzen et al.58 claim to have saved DEC $100m per annum through
a mixed-integer optimization modeling project.

• Worthen50 described how ChevronTexaco’s downstream profits
increased from $290 million to $662 million without any investment
in refining or retail capacity but with a strategic redesign of their
supply-chain processes.

12.7 CONCLUSIONS AND FUTURE PERSPECTIVES

Supply-chain management is the glue that ensures that all the benefits of good
plant design and effective plant operation are realized in operational practice. A
plant that is well designed and operated will produce the right products at the
right time. Supply-chain management can be organized along a three level hier-
archy:

• Infrastructure — Establish an effective asset base, including key sup-
pliers and partners.

• Planning — Looking ahead, plan the production and distribution activ-
ities effectively.

• Operations — Manage the supply chain effectively in real time; mon-
itor relevant signals and react accordingly.

A wide range of technology has recently been developed to support the
effectively deployment of supply-chain solutions. In addition, much research has
been undertaken in academia toward the development of the next generation of
technology. A number of challenges have already been posed in Sections 12.2.3,
12.3.2, and 12.4.4, above. We see two generic important future challenges:
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• Improved design for existing processes — A distinguishing feature of
process industry supply chains is that supply-chain performance is very
strongly affected by the flexibility and responsiveness of the production
process. This is not the case to the same extent in other industries. For
example, consider the multimedia products supply chain. Here, effi-
c i en t  fo recas t ing ,  flex ib le  warehouses ,  and  r ea l - t ime
downstream supply-chain management and adaptation are critical;
production is very straightforward (stamping out CDs and DVDs) and
often a lead time of one day can be assumed for a product. We believe
“process design for supply-chain responsiveness” is an important area
that has not received much attention so far. The process industries have
not fully grasped the concept of mass customization. For example,
instead of using a single reactor to produce different complete polymers
from monomers, why not try to develop building blocks of medium
molecular weights and combine them as appropriate? To what extent
can intermediates be made at world-scale centralized facilities and
specialized products be configured at flexible, near-market facilities?

• Effective design of “new” supply chains — It is evident that the process
industry supply chains of the future will be quite different from those
of the past. In addition, a number of new supply chains (parts of which
may already be present) will emerge. There exists a relatively short
window of opportunity to explore the optimal configuration of such
supply chains before they develop organically; this may be of vital
importance in informing national and international policy as well as
strategic decisions in industry. Examples of such supply chains of the
future include:
• Hydrogen and, more generally, supply chains to support fuel cells
• Water
• Fast response therapeutics (particularly vaccines) for civilian and

homeland security uses
• Energy (the provision of the energy needs for a country can be

viewed as a supply chain subject to significant decarbonization
pressures)

• Life-science products
• Crops for non-food use and biorefineries
• Gas-to-value (i.e., generating high-value products such as very-low-

sulfur diesel from natural gas in situ)
• Waste-to-value (i.e., effective recycling of materials at the end-of-

use) and reverse (closed-loop) production systems

Although research in the basic sciences related to emerging industries is very
topical, supply-chain research as applied to these will be important. Wang59 noted
that enablers for emerging industries (e.g., micro-nano technology, biotechnology,
and advanced material technology) are information technology, supply-chain
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management, modeling and simulation, human development, and knowledge
management.
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A number of key characteristics and trends have had an impact on the chemical
industry and are fueling a sustained interest in the technologies used for the design
and management of the batch processing industries. The most important are
globalization and strong competition, continuing demand for differentiated spe-
cialty chemicals and new pharmaceuticals and biochemicals, environmental
health and safety concerns, and growing regulatory requirements. This chapter
briefly discusses some of the technological and operational challenges that these
factors introduce to the business. It compiles a few of the most common and
promising approaches to solving the problems that the industry faces and focuses
on the multiple opportunities for technological advancements and areas of arising
research and development. Discussions on most of these technologies, how they
are currently being implemented, and potential future improvements are provided
in the respective chapters throughout this book.

 

13.1 GLOBALIZATION AND INCREASED 
COMPETITION

 

Globalization has strongly affected the entire chemical industry in recent years.
The effects have been twofold:

• Rapid economic development along with an increase in research is
taking place in developing countries. Manufacturing development in
these countries is steadily growing, resulting in an increase in compe-
tition in all sectors. Currently, specialty chemical products are being
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produced proficiently and at lower cost in developing countries and
exported to developed countries. 

• Leading corporations traditionally considered the backbone of the U.S.
or European chemical industry now identify themselves as global com-
panies, deploying their resources to serve global markets.

The specialty chemicals and pharmaceutical sectors are characterized by the
production of products in relatively small volumes, and in general they enjoy
profit margins higher than those for commodity or bulk chemicals. But, they have
been equally vulnerable to competition from Asia. The industry has reacted to
the increased competitive pressures resulting from globalization with various cost-
reduction approaches: reorganizations, restructuring, consolidation, job cutting,
and plant closures. Some companies have taken advantage of the competition by
sourcing raw materials from Asia and outsourcing the manufacture of some of
their intermediates to China, India, or Latin America. 

Long-term viability requires more fundamental competitive advantages than
merely cost cutting. Reduced time to market, lower production costs, and
improved flexibility are known to be critical success factors for batch processes.
In the current environment, multiple differentiating factors are necessary for
companies to survive and excel. The industry is realizing the important role that
continuous innovation plays in maintaining an advantage in the market place and
is investing in novel technologies and quality and operations management. 

Great opportunities for cost reduction lie in the conceptual process design
phase during the early stages of process development. Pharmaceutical companies
used to initiate major process research and development efforts only after drug
approval. Under the current competitive pressures of decreased drug life-cycle
times and cost reduction, this is no longer the case. The main challenge is now
the coordination of new drug development and its manufacturing process devel-
opment workflows so as to bring the product to market quickly and cost effec-
tively. This means that pilot-plant and process development must be launched
with very little lead time. Competitive efforts, therefore, try to scale-up from the
lab directly to manufacturing levels whenever possible. After Food and Drug
Administration (FDA) approval, neither the drug nor its operating procedures
may be altered without a new drug approval process, leaving very little room for
optimization of the manufacturing recipe. When a drug and its manufacturing
recipe receive FDA approval, the manufacturer is restricted in the types of process
improvements that it can initiate to improve the efficiency of the chemistry or
operations. Identification of potential alternative chemical routes to the desired
product and selection of the one that will lead to the highest yields and improved
productivity and waste reduction early in the process development lifetime can
result in significant savings. In addition to the original design, it is also important
to establish a technical plan for necessary increases in product throughput so as
to successfully satisfy future increased demand without the need for additional
regulatory approvals. Concurrent product development and process development
are necessary to achieve both of these goals. The insight gained during the early
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process development effort can result in timely identification and elimination of
potential problems and continuous gains in efficiency and reductions in cost as
the product moves through development, launch, and maturity. Systematic meth-
ods for the synthesis and design of batch processes are a central point of interest
in these activities. The role that computer-aided approaches can play in shortening
the time to market are discussed in several sections of this book.

Traditional approaches to the design of batch unit operations include short-
cut methods, rules of thumb, and design by analogy. Recent research activities
try to come up with more fundamental and rigorous design methodologies for
unit operation design improvement. Increased process efficiencies can be achieved
through improved reactor design, better or new technologies for separations and
purifications, cost-effective engineering, and low-cost manufacturing equipment.
Following are a few representative examples, some of which have been discussed
in detail in the book.

New advances in batch distillation, a well-established mature technology,
include novel complex column configurations, azeotropic, extractive and reactive
batch distillations, optimal designs, optimal operation policies, and new methods
of analysis. These new advances can increase the possibility of using batch
distillation profitably for a much wider variety of separations, but they also give
rise to complicated problems of selection of the proper configuration, correct
operating mode, and optimal design parameters.

Laboratory-scale tests are extremely important and can be excellent tools for
evaluating critical parameters for the selection, design, and optimization of batch
equipment when computational models are not available. For example, despite
the requirements for crystal product control across a range of industries, we still
have much to learn about designing batch crystallizers to meet the desired product
specifications. A better fundamental understanding of seeding, nucleation, and
the effects of impurities on solubility and kinetics is the subject of academic
research. Laboratory feasibility testing can be used to test the efficacy of crys-
tallization for purity specifications and particle size distribution. It should be
noted that feasibility testing for the screening of alternative separation and puri-
fication technologies should also be deployed early in the process development
stage. Developmental testing of crystallization processes at the pilot scale is a
good practice to establish the robustness of the process, determine the principal
scale-up parameters, and generate product samples for evaluation.

In many cases, even when computer-aided first-principles models for unit
operation design are available, empirical techniques still predominate for initial
design purposes due to a lack of essential physicochemical and engineering
property data required for the fundamental approaches. Quite often the time and
cost required to measure the necessary property data for process design are
prohibitive, and an empirical approach is more commonly used. Various physical
property prediction models are available, especially for liquids and gases, but
they have not been applied successfully to the final active products and interme-
diates of the specialty chemical, pharmaceutical, and food industries which
are complex, multifunctional molecules. New fundamental property estimation
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models and improved prediction models for large organic molecules are an active
area of research. 

Identification of new applications for known technologies and unit operations
offers other technological innovations. Spray drying is a well-known, already
mature technology with many applications in the food and chemical process
industries for heat-sensitive powdered, granulated, and agglomerated products of
various quality specifications. It has recently been finding new applications in
the pharmaceutical industry for active pharmaceutical ingredients with stability
and special formulation requirements. Preparative chromatography has found
many applications in fields ranging from pure chemistry to biotechnology ori-
ented. Protein purification, peptide production, and the resolution of enantiomers
are some challenging separation problems where chromatographic methods are
already being used or have been developed successfully.

Pharmaceutical and fine chemical companies are looking closely at microre-
actors, a new but noncommercially available technology, as an alternative to batch
processing. Continuous operation, good mixing, efficient heat transfer, and precise
control of the reaction parameters are just some of the characteristics that make
microreactor technology promising for increased yields and throughputs. This
technology also has the advantage of minimizing scale-up time. Problems asso-
ciated with solids handling in microdevices, the lack of available microdevices
for unit operations other than reactors, and the lack of commercial manufacturing
of microdevices are all challenges that still must be overcome.

 

 

 

Today, most aspects of model-based batch process design and optimization
are by no means mature. Many open questions and points of improvement in this
area are the subject of research in academia. Among these are aspects of model
development and validation, rigorous approaches to considering the effect of
model and parameter uncertainty, and the challenges of robust and expeditious
numerical solution techniques, especially for dynamic optimization problems in
batch operations. Much research is currently being done in improving the effi-
ciency and increasing the scope of current algorithms. Simulation and optimiza-
tion under uncertainty, dynamic or distributed quantitative–qualitative tools,
improved real-time modeling, improved tools to represent heuristics, and more
information management and data-mining tools are still under development.
Rigorous mathematical models and optimization-based strategies have a high
potential for the future and will remain a central focus of research. Powerful
optimization techniques and solvers are opening up new opportunities for plan-
ning and scheduling and supply-chain management, areas of utmost interest for
large manufacturing businesses.

Batch process planning and scheduling are important for maximization of
facility utilization and production rates while meeting product market demands.
This is a mature yet still active area of research, and multiple commercial tools
are available to companies. Even though planning and scheduling tools continue
to develop, many industrial-scale plants are so complex that automated solutions
are quite large and cumbersome. It is expected that as more efficient algorithms
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are introduced the solution of more realistic problems will be possible, with
results being implemented automatically in the batch plant.

Advances in information technology and instrumentation make possible
improved collection and analysis of manufacturing data. Instrumentation can now
be adapted to manufacturing for in-process feedback in real time. Automated
batch process monitoring and control, although still in the very early stages of
development, are areas of research that have the potential to produce substantial
improvements in batch operations and their optimization.

Effective supply-chain management is a challenging and important activity,
particularly given the external changes imposed by globalization of the industry.
Several commercial software tools that are available to the industry improve
supply-chain management by communicating real-time data regarding compa-
nies’ supply-chain activities and allowing for more efficient transactions between
supply-chain members. Supply-chain models to guide decisions in a forward-
looking context and thus result in significant financial improvements are still
under development. It has also been argued in the pages of this book that, although
the supply-chain performance is very strongly affected by the flexibility and
responsiveness of the manufacturing process, process design for supply-chain
responsiveness is a research area that has not yet received the attention it deserves.

 

13.2 DEMAND FOR DIFFERENTIATED PRODUCTS 
OR NEW ROUTES TO KNOWN PRODUCTS

 

The market demand for new differentiated products as well as the demand for
new routes to existing products can also be driving forces for the development
of innovative technologies. The increasing demand for commodity chemicals
(e.g., ethanol, which is promoted as a fuel additive in the United States) and for
new specialty chemicals or pharmaceuticals has played an important role in the
continuing development of advanced biotechnologies in recent years. Biotech-
nology provides a superior alternative to other methods of producing chemicals
through less expensive, cleaner, and higher yield processes. 

Differentiated products that can offer special performance at a price premium
provide opportunities for the creation of new synergies at the interfaces of chem-
istry with biology, physics, materials science, and engineering. The change in the
product mix of commodities and specialties brings up the need for constant
reevaluation and use of existing facilities for new products. The introduction of
new products in the market increases the complexity of both the scheduling and
planning problem and the longer term supply-chain problem due to the consid-
eration of greater market-related uncertainties (demand levels, timing, product
pricing) as well as new production uncertainties (cycle times, yields). Software
systems or modeling tools are required that can deal with many of these uncer-
tainties and allow appropriate strategic planning.
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13.3 ENVIRONMENT, HEALTH, AND SAFETY

 

The industry is under increasing pressure to operate in a way that does not
diminish an increasingly limited supply of resources and that reduces the envi-
ronmental impact of old process technologies. New processes must be efficient
in energy and raw material consumption and, just as importantly, produce minimal
waste that does not harm living beings or the environment. The ecological promise
of the science has prompted governmental agencies to sponsor research, and
private biotech companies are seeking to improve their existing process and
product lines or offer entirely new products. 

In the United States, the Environmental Protection Agency’s Presidential
Green Chemistry Challenge Awards Program recognizes and promotes funda-
mental and innovative methods that accomplish pollution prevention through
source reduction and which can have broad applicability in the industry. An
important focus area for green chemistry is the use of alternative synthetic path-
ways, such as catalysis or biocatalysis, accompanied by the use of alternative
feedstocks that are renewable (e.g., biomass) and more innocuous than current
petrochemically derived feedstocks. 

In the manufacture of commodity chemicals, older traditional and environ-
mentally unacceptable processes have largely been replaced by cleaner, catalytic
alternatives. This has not been the case, though, in the specialty chemical and
pharmaceutical industries, whose manufacturing processes are still characterized
by stoichiometric synthetic technologies that generate large amounts of waste.
Reductions using metals and metal hydrides, stoichiometric oxidations, haloge-
nations, and many reactions that require stoichiometric use of inorganic acids or
bases are just a few examples. A significant opportunity exists for the development
of catalytic, environmentally benign processes with minimal waste generation.
The environmental friendliness of biotechnology has also prompted research into
new applications. Biosynthetic processes such as fermentation are naturally green,
because they typically require fewer harsh chemical agents than purely chemical
processing. For instance, instead of extracting fuel from mineral sources, crude
petroleum ethanol can be obtained by fermenting sugars from corn. Plastic man-
ufacturers that previously relied on petrochemical processing are now investing
time and money in the production of polymers from sugar-based lactic acids
derived from corn and other renewable sources. 

The use of alternative reaction conditions is a second important area of
development that encompasses the use of solvents that have a reduced impact on
human health and the environment and the use of alternative chemistries with
increased selectivities that result in reduced wastes and emissions. Pollution
prevention at the source is obviously the most responsible and preferred approach
to minimizing impact on the environment and also minimizing the potential health
effects on workers using toxic or hazardous substances or handling wastes, thus
reducing compliance vulnerabilities and saving money otherwise spent on waste
management. An additional challenge specific to batch processes is having to
deploy solvents in the complex organic synthesis routes. The use of specific
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solvents may be required in order to improve the selectivity, expedite the con-
version, or aid in the separation of products from unwanted byproducts. Ongoing
efforts are geared toward recovering valuable solvents via distillative solvent
recovery in central facilities. Recent progress has been reported with regard to
conditioning effluents for alternative uses with inferior quality demands, such as
the use of spent solvents as alternative fuel in the cement industry, as paint
additives, or as drilling agents.

Finally, a third area of focus is the design of safer chemicals that can serve
as replacements for more toxic current alternatives and the application of inher-
ently safer process (ISP) principles with regard to accident potential during the
design of new processes or the retrofit of existing processes. 

 

13.4 REGULATORY ISSUES

 

Most manufacturers are subject to a wide range of environmental regulations
related to air emissions and solid, organic, and aqueous waste. They are also
subject to premanufacture notification (PMN) requirements of the Toxic Sub-
stances Control Act (TSCA), the Inventory Update Rule under TSCA, Toxics
Release Inventory (TRI) reporting, and Occupational Safety and Health Admin-
istration (OSHA) regulations. Companies in the pharmaceutical industry are
subject to the FDA’s current Good Manufacturing Practice regulations. Govern-
ment safety and environmental regulations have been implemented in many areas,
and increasing regulatory requirements continue to put a lot of pressure on the
industry. New regulations are being discussed globally to address several conten-
tious issues: environment and sustainability, global climate change, energy use,
carbon dioxide emissions, and health effects of chemicals.

It has been observed that, at least in developed countries, the chemical
industry has adopted strong voluntary codes of behavior. Companies engage in
activities that improve their environmental compliance and performance, and not
just because they want to avoid the legal actions and repercussions of noncom-
pliance. A good track record with regulatory compliance is an important com-
petitive advantage for companies manufacturing custom chemicals. In addition,
companies want to maintain a good public image of being environmentally
responsible, good neighbors, and examples for other companies. Raised aware-
ness of environmental issues among end-use consumers can result in a competitive
marketing advantage for manufacturers that demonstrate increased product stew-
ardship. 

Batch processing generates many different types of emissions, discharges,
and wastes. Air emissions are probably the most difficult to control among all
environmental releases. The cost of meeting regulations can be a serious financial
challenge. Additional challenges and opportunities pertain to new types of envi-
ronmental regulations aimed at controlling absolute emission levels rather than
ensuring merely regulatory compliance. These new models, known as 

 

emission
trading

 

,

 

 

 

already affect volatile organic emissions from batch industries in Con-
necticut, Illinois, Florida, Maine, Michigan, New Jersey, and Virginia. If emission
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trading is expanded as an instrument for environmental regulation, total emissions
will have an effect on direct costs, thus creating competitive incentives for imple-
menting pollution prevention efforts. All phases of pollution prevention require
a great deal of time and effort by experienced engineers. Time constraints, lack
of information, and limited in-house expertise may lead to suboptimal decisions,
especially for small manufacturers. A number of computer-aided pollution pre-
vention tools have been developed in recent years to assist plant managers in
identifying pollution prevention opportunities in a consistent way. They are orig-
inating from either government agencies or academic research programs and are
aimed at assisting designers in quantifying environmental implications and gen-
erating suggestions for process modifications. Computer-aided design methodol-
ogies can ultimately guide the selection of pollution prevention strategies in
anticipation of regulatory changes. 
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