

FAILURE MODE EFFECT ANALYSIS FOR CONE MILL

Risk Assessment Document Cone Mill Equipment ID:

Revision index

Revision	Date	Reason for revision
00		First issue

QUALITY ASSURANCE DEPARTMENT

FAILURE MODE EFFECT ANALYSIS FOR CONE MILL

Table of Contents

	1.0	APPROVAL	3
	2.0	INTRODUCTION	4
	3.0	AIM OF THE RISK ASSESSMENT	4
	4.0	REFERENCE DOCUMENTS	4
	5.0	EQUIPMENT DESCRIPTION	5
	6.0	PARTICIPANTS	5
7. 0	RI	SK MANAGEMENT PROCESS5	
7.1	ID	ENTIFYING GMP RISK6	
7.2	RIS	SK ANALYSIS & EVALUATION	
	8.0	RISK ASSESSMENT	9
	9.0	SUMMARY AND CONCLUSION 1	5
	10.0	ABBREVIATION10	6

QUALITY ASSURANCE DEPARTMENT

This document is prepared by under the authority of		
effective shall be approved by the O	QA team of	
PREPARED BY	DESIGNATION	SIGNATURE /DATE
CHECKED BY	DEISIGNATION	SIGNATURE /DATE
APPROVED BY	DEISIGNATION	SIGNATURE /DATE

FAILURE MODE EFFECT ANALYSIS FOR CONE MILL

2.0 Introduction

According to the definition, given in Annex 15, 20 to the EU-GMP-Guide, a risk Assessment is a method to assess and characterize the critical parameters in the functionality of an equipment or process. Therefore, risk Assessment is a key element in the qualification and validation approach.

In the project context, risk Assessment is performed as basic GMP/EHS-Risk Assessment, which shall help to identify important GMP/EHS-requirements.

3.0 Aim of the Risk Assessment

At the very basic stage of design the risk Assessment is carried out to verify that all features are taken into consideration to avoid the risk of failure of critical GMP and EHS parameter in the equipment.

During study, all GMP, EHS and operational parameters will be identified and assessed for the risk, appropriate mitigation will be proposed and verification point will be identified and defined.

The Risk Assessment report is produced to provide the documented evidence that design concepts or requirement are complete in considering all GMP, EHS and operational risks.

4.0 Reference Documents

S. No.	Document Title	Document Number
1.	Validation master plan	
2.	Project validation plan	

QUALITY ASSURANCE DEPARTMENT

FAILURE MODE EFFECT ANALYSIS FOR CONE MILL

5.0 Equipment Description:

The cone mill is stand-alone unit for particle size reduction through impact in air, on material by blades moving at high speeds, inside a conical hopper. The particles of the desired size pass out through the screen placed inside the hopper. The feed to machine is through a charging hopper. The beaters mounted on rotor impart impact to the material in air. The particle fall from the hopper in to the blades of the mill which are moving at 1400 RPM. The impact of the blades on the particles is the cause of the sizing. The blade has rounded edge on side and blunt on the other.

In this GMP risk Assessment all critical components of the Vibrosifter, based on the technical details, are listed and rated according to their influence of the product quality, EHS and operational requirements.

6.0 Participants

Name (block letters)	Function	Signature

7.0 Risk Management Process

A typical Risk management process consists of following steps:

- Risk Assessment:
 - ➤ Risk Identification
 - ➤ Risk Analysis
 - ➤ Risk Evaluation
- Risk Control
 - ➤ Risk Reduction
 - Risk Acceptance
- Result of Risk management processes

QUALITY ASSURANCE DEPARTMENT

FAILURE MODE EFFECT ANALYSIS FOR CONE MILL

Risk Review

• Risk Assessment consists of the identification of hazards and the analysis and evaluation of risks associated with exposure to those hazards.

Risk identification is a systematic use of information to identify hazards referring to the risk question or problem description.

Risk analysis is the estimation of the risk associated with the identified hazards. It is the qualitative or quantitative process of linking the likelihood of occurrence and severity of harm.

Risk evaluation compares the identified and analyzed risk against given risk criteria. Risk evaluation considers the strength of evidence for all three of the fundamental questions.

The output of a risk assessment is either a quantitative estimate of risk or a qualitative description of range of risk. In case of qualitative description the risk is expressed using descriptors such as "high", "medium" or "low".

Risk control includes decision making to reduce and/ or accept risks. The purpose of risk control is to
reduce the risk to an acceptable level. The amount of effort used of risk control should be proportional
to the significance of the risk.

Risk reduction focuses on processes for mitigation or avoidance of quality risk when it exceeds a specified (acceptable) level. Risk reduction might include actions taken to mitigate the severity and probability of harm.

Risk acceptance is a decision to accept risk. Risk acceptance can be a formal decision to accept the residual risk or it can be a passive decision in which residual risks are not specified.

- The output/ result of the quality risk management process should be appropriately communicated and documented.
- Risk management should be an ongoing part of the quality management process. A mechanism to review or monitor events should be implemented.

The output/ results of the risk management process should be reviewed to take into account new knowledge and experience.

This document applies the risk management principles to identify the risks associated with the design, construction and operational features of any equipment, which is going to be procured and installed in the facility.

7.1 Identifying GMP risk

Identification of Risk associated with the equipment, is generally based on prior experience and the concerns of the participants of risk assessment document.

The risks identified are categorized as "GMP risk" or "Non-GMP risk".

GMP is defined as "the practices which ensures that products are consistently produced and controlled to the quality standards appropriate to their intended use and as required by the marketing authorization." Thus, GMP covers all aspects of the manufacturing process: defined manufacturing process; validated critical manufacturing steps; suitable premises, storage, transport; qualified and trained production and quality control personnel; adequate laboratory facilities; approved written procedures and instructions;

QUALITY ASSURANCE DEPARTMENT

FAILURE MODE EFFECT ANALYSIS FOR CONE MILL

records to show all steps of defined procedures have been taken; full traceability of a product through batch records and distribution records; and systems for recall and investigation of complaints.

Thus those risks which might have a direct or indirect impact on the quality of the product are classified as "GMP risk". Also, those risks which might result in regulatory guidelines non-compliance are also classified as "GMP risk".

For example: The MOC of the product contact part has a direct impact on the quality of the product. Thus, it is classified as GMP risk.

The "Non GMP" risks include risks related to EHS, operational and other non-critical hazards.

Following types of risks are mainly identified during risk assessment process:

- Risk related to product contact materials for equipment and containers (eg. Selection of SS grade, gaskets, lubricants etc.)
- Risks related to appropriate utilities and their control (eg. Steam, gases, power source, compressed air etc.)
- Risks related to calibration/ preventive maintenance
- Risks related to protection the environment and health & safety of personnel.
- Risks related to cleaning & sterilization
- Risks related to control system of the equipment
- Risks related to product loss

7.2 Risk Analysis & Evaluation

The risk analysis is performed using a qualitative basis of approach.

Qualitative analysis uses word form or descriptive scales to describe the magnitude of potential consequences/ impact and the likelihood that those consequences will occur.

The qualitative measures of likelihood includes descriptors like "Unlikely", "Possible" and "Likely", whereas the qualitative measures of consequence/ impact includes descriptors like "Minor", "Moderate" and "Major".

Qualitative measures of likelihood

Level	Descriptor	Example detail description
1	Unlikely	May occur at some time
2	Possible	Might occur at some time
3	Likely	Will probably occur in most circumstances

Qualitative measures of consequence/impact*

Level	Descriptor	Example detail description
1	Minor	No impact on the product quality or outcome of the equipment.
	WIIIOI	Features required for easing equipment operation.
	Moderate	No direct impact on product quality/ outcome of equipment.
2		however may indirectly affect the product quality.
2		Minor effect on personnel health
		Used in the initial stage of operation, however it may affect the

QUALITY ASSURANCE DEPARTMENT

FAILURE MODE EFFECT ANALYSIS FOR CONE MILL

Level	Descriptor	Example detail description
		final output but those are not used for final release of output. • Effect on environment such as clean room.
3	Major	 Features having direct impact on product quality/ outcome of equipment like contact parts MOC, Surface finish, Control system, Process air quality etc. Failure could lead to regulatory non-compliance. Loss/ damage to equipment or its critical sub-components Critical instruments not calibrated or not of desired range or accuracy. Proper supporting documentation not provided. Major effect on personnel health

Based on the above parameters of likelihood and consequence a qualitative risk analysis matrix is prepared to identify the overall Level of Risk, as mentioned in table below.

Qualitative risk analysis matrix – level of risk*

Likelihood	Consequences/ Impact							
Likeiiiiood	1 – Minor	2 – Moderate	3 – Major					
1 (Unlikely)	Low	Medium	High					
2 (Possible)	Low	Medium	High					
3 (Likely)	Medium	High	High					

The final Risk level shall thus be described using descriptors such as "Low", "Medium" & "High", where each descriptor implies the following meaning:

Low – Risk can be accepted or ignored. These do not affect the final quality of the equipment/ system and it can be managed by routine procedures and are unlikely to need specific application of resources.

Medium – Risk required ongoing monitoring and review, to ensure level of risk does not increase. Otherwise managed by routine procedures.

High – Action plans must be developed, with clear assignments of individual responsibilities and timeframes.

FAILURE MODE EFFECT ANALYSIS FOR CONE MILL

8.0 Risk Assessment

In the following section a table is produced for the risk Assessment. The significance or instruction for each column is described in the following paragraph.

Column 1: **Serial number** of Risk Assessment item

Column 2: **Process step/Component**: Identify the process step or component

associated with the risk.

Column 3: **Risks**: Identify the type of risk associated with the process or component.

Column 4: Verify that whether there is **GMP risk.**

Column 5: **Justification**: Provide justification for declaring both yes/no for GMP

Impact in column 3.

Column 6: For the risk **other than of GMP risk,** write what is the other type of risks

e.g. EHS, Operational.

Column 7: **Justification**: Provide justification for considering any risk.

Column 8: **Risk level** Determine the Risk level as High, Medium or low based on the

impact.

Column 9: **Risk Control:** It is further divided into following three sections

Column 9a: **Mitigation Method**: Write the risk mitigation strategy as considered in design.

Column 9b: **Residual risk level**: After the risk mitigation what is the residual risk level,

whether it is acceptable, low or Medium

Column 9c: Verification: Write the test point where the risk mitigation strategy will be

verified.

QUALITY ASSURANCE DEPARTMENT

S. No	Process		GMP		Oth on Diale	Justification	Risk Level	Risk Control		
S. NO	steps/component	Risk	Risk Yes/No	Justification	Other Risk type			Mitigation Method	Residual risk level	Verificati on
Chargi	ng:									
1.	Charging hopper	Material spilled during transferring to charging hopper	Yes	Yield loss may occur which may disturb uniformity of the content	EHS	Product exposure	High	Raw material will be transferred from FBD to charging hopper using a tipper through butterfly valves.	Acceptable	IQ/OQ
Process	S									
2.	Screen	Screen is not assembled properly	Yes	Granules of coarser size will get passed	No	NA	High	Fitting and integrity of the screen will be assured	Acceptable	IQ
3.	Sizing / wet milling	Blades get jammed during processing of wet milling	Yes	Process will get interrupted which may produce poor quality granules.	Operational	Productivity get reduced	Medium	Vendor should declare the scope of operation which will be confirmed in further qualification.	Acceptable	OQ
Discha	rge:									
4.	Discharge chute	Powder spreads out during transferring	Yes	Yield loss may occur which may disturb uniformity of content	EHS	Product exposure	High	Milled material shall be discharged in an IBC in closed condition using butterfly valves dust control.	Acceptable	IQ / OQ
Cleani	ng and Material of (Construction:		•		•			•	

QUALITY ASSURANCE DEPARTMENT

C No	Process		GMP		Oth on Diale		D:-I-	Risk Co	ontrol	
S. No	steps/component	Risk	Risk Yes/No	Justification	Other Risk type	Justification	Risk Level	Mitigation Method	Residual risk level	Verificati on
5.	MOC	Product contact surface material is not compatible with product and cleaning agent.	Yes	This will lead to contamination	No	NA	High	 Contact metallic surfaces will be of SS 316 mirror surface finish of ≤0.6 Ra. Crevice free smooth, rounded corners & smooth 	Acceptable	IQ
6.	MOC	Product non—contact parts are suitable for cleaning	Yes	Product contamination and susceptible for corrosion	No	NA	High	 Product non contact metal surface would be of SS 304 or better mirror surface finish of ≤0.6 Ra. Castor wheel shall be poly urethane or better 	Acceptable	IQ
7.	Gaskets	Gaskets are not compatible with material	Yes	Contamination	EHS	If damaged, there is a chance of product leakage	High	Gaskets should be food grade selected gaskets should be compatible with decontaminating and cleaning agent	Acceptable	IQ
8.	Machine parts	Parts cannot be dissembled	Yes	Proper cleaning will not be feasible	No	NA	High	Parts that cannot be cleaned in mounted position to be made suitable to dissemble and clean	Acceptable	IQ

QUALITY ASSURANCE DEPARTMENT

G M	Process		GMP		Od Bil		D' I	Risk Co	ontrol	
S. No	steps/component	Risk	Risk Yes/No	Justification	Other Risk type	Justification	Risk Level	Mitigation Method	Residual risk level	Verificati on
9.	Welding Quality	Welding quality is not Good	Yes	May lead to contamination / proper cleaning affected	No	NA	High	All welded joints shall be neatly ground to give a smooth finish and all pipes and joins should be Orbital welded with Electro polishing	Acceptable	IQ
Mainte	Maintenance									
10.	Maintenance	Maintenance not possible	Yes	Proper cleaning will not be feasible	No	NA	Medium	• Equipment shall be easy to maintain.	Acceptable	IQ
Safety:										
11.	Gaskets	Joint gaskets are not replaceable	Yes	Worn gasket will contaminate product and affect the integrity	EHS	Result in material leakage	Medium	All gaskets shall be replaceable.	Acceptable	IQ
12.	Overload relay	Due to clogging, overload on motor	No	Does not have any impact on product quality	Operational	It may lead to burning of motor	Medium	Overload relay shall be provided to monitor the overload on motor	Acceptable	IQ
13.	Noise level	More noise is produced by the equipment during the operation	No	Does not have any impact on product quality	EHS	High noise may cause deafness and anxiety	Medium	Noise level shall be below 80 db at a distance of 1 m from the equipment.	Acceptable	OQ

QUALITY ASSURANCE DEPARTMENT

S. No	Process steps/component	Risk	GMP Risk Yes/No	Justification	Other Risk type	Justification	Risk Level	Risk Control		
								Mitigation Method	Residual risk level	Verificati on
14.	Closure of the rotating & electrical parts	Appropriate closure of the rotating & electrical parts is not provided.	No	No impact on the product	EHS	It may lead to accident	High	Appropriate closure of all the rotating & electrical parts.	Acceptable	IQ
15.	Machine operation	Machine operation is difficult	Yes	Product may get contamination, process could not be completed	No	NA	High	Training shall be provided to operator & staff for operation of machine	Acceptable	OQ
Contro	l and Monitoring sy	stem								
16.	Control panel	Control of equipment not possible	Yes	GMP requirement	No	NA	High	Proper control panel with On/ Off switch and blade direction control switch shall be provided.	Acceptable	IQ / OQ
Documentation:										

QUALITY ASSURANCE DEPARTMENT

S. No	Process steps/component	GMI		MP	O41 D!-1-		D:-I-	Risk Control		
		Risk	Risk Yes/No	Justification	Other Risk type	Justification	Risk Level	Mitigation Method	Residual risk level	Verificati on
17.	Documentation	Critical surfaces are not tested for material of construction and test reports are not provided	Yes	Lack of documented evidence leads to question on the quality of MOC	No	NA	High	MOC description and certification of critical parts to be provided.	Acceptable	IQ
18.	Documentation	Instruments are not provided with calibration certificate	Yes	Calibration cannot be assured due to lack of documented evidence	No	NA	High	Critical instrumentation shall be supported with calibration certificates.	Acceptable	IQ
19.	Documentation	Equipment is not provided with design and functional specification	Yes	Design qualification is not possible	No	NA	High	Design and functional specification should be supplied as per URS	Acceptable	IQ
20.	Documentation	Equipment is not provided with Operation & maintenance manual	Yes	Correct operation is not ensured and Qualification requirement	No	NA	High	O & M manual should be supplied per URS	Acceptable	IQ
21.	Standard Operating procedure	Standard operating procedures are not available.	Yes	Procedures critical operations cannot be carried out successfully resulting process failure.	Operational	Productivity will get decrease to unavailabilit y of procedure.	High	SOPs for Operation, Cleaning and maintenance shall be prepared in line with operational and maintenance manual and finalized.	Acceptable	OQ

FAILURE MODE EFFECT ANALYSIS FOR CONE MILL

9.0 Summary and Conclusion

- The risk Assessment is performed to establish the design parameters of the equipment so as to meet the desired performance of the equipment i.e. Cone mill.
- The critical risks pertaining to GMP and other than GMP were analyzed with justification and mitigation procedures.
- For each recognized GMP-risk and other than GMP risks necessary measures are defined.
 Organizational measures, like SOPs, are also possible measures for special GMP-risks. The availability of these SOPs will be checked at the time of accomplishment of OQ of the machine.
- To control the risk, various mitigation methods shall be verified through SOPs ,operation & maintenance manuals, and calibration certificates at respective verification points
- Based on Risk Assessment, the URS shall be prepared.

10.0 Abbreviation

Acronym	Definition			
cGMP	Current Good Manufacturing Practice			
db	Decibel			
EU-GMP	European –Good Manufacturing Practice			
GA	General Arrangement			
GAMP	Good Automated Manufacturing Practices			
GMP	Good Manufacturing Practices			
HMI	Human Machine Interface			
IQ	Installation Qualification			
MOC	Material Of Construction			
OQ	Operational Qualification			
O & M	Operation and Maintenance Manual			
PQ	Performance Qualification			
SOP	Standard Operating Procedures			
SS	Stainless steel			
URS	User Requirement Specification			

[&]quot;It is concluded that the **Risk Assessment** performed for the equipment will mitigate the risk of failures of critical parameters during design, commissioning, installation, operation and performance of the equipment".