

OPERATIONA QUALIFICATION PROTOCOL FOR WALK IN TYPE STABILITY CHAMBER

NAME OF THE CUSTOMER	
ADDRESS	
PURCHASE ORDER No.	
DATE	
EQUIPMENT SERIAL No.	

QUALITY ASSURANCE DEPARTMENT

OPERATIONAL QUALIFICATION PROTOCOL FOR WALK IN TYPE STABILITY CHAMBER

INDEX

1 Ο ΔΡΡΡΟΥΔΙ ·	5
2 A SIGNATURE IDENTIFICATION PAGE:	5
2.0 SIGNATORE IDENTIFICATION LAGE	5
4.0 SCOPE.	5
5.0 DEFEDENCES.	3
5.0 REFERENCES	5
5.1 STANDARDS	3
6 a DESDONSIDII ITV.	3
	0
7.0 EAECOTION: 9.0 ODED ATIONAL OUAL IELCATION:	0
8.0 OPEKA HONAL QUALIFICA HON:	0
8.1 LEST VERIFICATION OF WALK IN STADILITY CHAMDER DETAILS;	/
8.1.1 DATA SHEET TABLE OF WALK IN STABILITY CHAMBER DETAILS:	/
8.2 VERIFICATION OF OPERATION OF WALK IN STABILITY SYSTEM:	ð
8.2.1 VERIFICATION OF TEMPERATURE AND HUMIDITY PLC OPERATION:	8
8.2.1.1 DATA TABLE FOR VERIFICATION OF OPERATION OF CONTROLLERS:	8
8.3 VERIFICATION OF OPERATION OF SAFETY DEVICES OF SYSTEM:	9
8.3.1 VERIFICATION OF THE SAFETY CUTOFF ACTION OF THE SAFETY	9
CONTROLLER FOR TEMPERATURE OVERSHOOT:	9
8.3.1.1 TEST DATA SHEET FOR SAFETY CUTOFF ACTION OF THE SAFETY	9
CONTROLLER FOR TEMPERATURE OVERSHOOT:	9
8.3.2 VERIFICATION OF THE SAFETY CUTOFF ACTION OF THE SAFETY	10
CONTROLLER FOR TEMPERATURE UNDERSHOOT:	10
8.3.2.1 TEST DATA SHEET FOR SAFETY CUTOFF ACTION OF THE SAFETY	10
CONTROLLER FOR TEMPERATURE UNDERSHOOT:	10
8.3.3 VERIFICATION OF THE SAFETY CUTOFF ACTION OF THE SAFETY	10
CONTROLLER FOR HUMIDITY OVERSHOOT:	10
8.3.3.1 TEST DATA SHEET FOR SAFETY CUTOFF ACTION OF THE SAFETY	11
CONTROLLER FOR HUMIDITY OVERSHOOT:	11
8.3.4 VERIFICATION OF THE SAFETY CUTOFF ACTION OF THE FLOAT SWITCH	11
FOR LOW WATER LEVEL:	11
8.3.4.1 TEST DATA SHEET FOR SAFETY CUTOFF OF THE FLOAT SWITCH FOR	11
LOW WATER LEVEL:	11
8.3.5 VERIFICATION OF THE SAFETY CUTOFF ACTION OF THE SAFETY	11
THERMOSTAT FOR TEMPERATURE OVERSHOOT:	11
8.3.5.1 TEST DATA SHEET FOR SAFETY CUTOFF ACTION OF THE SAFETY	12
THERMOSTAT FOR TEMPERATURE OVERSHOOT.	12
8 3 6 VERIFICATION OF THE SAFETY CUTOFF ACTION OF THE SAFETY	12 12
THERMOSTATEOR TEMPERATURE OVERSHOOT IN EVADORATIVE TRAV-	12 12
9361 TEST DATA SHEET FOD SAFETV CUTOFF ACTION OF THE SAFETV	12 13
THEDMOSTATEOD TEMDED ATHDE OVEDSHOAT IN EVADODATIVE TDAY.	13 12
PROVIDENTIAL FOR LENGTERATORE OVERSHOUT IN EVAFORALIVE TRAY: 9.2.7 VEDIFICATION OF WODKING OF TIME DELAY.	13 12
0.3.7 YEARTICATION OF WORKING OF TIME DELAT:	13 12
0.3.1.1 IEST DATA SHEET FOR WORKING OF HIVE DELAY;	13
0.5.0 LEST DATA SHEET FUK UPEKATIUN UP SAFETY DEVICES:	14
0.4 VEKIFICATION OF OPEKATION OF THE STAND-BY SYSTEM:	15

QUALITY ASSURANCE DEPARTMENT

OPERATIONAL QUALIFICATION PROTOCOL FOR WALK IN TYPE STABILITY CHAMBER

8.4.1 VERIFICATION OF OPERATION OF THE STAND-BY HUMIDITY SYSTEM:	15
8.4.1.1 TEST DATA SHEET FOR WORKING OF STAND-BY HUMIDITY SYSTEM:	15
8.4.2 VERIFICATION OF OPERATION OF THE STAND-BY REFRIGERATION	
SYSTEM	15
8.4.2.1 TEST DATA SHEET FOR WORKING OF STAND-BY REFRIGERATION SYSTEM :_	15
8.4.2.2 TEST DATA TABLE FOR TESTING OF HMI INTERFACE UNIT OPERATION	16
8.5 VERIFICATION OF TRAINING RECORDS:	17
8.5.1 DATA SHEET FOR TRAINING RECORDS:	17
8.6 VERIFICATION OF THE STANDARD OPERATING PROCEDURE:	18
8.6.1 DATA SHEET FOR STANDARD OPERATING PROCEDURE:	18
8.7 VERIFICATION OF THE OPERATIONAL FEATURES OF SOFTWARE:	19
8.7.1 TO CHECK THE USER ACCESS PROTECTION FACILITY:	19
9.0 OPERATIONAL QUALIFICATION DISCREPANCY REPORT:	20
10.0 SUMMARY AND CONCLUSION:	20
11.0 QUALIFICATION COMPLETION AND APPROVAL:	21

QUALITY ASSURANCE DEPARTMENT

OPERATIONAL QUALIFICATION PROTOCOL FOR WALK IN TYPE STABILITY CHAMBER

1.0 APPROVAL:

All executed test procedures in this qualification protocol have been reviewed and found to have been executed according to the approved procedures. The signatures below indicate acceptance of the results.

	Name	Designation	Sign / Date
Prepared By			
Reviewed By			
Approved By			

2.0 SIGNATURE IDENTIFICATION PAGE:

This page is a record of each individual who signs this qualification protocol. Each person shall be identified by written name, full signature; written initials and department represented Quality Assurance, Manufacturing and Engineering etc.

Name	Signature	Initials	Department

3.0 PURPOSE:

The purpose of preparing this protocol is to define qualification requirements and methodology for Walk in Stability Chamber Operational Qualification and ensure that by generating documented evidence shows that the operation equipment as per pre defined functional specification in operating environment.

4.0 SCOPE:

The scope of this protocol is to provide clear path and procedure for executing the Operational Qualification of Walk in Stability Chamber.

5.0 REFERENCES:

The tests and execution procedures within the scope of this qualification protocol are consistent with the following references:

5.1 STANDARDS:

- 1. Current Good Manufacturing Practice
- 2. ICH Guideline

5.2 VALIDATION RELATED DOCUMENTS:

- 1. Quality Management System
- 2. Company Validation Policies and Plan

6.0 RESPONSIBILITY:

Representative Area	Name	Designation
Engineering / Validation		
Quality Assurance		
Quality Control		

QUALITY ASSURANCE DEPARTMENT

OPERATIONAL QUALIFICATION PROTOCOL FOR WALK IN TYPE STABILITY CHAMBER

7.0 EXECUTION:

The satisfactory operational and integration of the walk in stability chamber will be verified by executing the qualification studies described in this qualification protocol. The successfully executed protocol documents established that walk in Stability Chamber operates satisfactory as per pre-defined specification and design in controlled environment.

S.No.	Name of Executor	Designation	Sign / Date
1.			
2.			
3.			
4.			

8.0 OPERATIONAL QUALIFICATION:

S.No.	Test
8.1	TEST VERIFICATION OF WALK IN STABILITY CHAMBER DETAILS
8.2	VERIFICATION OF OPERATION OF WALK IN STABILITY SYSTEM
8.3	VERIFICATION OF OPERATION OF SAFETY DEVICES OF SYSTEM
8.4	VERIFICATION OF OPERATION OF THE STAND-BY SYSTEM
8.5	VERIFICATION OF TRAINING RECORDS
8.6	VERIFICATION OF SOP
8.7	VERIFICATION OF OPERATION FEATURE OF SOFTWARE

8.1 TEST VERIFICATION OF WALK IN STABILITY CHAMBER DETAILS:

Objective: This test sheet of the OQ is intended to describe and identify the system going to be validated.

Procedure: 1. Record following details from the equipment.

- Model
- Equipment S.No.
- Capacity
- Make
- 2. Record the equipment location from location tag plate.
- 3. Record the verification source. (I.e. Nameplates, Room location tag etc.)
- 4. Note any discrepancies and recommend follow-up actions if required.

Tools Required: Not Applicable

Acceptance Criteria: Data recorded from the equipment and verification sources shall match with the data specified in test data table.

QUALITY ASSURANCE DEPARTMENT

OPERATIONAL QUALIFICATION PROTOCOL FOR WALK IN TYPE STABILITY CHAMBER

8.1.1 DATA SHEET TABLE OF WALK IN STABILITY CHAMBER DETAILS:

Equipment Details	Specified Data	Actual	Source of	Verified
		Data	Verification	By / Date
Model	GMP		MOC as per DQ	
Equipment Sr. No.			Name plate	
Capacity / Size			DQ	
Location			Room location tag	
Make			Name plate	
Environment Condition of Area	Below 30°C		Calibrator	
Temperature Range	20°C to 60°C		DC	
Humidity Range	40% RH to 98% RH		DC	

Remarks:		
Meet the Acceptance Criteria [] Yes	[] No
Tested by :		Date :
Verified by :	Date	:

8.2 VERIFICATION OF OPERATION OF WALK IN STABILITY SYSTEM:

Objective: To verify that operation of system components and devices of chamber is as per specified in the design documents specification.

Procedure: Verify physical operation of equipment with design documents and as built drawings.

- 1. Verify operation of system components against system design document and functional requirements.
- 2. Record actual details of Mechanical, Electrical and Instrument components in test data sheets.

8.2.1 VERIFICATION OF TEMPERATURE AND HUMIDITY PLC OPERATION:

Set the temperature and humidity on the respective PLC (within the operating range of equipment) as per the requirement and allow to stabilize the temperature and humidity conditions in the chamber.

QUALITY ASSURANCE DEPARTMENT

OPERATIONAL QUALIFICATION PROTOCOL FOR WALK IN TYPE STABILITY CHAMBER

8.2.1.1 DATA TABLE FOR VERIFICATION OF OPERATION OF CONTROLLERS:

Item	Display /	Specified Result		Actual	Result Accepted
	Function			Result	
Test Condition	: Temperature)			
Temperature	Set Temperature at	PV°C +			
Controller	°C	0.2°C			
	Relay / SSR O/P	SSR O/p should turn			
		ON and OFF as per			
		the controller			
		operation.			
Humidity	Set Humidity at	<u>% +</u> 2% RH			
Controller	% RH				
	Relay / SSR O/P	SSR O/p should turn			
		ON and OFF as per			
		the controller			
		operation			

Remarks: _____

Meet the Acceptance Criteria	[] Yes			[] No	
Tested by :			Date	:			_
Verified by:		Date	:				

8.3 VERIFICATION OF OPERATION OF SAFETY DEVICES OF SYSTEM:

Objective: To verify that operation of safety devices of chamber is as per specified in the design documents and functional specification.

Procedure: Verify the operations of the safety devices of chamber with following tests against system design documents and functional requirement.

Test No.	Test Description
8.3.1	Verification of The Safety Cutoff Action Of The Safety Controller in HMI For Temperature Overshoot
8.3.2	Verification of The Safety Cutoff Action Of The Safety Controller in HMI For Temperature Undershoot
8.3.3	Verification of The Safety Cutoff Action Of The Safety Controller in HMI For Humidity Overshoot
8.3.4	Verification of The Safety Cutoff Action Of The Float Switch For Low Water Level
8.3.5	Verification of The Safety Cutoff Action Of The Safety Thermostat For Temperature Overshoot
8.3.6	Verification of The Safety Cutoff Action Of The Safety Thermostat For Temperature Overshoot in
	Evaporative Tray
8.3.7	Verification of The Working Of Time Delay in HMI

QUALITY ASSURANCE DEPARTMENT

OPERATIONAL QUALIFICATION PROTOCOL FOR WALK IN TYPE STABILITY CHAMBER

8.3.1 VERIFICATION OF THE SAFETY CUTOFF ACTION OF THE SAFETY CONTROLLER FOR TEMPERATURE OVERSHOOT:

Method:

Set the safety controller with the same set temperature as that set on the temperature controller. Then set the required alarm band between 2° C to 5° C and the stabilization time in the safety controller. The safety controller has the imaginary cutoff points as per the setting of the alarm band.

For overshoot test of temperature do the following exercise

After the completion of the stabilization time of the safety controller, set the set value of the temperature controller 6° C above the set value of the safety controller (in HMI).

8.3.1.1 TEST DATA SHEET FOR SAFETY CUTOFF ACTION OF THE SAFETY CONTROLLER IN HMI FOR TEMPERATURE OVERSHOOT:

Item	Display / Function	Specified Result	Actual Result	Result Accepted
Temperature	Set value of	PV of Temperature		
Controller	Temperature	controller°C at		
	controller at	the time of safety		
	°C	cutoff.		
Safety	Set safety controller at	PV of Temperature		
Controller	°C	on safety controller		
		°C at the time of		
		safety cutoff.		
	Alarm band set at	°C		
	°C			

8.3.2 VERIFICATION OF THE SAFETY CUTOFF ACTION OF THE SAFETY CONTROLLER IN HMI FOR TEMPERATURE UNDERSHOOT:

Method:

Set the safety controller with the same set temperature as that set on the temperature controller. Then set the required alarm band between 2° C to 5° C and the initial time in the safety controller. The safety controller has the imaginary cutoff points as per the setting of the alarm band. For undershoot test of temperature do the following exercise

After the completion of the stabilization time of the safety controller, set the set value of the temperature controller 6° C below the set value of the safety controller.

Acceptance Criteria:

In case of undershoot of temperature above the alarm band the unit should give audio alarm while it cutoff the mains contactor.

8.3.2.1 TEST DATA SHEET FOR SAFETY CUTOFF ACTION OF THE SAFETY CONTROLLER IN HMI FOR TEMPERATURE UNDERSHOOT:

Item	Display / Function	Specified Result	Actual Result	Result Accepted
Temperature	Set value of	PV of Temperature		
Controller	Temperature controller	controller°C at		
	at°C	the time of safety		
		cutoff.		
Safety	Set safety controller at	PV of Temperature		
Controller	°C	on safety controller		
		°C at the time of		
		safety cutoff.		
	Alarm band set at	°C		
	°C			

8.3.3 VERIFICATION OF THE SAFETY CUTOFF ACTION OF THE SAFETY CONTROLLER IN HMI FOR HUMIDITY OVERSHOOT:

Method:

Set the safety controller with the same set humidity as that set on the humidity controller. Then set the required alarm band between 2% to 5% and the stabilization time in the safety controller. The safety controller has the imaginary cutoff points as per the setting of the alarm band.

For overshoot test of humidity do the following exercise

After the completion of the stabilization time of the safety controller, set the set value of the humidity controller 6% above the set value of the safety controller.

Acceptance Criteria:

In case of overshoot of humidity above the alarm band the unit should cutoff the evaporative heater and give audio alarm.

QUALITY ASSURANCE DEPARTMENT

OPERATIONAL QUALIFICATION PROTOCOL FOR WALK IN TYPE STABILITY CHAMBER

8.3.3.1 TEST DATA SHEET FOR SAFETY CUTOFF ACTION OF THE SAFETY CONTROLLER IN HMI FOR HUMIDITY OVERSHOOT:

Item	Display / Function	Specified	Actual Result	Result Accepted
		Result		
Humidity	Set value of	PV of Humidity		
Controller	Humidity controller	Controller%		
	at	at the time of		
	%	safety cutoff.		
Safety	Set Safety controller	PV of Humidity		
Controller	at%	on safety		
		Controller%		
		at the time of		
		safety cutoff.		
	Alarm band set at	%		
	%			

8.3.4 VERIFICATION OF THE SAFETY CUTOFF ACTION OF THE FLOAT SWITCH FOR LOW WATER LEVEL:

Method:

In case of inadequate water supply the float switch provided in the reservoir tank will cutoff the mains contactor giving audio alarm. To check the low water safety cut off, the water in the reservoir tank should be removed.

Acceptance Criteria:

Float switch should cut off the mains contactor giving audio alarm in case of inadequate water supply.

8.3.4.1 TEST DATA SHEET FOR SAFETY CUTOFF OF THE FLOAT SWITCH FOR LOW WATER LEVEL:

Item	Display /Function	Specified Result	Actual Result	Result Accepted
Float	Water level cut off	The float switch		
switch		should cut off at		
		approx 50 mm.		

8.3.5 VERIFICATION OF THE SAFETY CUTOFF ACTION OF THE SAFETY THERMOSTAT FOR TEMPERATURE OVERSHOOT:

Method:

The safety thermostat has a fixed cutoff point at 45° C. The sensor of the thermostat is placed below the heaters in the chamber duct. To check the working of the safety thermostat the safety controller should be disconnected. Set 50° C on the temperature controller and switch off the compressor.

Acceptance Criteria:

The safety thermostat should cutoff the heaters supply in case the temperature exceeds its set value.

QUALITY ASSURANCE DEPARTMENT

OPERATIONAL QUALIFICATION PROTOCOL FOR WALK IN TYPE STABILITY CHAMBER

8.3.5.1 TEST DATA SHEET FOR SAFETY CUTOFF ACTION OF THE SAFETY THERMOSTAT FOR TEMPERATURE OVERSHOOT:

Item	Display /Function	Specified Result	Actual Result	Result Accepted
Temperature	Set Temperature	PV on		
Controller	controller at	Temperature		
	°C	controller at the		
		time of safety		
		thermostat cut off		
		°C		
Safety	Set the Safety	The safety		
Thermostat	thermostat at	thermostat should		
	°C	cut off as the		
		temperature		
		exceeds upto +5°C		
		of set point.		
	Relay O/P	Relay should		
		operate at the time		
		of safety		
		thermostat cut off		
		and cuts off the air		
		heater supply.		

8.3.6 VERIFICATION OF THE SAFETY CUTOFF ACTION OF THE SAFETY THERMOSTAT FOR TEMPERATURE OVERSHOOT IN EVAPORATIVE TRAY:

Method:

The safety thermostat has a fixed cutoff point at 300°C. The sensor of the thermostat is placed near boiler heaters in the evaporative tray. To check the working of the safety thermostat, set the thermostat at 80°C, Set Humidity controller in HMI to 75%.

Acceptance Criteria:

The safety thermostat in the evaporative tray should cut off the Boiler heater supply in case the temperature exceeds its set value i.e. 80°C.

8.3.6.1 TEST DATA SHEET FOR SAFETY CUTOFF ACTION OF THE SAFETY THERMOSTAT FOR TEMPERATURE OVERSHOOT IN EVAPORATIVE TRAY:

Item	Display /Function	Specified Result	Actual	Result Accepted
			Result	
Humidity	Set Humidity	PV on Humidity		
Controller	controller at 75%	controller at the time of		
	RH	safety thermostat cut off		
		% RH		
Safety	Set the Safety	The safety thermostat		
Thermostat	thermostat at 80°C	should cut off water		
		immersion heater supply		
		as the temperature		
		exceeds up to +5 °C		
		above the set temperature		
		of the safety thermostat.		

8.3.7 VERIFICATION OF WORKING OF TIME DELAY:

Method:

Time delay is provided for the safety of the condensing unit. Whenever the chamber is started, condensing unit will start after a delay of 2 min. i.e. the compressor and the motor will start after approximate 2 min.

Acceptance Criteria:

Condensing unit should start after a delay of 2 min.

8.3.7.1 TEST DATA SHEET FOR WORKING OF TIME DELAY:

Item	Display / Function	Specified Result	Actual Result	Result Accepted
Time Delay	Time delay unit set at	The time delay unit		
Unit	Approximately 2	ON at		
	minutes	Approximately 2		
		minutes		
Condensing	Time taken by the	The condensing unit		
Unit	condensing unit to	(Compressor, motor,		
	start	fan) should		
		start after 2 minutes		

OPERATIONAL QUALIFICATION PROTOCOL FOR WALK IN TYPE STABILITY CHAMBER

8.3.8 TEST DATA SHEET FOR OPERATION OF SAFETY DEVICES:

Function	Actual Results
Cutoff Action Of The Safety Controller in HMI For Temperature	
Overshoot	
Cutoff Action of The Safety Controller in HMI For Temperature	
Undershoot	
Cutoff Action of The Safety Controller in HMI For Humidity	
Overshoot	
Cutoff Action of The Float Switch For Low Water Level	
Cutoff Action of The Safety Thermostat For Temperature	
Overshoot	
Cutoff Action of The Safety Thermostat For Temperature in	
Evaporative Tray	
Working of Time Delay	

Remarks:	
Meet the Acceptance Criteria []] Yes [] No
Tested by :	Date :
Verified by :	Date :

8.4 VERIFICATION OF OPERATION OF THE STAND-BY SYSTEM:

To verify that Walk In Stability Chamber is installed as per specified in the design documents and as built drawings.

8.4.1 VERIFICATION OF OPERATION OF THE STAND-BY HUMIDITY SYSTEM:

The chamber has been provided with a stand-by humidity system, which should be switched 'ON' in case the working system fails.

Method:

Put ON the mains and start the stand by humidity system by putting ON Humidity switch 1 provided. The stand-by humidity system should start working. (Please switch off the 1^{st} humidity system when the 2^{nd} is ON).

Acceptance Criteria:

The stand-by humidity system should start working when switched ON.

8.4.1.1 TEST DATA SHEET FOR WORKING OF STAND-BY HUMIDITY SYSTEM:

Method of Verification	Specified Results	Actual Results	Result Accepted
Humidity System			
Switch 'OFF' the working humidity system and then switch 'ON' the stand- by humidity system.	The stand-by humidity system should work, generating the steam.		

8.4.2 VERIFICATION OF OPERATION OF THE STAND-BY REFRIGERATION SYSTEM:

The entire refrigeration system is being provided as a stand by including a separate compressor, condenser, cooling coil and other refrigeration accessories. The system is along with gas charging and is ready for use if the other fails.

Method:

Put ON the mains and start the stand by cooling system by putting ON cooling switch 1 provided. The standby refrigeration system should start working. (Please switch off the 1^{st} system when the 2^{nd} is ON).

Acceptance Criteria:

The stand-by refrigeration system should start working after 2 minutes when switched ON.

8.4.2.1 TEST DATA SHEET FOR WORKING OF STAND-BY REFRIGERATION SYSTEM:

Method of Verification	Specified Results	Actual Results	Result Accepted
Cooling System			
Switch ON the mains and start the	The stand-by		
cooling system by putting ON cooling	refrigeration system		
switch 1 provided for the standby	should start working		
cooling system. The stand-by	after 2 minutes when		
refrigeration system should start working	switched ON and		
after 2 minutes. (Please switch off the 1 st	operation should be		
cooling system when the 2^{nd} is ON).	Normal as required		

8.4.2.2 TEST DATA TABLE FOR TESTING OF HMI INTERFACE UNIT OPERATION:

Function	Specified Results	Actual Results	Result Accepted
Printer	Print time interval is settable from 1 min to 60 min and the printing was as per the set print interval time. Print value of process Parameters should be match with actual value		
	displayed on the HMI Controllers with Date and Time.		

Remarks:						
Meet the Acceptance Criteria	[] Yes			[] No
Tested by :			Date	:		
Verified by :			Date	:		

8.5 VERIFICATION OF TRAINING RECORDS:

Procedure: The required personnel shall review each applicable SOP for the Walk in Stability Chamber and formally sign off that they have received the training and they understand and are capable of executing the given procedure.

Method of Verification: Evaluation of personnel.

Acceptance Criteria: The trained persons should be capable of executing the given procedure independently.

OPERATIONAL QUALIFICATION PROTOCOL FOR WALK IN TYPE STABILITY CHAMBER

8.5.1 DATA SHEET FOR TRAINING RECORDS:

Name of Person	Department	Sign / Date		
Remarks.				

Meet the Acceptance Criteria	[] Yes			[] No
Tested by :			Date	:		
Verified by :			Date	:		

8.6 VERIFICATION OF THE STANDARD OPERATING PROCEDURE:

Objective: The objective of this test is to verify that the required operational SOP available with current version.

Procedure: Review existing Standard Operating Procedure and documentation for availability, completeness, is current, accuracy and compliance GMP.

Acceptance Criteria: The system related standard operating procedures and documentation should be available, complete, current and accurately reflected as the "Installed" system

8.6.1 DATA SHEET FOR STANDARD OPERATING PROCEDURE:

Title of SOP	Document No.	Availability	Verified
			By/Date
Standby System Changeover			
Procedure			
System Maintenance Procedure			
Standard Operating Procedure			
Software Installation Procedure			

Remarks:							
Meet the Acceptance Criteria	[] Yes			[] No	
Tested by :			Date	:			
Verified by :			Date	:			

8.7 VERIFICATION OF THE OPERATIONAL FEATURES OF SOFTWARE:

To verify that operation of Software of chamber is as per specified in the design documents and functional specification.

8.7.1 TO CHECK THE USER ACCESS PROTECTION FACILITY:

Test Method:

Open the software; log in form will be loaded. Select the online mode and enter the user name and password and the user type. The start up form will be loaded and access to only the authorized field will be available e.g. for the user type R & D and user name ABCDE and password is 12345678 and the access given is only for downloading data. Then when the user type is entered as R & D and user name entered is ABCDE and password entered is 12345678. Startup form will be opened and access to only downloading data will be available.

QUALITY ASSURANCE DEPARTMENT

OPERATIONAL QUALIFICATION PROTOCOL FOR WALK IN TYPE STABILITY CHAMBER

Acceptance Criteria:

When the correct user name, password and user type is entered start up form access should be available and only the fields authorized should be accessible.

Result:

It is observed that when the online mode, user name is ABCDE, password as 12345678 and user type as R & D was entered then only the startup form was loaded and in this login only data downloading was accessible.

Remarks:							
Meet the Acceptance Criteria	[] Yes			[] No	
Tested by :			Date	:			_
Verified by :			Date	:			-

OPERATIONAL QUALIFICATION PROTOCOL FOR WALK IN TYPE STABILITY CHAMBER

9.0 OPERATIONAL QUALIFICATION DISCREPANCY REPORT: DEVIATION:

Describe the deviation:

CORRECTIVE ACTION TAKEN:

Describe corrective action taken:

Reported by

Date

Date

CORRECTIVE ACTION APPROVAL:

Discussion:

Approved by

COMPLETION:

Completed by:	Date

10.0 SUMMARY AND CONCLUSION:

Validation team to prepare summary report shall review OQ data sheets and discrepancy report. The summary of OQ shall be used to draw conclusion for approval of Operational Qualification

SUMMARY:

OPERATIONAL QUALIFICATION PROTOCOL FOR WALK IN TYPE STABILITY CHAMBER

CONCLUSION:

COMMENTS:

Prepared by	Reviewed by	Approved by

11.0 QUALIFICATION COMPLETION AND APPROVAL:

Report No. :

Date Effective

:

:

Equipment Name :

Tag No.

Activity	Name	Area Representative	Signature / Date
Prepared By			
Reviewed By			
Approved By			